Capitol2-Techniques of Structural Geology and Tectonics

Embed Size (px)

Citation preview

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    1/23

    CHAPTER

    Techniques of Structural

    eology

    and

    Tectonics

    Investigations in struct ura l geology require familiarity

    with basic techniques of observation and of reporting

    and displaying three-dimensional formation. Thus we

    use standardized methods for measuring the orienta-

    tions of planes and lines in space. Techniques for dis-

    tinguishing the relative ages of strata in a sequence of

    layered-sediments are crucial to interpreting their sig-

    nificance. Various graphical displays have proved most

    useful for plot t ing and interpret ing orientat ional or

    three-dimensional data. Such displays include geologic

    maps and cross sect ions that present da ta in a geographic

    framework, as well as histograms and spherical pro-

    jections th at portray only orientat io nal data w ithout

    regard to geographic locat ion. Geophysical data such

    as seismic reflection profiles and gravity measurements

    are essent ial to the interpretat ion of many large-scale

    structures, and a s tr uctura l geologist mu st understand

    how these dat a are obtained an d interpreted in order

    to take their l imitat ions into acco unt . Mo st discussions

    of s tructural geology and tectonics assume the reader

    is familiar with all these techniques.

    Proper interpretat ion of geologic s tructures de-

    pends critically on the ability to visualize spatial rela-

    t ionships am ong various features. Th is abi l ity to think

    in three dimensions does not necessarily come easily,

    but one can learn i t with pract ice. Learning to think

    in

    3-D is a m ajor goal of labo ratory courses in s truc-

    tural geology.

    The Orientation of Structures

    Many of the structures observed in outcrops are ap-

    proximately planar or l inear features. Planar features

    include bedding, fractures, fault planes, dikes, uncon-

    formities, and planar preferred orientations of micas.

    Linear features include grooves and streaks o n a surface,

    intersect ions of tw o pla nar fea tures, and l inear preferred

    orientat ions of mineral grains. We can represent features

    tha t are not planar, such as folded surfaces and folded

    linear features, by measuring a series of tangent planes

    or l ines around the s t ructure .

    T hu s the at t i tude of a plane or a line-that is, i ts

    orien tation in space-is fund ame ntal to the description

    of structures. We specify the attitudes both of .planes

    and of lines with two angles measured, respectively,

    from geographic north and from a horizontal plane.

    The attitude of a plane is specified by its strike and its

    dip, or by the t rend of the dip l ine and the dip angle.

    Th e at t i tude of a l inear feature is given by i ts t rend an d

    its plunge.

    T he strike is the horizontal angle, measured relat ive

    to geographic north, of the horizontal l ine in a given

    planar s tructure (Figure 2.1A . This horizontal line is

    the strike line, and it is defined by the intersection of a

    horizontal plane with the planar s tructure. I t has a

    unique orientat ion for any given orientat ion of plane

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    2/23

    Vertical plane

    normal to strike

    A I P

    line

    Strike and dip symbol

    Figur-e 2.1 Th e stl-ikc al ~ d l11

    of a

    planar strucrur-c. A. T h e s t r ~ k e f a pInn;lr srruiturc

    I S

    tlic

    azirnurli

    o

    a

    lhoriz.o~it.ll

    lne

    In

    the and

    is

    defined

    b y

    the

    i n t c r s e c t ~ o ~ ~l

    a

    I~orizorir~lllane

    ~v i th he p i , l~ i .~rtruciurc. 7'lic dlp angle

    is

    rncas~rrrdhet\x~ccn or~zoiital r ~d ile p l a n a r

    stl-uctul-e

    111 a

    vcrt~calplant 11ormal o the str-lke

    l in e . T h e

    dip dlrcction In this dtagraiil

    1s

    to thc

    NF..

    j

    -1-hc str~kchowr1 hcrc

    IS

    nlcasurccl on

    a c j l ~ a c i r ~ l n t

    ornpnss

    a s NSOW

    or

    o n a

    360 compass a s

    e ~ t h c r325 or 14.5 . Tlic att l t~ii le S ~ndicatcdon

    a

    map h y a T-shaped symbol wltli

    t l ~ c r cn l

    pa~-allclo thc dip di rec tioli . The d ~ pngle is wrlttcn besidc this s y m b o l .

    except a l ior i7 .onta l one . T h e dip is t l ic s lop e of a

    p l a n e

    d e fi n ed b y t h e d i p a n g l e a n d t h e d i p d i r e c t io n . T h e d i p

    a n g l e, a l so r e f c r re d t o s ~ r n p l y s t h e d i p , is t l ~ e n g l c

    herwccn a hor i zon t a l p l ane and t he p l ana r s t ruc tu re ,

    ~ n c a s u r c dn

    a

    ve r ti c a l t ha t i s pe rp end ~cu ln r o t he

    s r r - ~ k e~ n c F i gu r e 2 . 1A .

    I t

    i s the la rgest possible anglc

    b c t w c c n t h e h o r i z o ~ l t a lp l ane and t he i nc l i ned p l ane .

    For a g iven s t r i ke , pa r t i cu l a r va lue o f t he d lp ang l e

    iden ti f ie s two p l anes which s l ope i n oppo s i t e d i r ec t ions .

    T o d i s ti n g u is h b e t w e e n t l ~ e r n ,we spec i fy t he approx i -

    n i a t e d i p d i r e c ti o n . by g iv i ng t h e q u a d r a n t ( N F , SE,

    S W ,

    N W ) o r t h e p r i n c i p a l c o m p a s s d i r e c ti o n (N, E S, \V)

    o f t h e d o w n - d i p d i r e c t io n .

    T h e d i p l in e i s p e r p e n d i c u la r t o t h e s t r i k e l in e a n d

    is t he d i r ec t i on o f s t e epes t de scen t on t h c p l ana r s t ruc -

    t ~ ~ r c .n so me cases, par t icular ly in Bri ti sh usnge , the

    a t t i t ude

    of

    a p l an e is speci f ied by t h r t r end an d p lunge

    (de f ined be low ) o f rhc d ip l i ne. Th e p lunge o f t he d ip

    11ne is t h e s am e a s t li e d ip o f t h e p l an e .

    F o r t h e a t t i t ~ l d r f a l i ne a r s t ru c t u r e , t h e t r e n d i s

    t he s t r ~ k e f the ver t ica l p lane in which the l inear s t ruc-

    t u r e I ~ c s ; t is un ique excep t fo r an exac t l y vc rt i ca l l i nea r

    s t ruc tu re (F igure 2 . 2 A ) . T h e plunge i s the angle be tw een

    the hor i zon t a l p l ane and rhc l i nea r s t ruc t~ l r - c , e a su red

    i n t h e v e r t i c a l p l a n e ( F ~ g u r e

    . 2 A ) .

    T h e d i r e c t i o n o f

    p l t r ~ ~ g e ,ike t h e d ~ p lrec t ion, can be speci f ied by the

    q u a d r a n t o r b y t h e c o m p a s s d l r ec t io n

    of

    t h e

    dow n-p lung e d i r ec t i on . A l~e rna t i ve ly , t c an be speci fi ed

    impl ic i tl y by us ing t h e conven t ion t ha t t he t renc i a lways

    l )e l nea su red In t he d owl l -p lun ge d i r ec t i on .

    W e gene ra l ly use on e o f

    c \ v o

    conven t ions t o r ecord

    a s t r i k e o r a t r e n d . W e can spec ify t he ang l e a s a b ea r ing

    ( the ang l e measured be tween 0 a n d 90 eas t o r wes t o f

    n o r t h o r , in s o m e ca s es , s o u t h ) o r a s a n a z i m u t h ( t h e

    ang l e be tween 0 a n d 360, i nc rea s ing c lockwi se f rom

    no r th ) . Meas ure lncn t s d i f fe r ing by 150 h a ve t h e s a m e

    o r i cr i ta t io n . T h u s a n o r t h e a s t s t r ik e o r t r e n d c o u l d b e

    re lmr t ed a s bea r ings N45E o r S4SW a n d a s a z i m u t h s

    045' o r 22SG ach pa i r d i f f e r ing by 180 . Using t he same

    c o n v e n t i o ~ i s ,w e c o u l d g i ve a n o r t h w e s t s t r ik e o r t r e n d

    as bea r ings

    N 4 S W

    o r

    S4SE

    and a s az imuths 13.5 o r

    315 . I t i s goo d p rac t i c e a lways t o w r i t e t he az imuth a s

    th ree -d ig i t number , u s ing p reced ing ze ros whe re nec -

    e s s a r y , t o d i s ti n g u is h i t f r o m d i p o r p l u n g e a n g le s w h i c h

    a r e a l w a y s b e t w e e n 0 a n d 90 .

    v a r ie t y o f c o n v e n t i o n s a r e in c o m m o n u s e f o r

    wr i t i ng t he a t t i t udes o f p lanes and l ine s. W c gene ra l ly

    wr i t e t he s t r i ke and d ip i n t l i e o rde r s t r i ke , d ip , d ip

    d i r e c t io n , r e g a r d le s s o f w h e t h e r b e ~ i r i n g r a z i m u t h is

    used . S t r i ke bea r ings a re a lways r epor t ed r c l a t i ve t o

    r~ or t l i ; o d i s ti nc t i on i s made be tween az imuth s d if f e ri ng

    hy 1SO'. T h u s

    N35W;.55NF, , 325;5SNE,

    a n d

    1 4 5 ;5 5 N E

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    3/23

    Horizontal plane

    Trend

    Vertical plane containing

    linear structure

    Trend and plunge

    symbol

    q d

    3

    line

    Figure 2.2 The trend and plunge of a linear structure. A The

    trend is thc angle between north and the strike of the vertical

    p l ~ n c hat contains the I~ nea r tructure. The plunge is the

    arlglc between horizontal and the linear structrlre. measured

    In

    the vert~cal lane that

    contains

    the structure.

    B

    Ttic trend

    shown here is given

    as

    N 2 0 W

    on

    a quadrant compass or

    a s

    either 340 or 160 on a 360 compass. I f by convention the

    trend is rccorded in the dowri-I~lungeirection, thcn it can be

    given only hy S20E or 160 . O n a map, linear features are

    plotted

    a s a n

    arrow parallel to the trend and pointing in the

    dowii-plunge direction. Th e plunge anglc is written beside this

    .?Trow.

    a ll s p ec if y t h e s a m e a t t i t u d e o f p l a n e ( F l g ur c 2 . 1 8 ) . T h e

    d i p d i r ec t io n is a l w a y s i n a q u a d r a n t a d j a c e n t t o c h at

    o f t he s t r i ke .

    T h e m o s t c o n v e n i e n t c o n v e n t io n f o r th e a t t i t u d e s

    of l i ne s is t o me asur e t he t r end

    i l l

    t h e d o w n - p l u n g e

    d i rec t io t i , i n wh ich ca se t ha t d i r ec t i on need no t he s t a t ed

    exp l ic i tl y . W e f i rs t wr i t e t he p lunge a nd t hcn t he t r end

    ( the r ever se o rde r i s a l so used) so t ha t t h e measure rne t i t s

    40 ;S50W and 40 ;230 bo th r e fe r t o t he sam e a t t i t ude

    (Figure 2 .2U).

    W e p l o t t h e a t t i t u d e o f a p l a n e o n a m a p b y d r a f t i n g

    a l ine parallcl LO s t r i ke wi th a shor t ba r i nd i ca t i ng t he

    d o w n - d i p d i r e c t io n . If t h e t r e n d a n d p l u n ge o f t h e d i p

    111lc

    \

    I T I C , I S I I I - C C ~ ,

    c

    p lo t t hc a t t i t ude wi r l i a l l a r row

    p o t ~ i [ ~ t ~ gn t h e d ow n - cl il , d ~ r c c r i o n F ~ g u r e l N . T h e

    a t t i t ud e of a l i ne is i nd i ca ted hy an a r row po in t i ng i n

    t he d o \ v n - p I ~ ~ ~ i g ei rcc t l on (Fig urc 2 .213; the arr ow S ~ I T I -

    I )ol s usec l t o i nd i ca t e t he a t t i t ude o f a l i ne and o f t he

    d ip li ne o f p l ane shou ld be d i f f e ren t) .

    In

    al l cases, the

    va lue o f t hc d ip o r p lunge , a s appropr i a t e , i s wr i t t e l l

    b e si d e t h e s y m b o l s o t h a t t h e a t t i t u d e c,ln be seen a t a

    g l ance .

    Geologic

    Maps

    C k o lo g ic m a p s a r e t h e ba si s o f all s t ~ ~ d i c sf s t ruc tu re

    a n d tectonics

    T h e y a re t ~ v o - d i ~ n e l ~ s i o n dcpre sen t a -

    t ions of an a rea of th e I: .a rt li 's surface ot i \vhich a re

    ] ,l o tt ed a va r i e ty o f da t a o f geo log i c i n t ere s t . These da t a

    a r e b a se d o n o b s e r v a t i o n s f r o m I n an y o u t c r o p s a n d o n

    the j ud i cious i n fe rence o f r e l a t i onsh ips t ha t a rc no t d i -

    r ec t l y o l~se rvah l e .T h e d a t a p l o tt e d m a y i n c lu d e t h c

    d i s t r i b u c ~ o n f t h e d i f f e r e n t r o c k t y p e s, t h e l o c a t io n a n d

    n a t u r e of t he con t ac t s be tween t he rock t ypcs , and t h e

    l oc at io n a n d a t t i t ~ ~ d ef s t ruc tu ra l f e a tu re s .

    C o n t a c t s z r e l in e s o n t h e r o p o g r a p h ~ c u r f ac e o f

    r h e E a r t h w h e r e t h e b o u n d a r y s u r f a c e be t w e e n t w o d i f -

    f e ren t rock t ypes i n t e r sec t s t he t opograp l i y . Con tac t s

    c Jn be s t r a t i g raph i c , whe re one un i t l i e s depos i t i ona l l y

    u p o n

    ano the r ; t c c ton i c , whe re t he un i t s a re f au l t ed

    a g a in s t o n e a n o t h e r ; o r i n t r u s i v e , w h e r e o n e u n it i n v a d e s

    a n o t h e r . On a geo log i c ma p , d i f f e ren t t ypes of co t l t a c t s

    and the re l iabi l i ty of the conLact loca t ion are indica ted

    13 different s ty les of l ines. . l - iie sh ap e of t h e co n t a c t o n

    t h e m a p d e p e n d s b o t h o n t h e g e o m e t r y o f t h e c o n t a c t

    s u r f a c e ( f o r e x ; ~ m p l e , h e t h e r i t is p l a n a r o r f o l d ed a n d

    w h a t i t s a t t i t u d e i s ) a n d o n t h e t o p o g r a p h y t h a t t h e

    con t ac t su r face i n t e rsec t s . An expe r i enced obse rve r c an

    de t e rmine t he geom e t ry o f s t ruc tu re s in a n a rea , a s we l l

    a s t he qua l i t y o f i n f o rm a t ion ava i l ab l e , s imply by ca re fu l

    i nspec t i on o f a good geo log i c map .

    Al l geo log i c map s a r e sma l l c r t han t he a rea t hey

    repse sen t . Exac t l y how much sma l l c r i s r ep re sen t ed by

    the sca l e o f t he map , wh ich i s t he r a t i o o f t he d i s t ance

    o n t h e m a p t o t h e eq u i v a l e n t d i s ta n c e o n t h e g r o u n d .

    A s c a le o f 1 : 2 5 , 0 0 0 ( o n e t o t w e nt y -f iv e t h o u s a n d ) , f o r

    e x a m p l e , i n d ic a te s t h a t 1 u n i t o f d i s t a n c e o n t h e m a p

    ( s u c h a s a c e n t i m e t e r o r a n i n c h ) r e p r e se n t s a h o r i z o n t a l

    d i s t a n c e o f 2 5 , 0 0 0 o f t h e s a m e u n i t o n t h e g r o u n d .

    Because t he sca l e i s a r a t i o , i t app l i e s t o any de s i r ed

    nit o f m e a s u r e m e n t . T h e s ca le s of m o s t m a p s u s e d i n

    s t r u c t u r a l a n d t c c t o n i c w o r k r a n g e b e t w e e n 1 1 0 0 0 a n d

    1 100 ,000, t hough o th e r sca l es a r e a l so used . In pa r t i c -

    u l a r , maps o f

    l a r g e r e g l o n s s u c h a s s t ~ t e s ,

    rovinces

    c o u n t r l c s , a n d c o n t i n e n t s a r e published at sca les be-

    t w e e n 1 500 ,000 and 1 20,000,000.

    ' I 'echniqves

    of

    St ru c t u ra l G eo l o g y

    a r ~ d

    c c t o n ~ c s

    3

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    4/23

    IS

    1 1 1 ~ c . l \ ( O f

    '1

    1 1 l : l ~

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    5/23

    t h a t i o n l n i o r i l v oc i i l r u \ . c r 1.31 -cc

    distances

    ca n sl io\s.n Continental

    c l r ; i r l y on l y w i t h ve r r i c a i exagge r c l t i on . A ; a r e s u l t , ve r -

    t ic ;l ll y c x a g g c r a t e d c r o s s s e c ti o ri s a r c s t a n d a r d i n r n a r i n c

    g e o l o g y a n d s t r a t i g r a p h y .

    T h e h a h i t ~ 1 3 1 e o f v e r ti c a l e x n g g c r a t i o n t o p o r t r a y

    c e r t a i n

    f e a t t ~ r c s , o w e v e r , g i v es a f a ls e impression of

    t h e n a t u r e

    c f

    t h os e f c a t ~ ~ r c s .i g u r e

    2.3 ,

    f o r e x a ~ n p l e ,

    s h o w s c r o s s s e c t io n s o f a h ~ i ll c iu c t io n o i ie a n d a n a d -

    j a c e n t v o l c a n i c i s l a n d a i - c . l ' h e t r u e s c ; ~ l e e c t i o n is

    s hobvn i n F i gu r e 2.3A. N o t c t h a t t h e t o l ~ o g r a p h i c a ri -

    a t i o n i s a l m o s t i m l > o s s i h l c o s e e

    A

    1 3 r o l ~ u l y e r t i c a l l y

    e x a g g e r a t e d s c c t i o n i s s l lo \ v n i n F i g u r c 2.311. T h e v e rt ic a l

    p c : ar a n c e is n o t a t a l l r e p r c s c n t a t i v e o f a c t u a l s l o p e s .

    . f he e f f ec t

    of

    ve r t i c a l ex agg e r a t i on i s j u st a s d ra l - na t ic

    o n t h e d i p of p l a n a r f e a t u r e s ( c o m p a r e t h e a n g l e

    ot

    t h e

    s u h d u c t i n g l i t h o s p li c r i c s l a l,

    r ~

    i g u r c 2 3A \ v it h t h a t i n

    F i g u r e 2.313). P u b l i s h e d i n f o r r n a l c r o s s s e c t i o n s o f t e n

    g i ve a n e v e n m o r e c o ~ i f u s i n g ic w by c o n i l ~ i n i n g e r ti -

    c a l l) , c x a g g c r a t e d t o p o g r n p f ~ yw i l h n o v e r t i c a l c x a g g c r -

    a t i o ~ l x l o x . t h e s u r f ac e , a s s h o w n in F i gu r c

    2.3C.

    V e r t i c a l e x a g g c r ~ t i o nm a k e s d i p p i n g s t r u c tu r e s J I J -

    p c a r m u c h s t e e p e r t h a n t h e y a r e . T h e e ff e ct is m u c l i

    s t r onge r -

    o n

    s h a l l o w l y dipping p l a n c s t h a n o n s t e ep l y

    d i p p ~ ~ i gn e s , a n d a t h i g h v a l u e s o f t h e v e r t i c a l e x a g -

    g e r a ti o n , t he d i s t i n c t i o ~ ~e t w c c n s h a l l o w a n d s t e c p t r u c

    d i p s e f fe c tl \, cl y c i ~ s a p p e a r s .

    A n o t h e r e f f ec t

    of

    v e r ti c a l e x a g g e r a t i o n i s t o c a u s e

    h e d s o f th e s a m e t h i c k n r s s b u t d i ff e re n t d i p t o a p p e a r

    t o d i f f e r in t h i c k n e s s . I n F i g u r e 2.3B t h e s u t ) d u c t c d l i t h -

    os p t i c r i c s l a b ap pe a r s t o be t h i r i ne r w he r e i t i s dil 3p i11g

    t h a n \4 .1 ie re i t i s h o r i z o n t a l , a n e ff e ct c a u s e d s i ~ l i p l y y

    e ~ a g g c r ~ i ~ i o nf t h e v c rt ic a l d i m e n s i o n .

    ~h s v c r ti c al e x a g g e r a t io n c a u s e s d i s t o r t i o n s of t h e

    g e o m e t r y o f f e a t u r e s t h a t s e ri o u sl y a l t e r t h e w a y t h e y

    l o o k . B e c au s e m u c h of s t r u c t u r a l g e o l o g y i n v o l v e s v i s -

    u a l iz i n g t h e t r u e s h a p e of f e a t u r e s

    in

    t h r e e d i m e n s i o n s ,

    t h e u s e o f v c r ti c a l e x a g g e r a t i o n w i t h s t r u c t u r a l c r o s s

    s e c t i o n s s h o u l d be a v o i d e d w h e n e v e r p o s s i b l e .

    I n a r e a s of c o k p l e x s t r u c t u r e w h e r e a s i n g le c r o s s

    s e c t i o n c a n n o t b e c o n s t r u c t e d t o r e v e a l th e t r u e a n g u l a r

    crust

    Volcanic

    a r c

    I

    Trench

    e x a g g e r a t i o n n e c e s sa r y t o e m p h a s i z e t h e t o p o g r a p l i y

    A

    a l s o e x a g g e r a t e s t h e s u r f a c e s lo p e s s o t h a t t h e i r a p -

    sections.

    A.

    True-sc a le cross sect ion of a subdu ct ion zone in

    which t l ie horizontal and vert ical scales are equal

    (1

    rrlm

    10 krn .

    No tc tha t topogra phic var ia tions are a lmost

    irnpcrceptible. R.

    A

    cross scc tion of the same sub duct ion zone

    as in par t A , here shown a t a ver t i ca l exaggera t ion of 5 X

    T ha t is , the vcrt ical scale is 5 t imes the hor izonta l sca le . No te

    the exaggera t ion of the dip of the subducted slab. C. Schemat ic

    cross sec t ion tha t con~bi t i es e r t i ca l exaggera t ion for the to-

    pography with no vert ical exaggcrat ion for structures below

    the surface. Thi s mixing of vert ical scales precludes the co n-

    Oceanic

    crust

    B

    Figure 2.3

    R l gh t )

    T h e effect of vert ical exaggera t ion on c ross

    s t r ~ ~ c t ~ o nf

    an

    accura tc cross sec t ion.

    c

    T e c h n i q u e s of

    St r ~~c t u r a l

    eology a n d

    ectonics

    1 5

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    6/23

    I -c l , i r~o r i s h ipsf a ll t h c s t r u i t t l r c s , n l l ~ l t i ~ l l cros s s c c t ions

    a t c i ~ f t r r c l i t r i e n t a t i o n s m a y b e 1 1 sc d .T \ v o c o n s t r u c t i o n s

    a r e r e g u l ar l y

    e n ~ pl o ye d -b l oc k d r a g r a ~ n s n d f en ce d ~ a -

    g r n ~ ~ i s .l o c k d i a g r a m s s h o w a p e ra p cc t iv e d i a g r a m of

    a b l o c k of c r u s t w i t h a p p r o p r i a t e g c o r n ct r i c r e p r c s e n -

    r a t io n o f t h e s t r u c t u r e o n t h e t o p , ~ v h i c h s t h e m a p

    v i e w , a n d a v i e w o f t h e s ~ d e s , h i c h i n c lu d e s t w o c ro s s

    s e c ti o n s g en e r a ll y a t h i gh a n g l e s t o e a c h o t h e r . W e h a v e

    a l re a dy u s e d a num be r o f b loc k d t: l gra rns to i l l u s t ra t e

    s t r u c t u r a l f e a t u r e s ( s c e F i g u r e s 2.1A a r~c l 2.2A . Al-

    t h o u g h t h e s e v i e w s o f t h e s t r u c t u r e o n t h r e e d i f f er e n t

    s u r f a c e s e n a b l e ( I S t o v i s l r a l i z c t h e t h r e e - d i m e n s i o n a l

    geometry, s e c t i o n s themselves a r e n o t a c c u r a t e r e p r e -

    s e n t a t i o n s o f t l i c a n g u l a r r e l a t i o n s h i p s b e c a u s e

    o f

    t h e

    n e c e ss a r y d i s t o r t i o n o f p e r s p e c t i v e . Fence d i a g r a m s r e p -

    r e s e n t t h re e - d i rn c n s i on n l s t r u c t u r e s b y s h o w i n g a p e r -

    s pe c t ive v i e w

    of i n t c r s c c t i n g c r o s s s e c t i o n s . T h e y a r e

    d i ff i cu l t t o d r a w a n d r e q u i r e a g r e a t d e a l o f i n f o r r n a t i c ~ n ;

    t h u s t h e y a r e r e la t iv e ly r a r e i n t h e p u b l i s h e d s t r u c t u r a l

    g e o l o g i c l i t e r a t u r e .

    Stratigraphic Sequence Indicators

    rnclit,lr.y o r i g ~ l ~ ) ~ l ~ r o c k s ,n ~ o n f o r m i t i e s ,

    n t i

    a n 1x1-

    c icpuidcrl r

    knowledge

    o f tl ic ~ t r a r i ~ r a p l i i ce q u e n c e .

    b f a n y s tr l l ct u r e s f o r m e d d u r i n g o r s h o r tl y a f t e r s e d i-

    ~ n c n t a t i o n a r e u s e f u l i n d e t e r m i n i n g r e l a ti v e s t r a t i -

    g r a p h ic a ge . T h e

    m o s t

    c o m m o n o f t h e s e st r u c tu r e s a r e

    h o t t o m m a r k i n g s, g r a d e d b e d d i ng , c r o s s b e d d i ng , a n d

    s c our -a nd - f i l o r c t1a nnc l s t ruc tu re s .

    I h t t om m a r k i n g s a r e f e a t u r e s f o r m e d m a i n l y i n

    a s s o ci n t i on \ vi tl i t u r b i d i t y c u r r e n t s a n d p r e s c r \ ~ c d

    o n

    t h e u n d e r s i d e o f n i a n y s a n d s t o n e b e d s in i n r e r l a y e r c ~ l

    s a n d s t o n e - s h a l e s e q u e n c e s . T h e y r e p r e s e n t ca s t s o f t h e

    s r na l l- s ca l e s u r f a c e t o p o g r a p h y i m p o s e d o n n ~ u c l y a n

    o v e r l y i n g s a n d l a y e r , o r u p o n w h i c h t li e sa11 d l a y e r w a s

    d e p o s it e d . B o t t o m m a r k i n g s i n c l u d e fl ut e c a st s a n d l o ~ c i

    c a s t s . F lu t e c a s t s f o r m f r o m t h e d e p o s i t i o n

    of

    s a n d i n

    s p o o n - s h a p e d d c p r c s s io n s s c o u r e d o u t o f t h e u n d e r ly i n g

    m u d h y l ii g li - ve l oc i ty c u r r e n t s . S u b s e q u e n t l i t h i f i c a t ~ o n

    ot t l ic sand pl-csc t -vcs a cct5t o f t he c lepress ion o n t i le

    i , o ~ t o n ~f t h e s a r i d s t o n e layer (Figur-e 2.5A, U . Flu rc

    c a s t s t e n d t o h e i n , ~ r k e d I ya s y m m e t r i c in l o n g i t u d i n a l

    C I -os s e c t lo l l ; t he y in d ic a t e th e d i re c t ion in wh ic h t li e

    C r u c ~ a l o t l i e

    interpretation

    of a ~ r r a t ~ g r a p h ~ ce q u c n c c

    o f d e fc , rm e d r o c k s is d e t e r m i n a t i o ~ i

    f

    t he re l a trvc a gc s

    o f the d i f fe re n t l a ye rs- tha t i s, t he " s t ra t ig r a ph ic LIP

    o r " y o u n g i n g " d i r e c t i o n in t h e s e q u e n c e . C o n s i d e r , f o r

    e x a m p l e , t h e s c h e m a t i c c r o s s s r c r l o n s In F i g u r e

    2.4

    w h i c h i l l u s t r a t e a s r r i c s o f l a y e r e d r o c k s f o l d e d i n t w o

    d i ff e re n t g c o ~ n e r r i e s .W i t h o u t k n o w l e d ge

    of

    t l ie s t ra t i -

    g r a p h ~ c p d ~ r e c t i o n s , h e s i m p le s t i n r c r p r c t ; it ~ o nw e

    c ou ld m a k e o f t he 11111 ite d xp os u re in F igu re 2.413 w o u l d

    be th a t sh o w n in 1;igui-e 2 .4A, w l i ~ c h s i n c o rr e c t .

    F e a t u r e s t h a t a r e us e fu l i n t h e d e t e r m i n a t i o n o f

    r e l a t i v e a g e i n c l u d e s o m e p r i m a r y s t r u c t u r e s i n s e d i -

    Figure

    2.4

    Cross sections showing "stratigr:~phic

    u p "

    direc-

    tions. A . A fold wirh beds r ight side L IP , s indicated by tllc

    a r row . Th e s r ruc ru re

    is

    simple, as shown schem3tically to the

    right. 11 A fold with upside-down beds, as indicated hy the

    arrow. The s t ruc ture n ius t bc more complex, a s shown to

    right.

    C ur re nt d~ re c t ~on

    ____

    Sand

    B.

    Figure 2.5

    Flu te

    casts . A. Flute casts on the bottom of a

    sarldsr onc I>cd in a turbidite. B. Cross section o f flute casts .

    shown right s idc u

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    7/23

    cur-rer lt w a\ m ovir lg a t the t in ic the scours w ere cu t

    (Fig urc 2.513).

    Load ca s t s a rc sa t i ds tone ca s t s

    of

    depressions in

    und er lyi ng r i iud t ha t for111a s t h e d e n s e r s a n d s i n k s i n t o

    t li e s o f t, w a t e r -s a t u r a te d r i i ~ ~ d .h e y a p pe a r a s b ~ ~ l g e s

    o n t h e b o t t o m s o f s a n d s t o n e l a y er s a n d , in s o m e c a s es ,

    can ac tua l l y hecom e i so ls t ed ba ll s o f sand i n a mud

    m a t r i x . f t he n iud fo rms sha rp peaks po in t i ng ~~~~~~~

    i n to t h e sand , a r id t li e sand fo rn l s ro und ed r i ia sses p ro -

    t r u d i n g d o w n i n t o t h e

    t i l ~ ~ d ,

    h e s t r u i t u r c s a r c d e s c r ib e d

    as f l ame s t ruc tu rc s wh ich r e su l t f rom the down-s lope

    shea r ing o f t he s ed imen t s . Th e d i r -cc t iona l it y of t he se

    fea t~ l re s e rves a s a n i nd i ca to r o f t h e r e l a t ive age o f t he

    sed imen t l aye r s .

    G r a d e d b e d d i ~ i gn sed imen t s o r sed ir i ie i it a ry rocks

    i s cha rac t c r i xd by t he g radua l change i n g ra in s i z e and

    mine ra logy w i th in a s i ng le bed , usua ll y f ro rn coa r se and

    c l ay -poor a t t he bo t t om to f i ne and c l ay - r i ch a t t he t op

    ( see F igure 2 .6 ) . Gra d ing oc curs i n a susp ens ion o f

    u n -

    so r t ed sed imen t because t he coa r se s t f rac t i on se t tl e s ou t

    fa s t e r t han t he f ine st f r ac t i on . Thu s t he o lde s t pa r t o f

    the layer is the

    coarsest,

    and the youngest i s the f i r iest .

    I n

    s o r u e c a s e s , I i o w e v e r , m c i a r t ~ o r p h i s r ~ ia n a c t ~ l n l l y

    reverse the direction of grading. Because t l ie finesr fr-.ic-

    t i on ha s a h ighe r su r face a rea and i s t he re fo re ~r lo rc

    cher ll ica l ly reac t ive , tha t par t of t he layer- may g ro w

    coa rse r c rys t a l s du r ing t he rne ta rnorp l ii sm than t he o r ig -

    i na ll y coa r se r p a r t o i the Inycr .

    Cro ss bedd ing cons i s t s o f t h in beds t ha t occu r a t

    ang l e s o f a s much a s 20 t o 30 t o t h e p r in c i p al b e d d i n g

    p l anes . These beds r e su l t f rom depos i t i on o f ma te r i a l

    Bourna 1962)

    i i ;p,: Divisions

    Figure 2.6 Idcal graded structure of

    a

    t u rb~d i re ccl, showing

    grading, ripples, and upper mud-rich layer (pelite).

    Figurc 2 7

    Sketch illustrating a cross section of channel or

    scour-a~ id-fill tructure. Th e depression was eroded in the

    lower unit (siitsronc) and first conglorneratc, and then s a~ ld

    deposited o n top.

    i n r i pp l e s o r dune s . Chnrac t e r i s t i c al l y , t he c ross beds

    a r e c o n c a v e u p w a r d , a n d t h e y a r e t a n g e n t t o t he l o w e r

    m a j o r b e d d in g s u r f a c e . W h e r e s u b s e q u e n t e r o s i on h a s

    re rnoved t l ie t op o f t he be d , t he c rossbeds a rc t runca t ed

    aga ins t t he uppe r ma j o r bedd ing su r face . In t h i s c a se ,

    t hey a rc usefu l a s i nd i ca to r s o f t he s t r a t i g raph i c uo

    d i rec t i on .

    Ch annc l s t ruc tu res, or scou r-and-f i l l st ruc tLt res, a re

    deposi t s tha t f i l l in s t rear i l or current channels cut by

    e r os io n i nt o u n d e r l y i r ~ ~e d i ~ n e n t .M os t channe l depos i t s

    a re cong lomera t e s , bu t f r l er -g ra ined sed in~ en t s r e a l so

    foun d . Thes e s t ruc tu rc s can be i dent i fi ed by t he cha r -

    ac ter i s t ic r runca t ion of layers of the under lyin g sediment

    aga ins t t he s i de o f t he chan ne l (F igure

    2.7 .

    Ident i fying

    which l aye r ha s been e rode d , and which subsequen t ly

    deposited,

    m a k e s i t p o s s i b l e t o d e t e r m i n e t h e s t r a t i -

    g r a p h i c u p d i r e c ti o n .

    Pri??zur ~fructu?-csn 1g1zeotc.sRocks

    St ruc tu re s t ha t i nd i ca t e t he s t r a t i g raph i c up d i r ec t ion i n

    i g ne o us r o ck s a r e m o r e a b u ~ i d a n t n ext rusive than in

    in t rus ive rocks , bu t t hey a r e no t so comnlon a s in sed -

    imen ta ry rocks . Te l l t a l e f ea tu re s i n ex t rus ive rocks i n -

    c lude f loiv- top brecc ia , p i l low lava st ru c ture s, and f i lled

    cavi t ies .

    F low- top b recc i a deve lops a t t he uppe r su r face o f

    basa l t f l ows , t he reby m ak ing i t poss ib l e t o i dent i fy t he

    or ig ina l t op o f t he l aye r (F igure 2.8) . I t f o r r i l s b y t h c

    break up o f a so l id i f ied l aye r du r i ng r enewed m ovem ent

    o f t he unde r ly ing l ava .

    In

    som e case s , t he b recc i a fo rmed

    o n t o p c a ll r o ll u n d e r t h e f l o w a s i t a d va n c e s. T h u s

    cau t io n i s adv i sab l e in t he use o f t h i s i nd i ca to r .

    Many volcanic rocks conta in vesic les-cavi t ies

    fo rm ed by so l i d i f ic a t i on a ro un d gas bubb le s (F igure2 .8 ) .

    Vcsic les rnay be f i l led by minera ls prec ipa ted f rom so-

    lu t i on , in w h ich ca se t hey a re ca l led a rnygdu les ( t he

    G r e e k w o r d

    rrrnygdalon

    r i leans a lmo nd ) . In rar e in-

    s t a n c e s , s e d i ~ n e n t r l a t e m a g m a m a y b e d e p o s i t e d it1

    the vesic les . Because the cavi t ies f i l l f r o m t h e b o t t o m

    up:

    pa r t i a ll y f il led amyg du le s an indicator of

    Techniques

    of

    S t r u c t u r a l

    Geology

    a n d

    Tecto~lics

    17

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    8/23

    es~cular F r a g m e n t a l : flow top b r e c c i a

    I:ig~ire 2.8 Diagrarn of top and 1)ottorn of suhaerial l a v a flow. Vesicular

    l nva

    ma): bc found : ~ t

    rlie cop

    or

    a t

    rlie horrorti of a flow. Flow-top

    breccia

    forms

    on

    top

    13 :

    solidificarlor~ nd subscclufnr

    l)r-(-aku1>

    of

    rhc top dilrirlg flow.

    the stratigi. ,~jil i ic I ~ i r ec t io n , a s d o composite a m y g -

    d u l e s i the f i l l ing scquerlce i s known.

    Pi l l o \v l avas fo rm dur ing xtrusion of lavas under

    Lvnre r

    Lava ofte l l i ssues from a cc~nt ra l en t nt t hc t o p

    of a rnc,l~~icin d f l o ~ v s o w n w a r d o n t o t h e h o ri z o n ta l

    I loor . I )ecausc the hot lava

    I S

    quenched by the wa te r , ~t

    f lows l iy forming r i rbel ike f ingers that have a chi l led

    cx tc r io l- cvl li ch i ~ i su l a t c s he l ava ~v i th in . he bo t to m of

    the top i s convrx upward In c ross sec t ion rnnny tubes

    h n vc n ti is ti nc ti ve l ~ i l l o w - s h a p e d p ~ e r ur . facc an d a

    d o w n ~ \ ~ a r - d7oili t ingciisp o n t he l o w er s l ~ r f a c c F i g ~ ~ r e

    2 . 3 , r i .~creby ndi i ; l t i i ig th e o r iginal

    1117

    di rec t ion .

    S t r i i i t ~ i r e s h a t r e\s ca l t he o r i g i i ~ ~ lI P d ~ r c c t ~ o ~ ~r e

    1~111clie s s c o r l m o n in

    rocks t l inrl in volcanic

    r o c l i o r - s e d i m e n t s . 111 ra l -c case? , however , plutonic

    rocks fo rm 1 y crystal scrtl irig a t rl ic hortom of a maglnrl

    c l i a ~ n b c r ,

    n d

    s rd i rnen ta ry s r l-uc tu rc s Inay deve lop th a t

    can he

    L I S C ~

    o i n f er t h e s t r a t i g r a p h ~ c p direct ion. Size

    g r a d i n g

    of

    grniiis of a single mincra l in a layer can b r

    used

    a s

    a s t ra t i g raph ic up ind ica to r (F igure 2 .1 0 A) . T h e

    cx i s t encc of g r ada t ions hecween tw o l aye rs

    of

    different

    mine ra log y , o r phase Inye r ing , is more comm on th an

    s i zc g r a d i n g ( F ~ g u r - e.1011 . I t ~ ~ r o t > a h l yoes not resul t

    I r o m c rys ta l se t t l i ng , how eve r ,

    s o

    cann ot be used a s an

    i n d i c a t o r o l t h e stratigraphic

    LIP

    di rec t ion . Scour -and-

    fill s t r uc t~ i r e s r e p re se n t i n s om e l aye red igneous rocks .

    As in sed imenta ry rocks , t hey ind ica t e t he p re sence o f

    cur ren t s dur in g depos i t i on o f chc rocks a n d are a re l iable

    ind ica to r o f t he s t r a t i g raph ic up d i rec t ion .

    I n

    SOITIC a reas , magtnas wi th a s ign i f i can t p ropor -

    t i o n o f

    suspended

    c rys t a l s have in t ruded o r ex t ruded a s

    s i ll s o r f l ows . As th e mo l t en ma te r i a l came to re s t , t he

    c rys t a l s se tt l ed , fo rm ing c rys t a l accum ula t ions t ow ard

    the bu t ton1 o f t h e s il l o r f l ow.

    Unconformi t i e s p rov ide a va l~ l ab lemeans of determir l -

    ing re la t ive age

    i n a

    s t ra t i g raph ic sec t ion . I l nconform-

    i t i r s may he d i sc o~ l fo rmi t i e s , h i ch a re time gaps wi th in

    a s e i l ~ ~ u i c ef l aye rs (F igure 2 .11A) ; angu la r

    ~ ~ n c o n f o r - m i r i c s ,h i ch a re e l -osiona l su r faces t ha t cu t

    I ; igurr 2 9 Pillow Iavas in cross sectlon. Sm nrtviIIe cornp iex,

    ac ross o lde r beds a t an ang le and a i-e ove r l a in by pa ra i l e l

    Sierra Nevada, Califor~iia. be ds (1 1g~1re 1 1 B ) ; o r 11011co11for1nities. hich ar e con -

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    9/23

    IYigurc2 10 S i x a n d p h a se g r a di n g in I ) l u to t i ic i g t i c o ~ t s o c k s . A . S i z e g r a d i n g

    i l l

    ol iv inc-c l i no-

    1 3 ~ 1 - o x c n c u i n i u l ~ r c ,) ~ t k d s l a n d i l t r a m a f i c c o i n p l c x . o c k e t k n i f c f o r s c a lc . li I l- io tograpll s l i o wi ~lg

    r c l> c ,l tc d g r a d e d p l ln s c l a y e r i n g in g a h b r o , V o u r i ii o s o p h ~ o l i t c o m p l e x , n o r t h e r n G r c c c c . T h i b

    g r a d a t i o ~ i ~ l il ~ c r a t i o n f p y r o x c n c - r i c t l ( d a r k ) a n d p l a g i o c l a s c - r i c h ( li g h t ) l a y e r s m a y n o r h c ti le

    resu l t

    of

    gravi iy ser r l i ng .

    A Disconformitv B Angular unconformity

    C onconforini ty

    D Folded angu lar unconformi ty

    F i g u r e 2.11

    T y p e s

    o f u n c o n f o r m i r i c s . P a r t s A- : a rc ~ ~ n d z f o r m e d .

    I cchr~iques f S t r u c t u r a l

    G e o l o g y

    ; trid lcc toni cs

    19

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    10/23

    ~ 1 c - t ~~ c t ~ v c c ~ ic c i i ~ i i c i i t , ~ ~r oc ks a ~ i d ~ ~ i c l c r l y i ~ ~ ~

    ; I ~C C I L I S

    01 rne t :~r l lc )rpl i ic ro ck s (Figure 2 . 1

    I C ) .

    F i g u r e 2.1 11)

    s h o w s I i ow a n a n g u l a r u n c o n f o l - m i r y ri ii gl it a p p e a r w l i e n

    f o l d e d i n t o a l a r g c f o l d . N o t e t h e l ac k of p a r a l l e l i s ~ ~ if

    t h e b e d s h e l o \ v a n d a t l o v e t h e u n c o n f o r n i i t y .

    S o m e u n c o n i o r ~ n i t i e s lisp l:ly f o ss il s o i l h o r i z o n s .

    I f o n e I pre s e n t , i t p rov i tl e s a rne , ins of cs ra l ) l i shing the

    re l a t ive s t r a t ig ra l> h ic a ge . Su c h a hosi7o11 a l s o ma k e s i t

    c ns y to d i s t i ngu i s h hc t \vc c n a s c i l i~ i i e n t . lry n c on fo r mi t y

    a i i i l a t e c t o n i c c o n t a c t s i ~ c l i as a faul t ; thes e c.111 be

    d ~ t i i c ~ i l to t e ll a p a r t , c s pc c ia l ly i f t h c r o c k s h a v r h ec n

    d e f o r m e d . F . ve n i n s o m e m e t a m o r l > l i o s c d r o c k s , f o ss il

    s o il s a r e s o m e t i m e s p r e s er v e d a s a t h i n b a n d o f a l u -

    m i n u r n -r i c h m e t a m o r p h i c r o c k s s a n d w i c h e d b e t w e e n a

    ~ n e t a s e c l i m e n t a r y e q u e n c e a n d a n o l d e r m e t a m o r p h i c

    M a ~ i y ro g e n i c z o n es i n cl u de b e l ts

    of

    roc ks c h r l ra c t e r -

    ~zec lby dc fo rmc c l , but l i t tl e rne t a r no rpho s e d , fo s s il i f e r-

    oi ls sedinlents .

    I n

    t he s e roc ks , i t i s pos s ib l e to de t e rmine

    t li c s r r . ~ t i g r a p l i i c e q u e n c e by m e a n s o f h i o s t r a t i g r a p l i i c

    ; ~ ~ i ; l l ~ s i sf t l ie s rd i rne n t s t he ms e lv e s . In h igh ly de fo r ln c d

    a i i d/ o i - m e t a m o r l > h o s c d a r e a s , i t m a y h e n e c e ss a r y t o

    i i i l e r s t l - a t i g r a l ~ l i i cc l n t i o n s h i p s f r o m t l i e s t r a t i g r a p h y

    i i i

    l ess d e f o r m e d o r m e t a m o r p h o s e d a r e a s.

    In s o i n c c a s e s t h e r o c k s a r c u n f o s si l if c r o u s, t h e

    s t l - a t i g r a p l ~ ys u n k n o w n , a n d t h e r o ck s d o n o t p o ss es s

    a ny s t r uc tu re s tha t i r i d i c a t e the re l a t ive age .

    In

    s u c h

    s i t ua t i o ii s , I - a d i o m c t r i c g e d e t e r n i i n a t i o n s n i a y y ie ld t h e

    olr ly ;igc inforl -ua t ion av ai la l ) le . Sec i imentary pr ocesses

    c i o

    [ l o t J cs er r a d ~ o m e t r i c l o c ks ,

    so

    s e d i m e ~ i t s a n n o t b e

    d a t e d d i re c t ly t h i s M a y . M e t a i n o r p h i c o r i g n e o u s e v e n t s

    c al l b e d a t e d , a n d t l ie a g e o f f o r m a t i o n o l s t r u c t r ~ r a l r

    t e c t o n i c f e a t ~ ~ r e sa n b e e s t a h l i s h c d

    i f

    r a d i o ~ i l e t r i c a l l y

    d a t e d i g n e o us o r m e t a m o r p h i c e v e n t s b r a c k e t t h e t ec -

    t o n i c e v e n t i n t i m e .

    Graphical Presentation of

    Orientation Data

    0 ri cn t. lt ro 1i h i st o gr a m 5 ( ~ n, re e k ,

    s t o s

    rne a ns

    "m'lst" o r " w c h , " a n d R l~ l l nc a n? "l ine " ) a re p lo t s o f

    o n e p a r t o l h e o r i e n t a t i o n d a t a , s u c h a s s t r ik e a z i m u t h ,

    a ga in st t h e f re qu en cy o f or i en t at i on s t h a t a r e f o u ~ ~ d

    \ vi tl ii n p a r t i c u l a r o r i e n t a t i o n i n t e r v a l s . T h e f r c q u cr i c y

    n i a y h e p l o t t c d a s

    a

    p e r c en t of a ll o b s c r ~ a t i o n s r a s

    t h e n ~ ~ r n l ) e r

    f

    01,serva t ior is wi th i n each in te rva l . ? - tic

    p l o t s c ~ ~ n r a c t e r i s t i c a l l yoris is t of a s e r i e s o f r e c t a ng le s ,

    \v Iic r- c t h c \ r l d r h o f t h e r e c t a n g l e r e p r c s e n t s t h e o r i e n -

    c nr io rl i i ir c rvn l a nd i t s he igh t r e p re s e n t s t he f re que n c y .

    R o s e d i a g r a m s a r c e ss c ii ti a ll y h i s t o g r a m s f o r w h i c h

    t h e o r i c ~ i t n t i o n x i s i s t r a n s f o r m e d i n t o a c ir cl e t o g i v e

    a tr li e i ~ ~ l g l ~ l : ~ rl o t . T h c i ~ l t e r v a l s

    f

    a n g l e a r e p l o t t e d

    a s p i e - sh a p e d s e g m e n t s o f a c i r c l e i n t h e i r t r u e o r i e n -

    t a t i o n , a n d t h e l e n g t h

    of

    t h e r a d i u s i s p r o p o r t i o n a l t o

    t il e f rc cl uc nc y o f t h a t o r i e n t a t i o n . T h e u s e of t h e t r u e

    a n g l e c o n v e y s a n i n t u i t i v e se n s e

    of

    t h e orientation d i s -

    t r i b u t i o n . R o s e c ii a gr a rn s a r c u s e d f o r d i s p l ay i n g s u c h

    f c a t u r e s a s t h e d i r e c ti o t l o f s e d i m e n t t r a n s p o r t a n d t l ie

    s t r -ike o f vc r- t ic a l j o in t s ( s c c , fo r e xa mp le , F igu rc 2.12).

    1 5 0 t h I l i s t o g r a m s a n d r o s e d i a g r a m s c a n p r e s e n t

    ( >l il y o i ic a s p e c t o f t h e a t t i t u d e o f p l a n a r o r l i n ea r f e n -

    ll joints

    I

    O f t e n i t is d e s i r a b l e t o p r e s e n t o r i e n t a t i o n d a t a

    in

    s u c h

    a w a y t h a t t h e d i s t r i b u t i o n o f o r i e n t a t i o n s i s

    emphasized

    i n d e p e n d e n t l y o f t h e g e o g r a p h i c l o c a ti o n o f t l ie d a t a .

    F o r e xa ni pl e, i t m a y b e ~ ~ s e f r ~ lo k n o w w h e t h e r t h e r e

    i s a p a t t e r n

    of

    p r e l c r r c d o r i e n t a t i o n o f b e d s , j o i n t s , o r

    l i n ea r f e a t u r e s in a n a r e a , r e g a r d le s s o f h o w t h e o r i -

    e r i t a t i o n s v a r y a c r o s s a m a p . T h e t y p es o f d i a g rd i n s

    m o s t f r e q u e n t ly u s e d t o p r e s en t s u c h i n f o r m a t i o n a r c

    h i s t o g r a m s , r o s c d i a g r a m s , a n d s p h e ri c a l p r o je c t io n s .

    20 I N T R O D U C T I O N

    s Sinistral faults

    Figure

    2.12

    Rose diagra m of the faults and joints in an area.

    Aziinurli intervals are 5 . T he length of the radius from center

    in any given segment is proportional to the pcrcentagc of

    feat~ii-cs ith

    a n

    orienta tion in that sector. Th e length of the

    longest radius represents

    40

    pcrccnt of the measurements . Thc

    dlngrClrnhas a twofold axis of symmetry; that is , a 180 ro-

    tarloti of the diagram is identical to the original diagram.

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    11/23

    ippingplane

    Plotting

    sphere

    Figure

    2.13

    Plotting orientation data o n a plotting sphere.

    Pla n.~r nd linear features arc considered

    to

    p ss

    tlirougli rlie

    ccnter-

    of

    t h e sphere and to intersect its s~~rfaic.hus the

    attitude

    of a

    planr is defined by the great c~ rc lc hat is the

    intersection of the Plane with the plotting sphere.

    A

    horirontal

    plane and a dipping plane arc shown . Th e attitude of a line

    is defiricd b y two points P and P ) that are the intersections

    of the line with thc plotting sphcrc.

    tures, such as the s trike or bearing, respectively. In cases

    where the di p of the pl anar features is always essentially

    vertical or the plunge of linear features is always es-

    sentially-horizontal, or some ot her constant angle, this

    limitation is of no conseque nce.

    f

    the dip or plunge of

    the feature is an inl por ta~ it ariable in defining its at-

    titude, however, the best method of plotting orientation

    clata is the spherical projection.

    When orientation data are plotted on a spherical

    projection, all p l a y s and lines are considercd to pass

    through the center of the plotting sphere, and their

    attitudes are then defined by their intersections with the

    surface of the sphere. For planes, the intersection is a

    great circle; for lines, the intersection is a point (Figure

    2.13). Using the full sphere is actually redundant; a

    hemisphere is all th at is needed. Applications for str uc-

    tural geology and te ctonics generally use the hemisphere

    below the horizontal plane (the lower hemisphere),

    whereas applications in milleralogy usually employ the

    upper hemisphere.

    I n

    both cases, the hemisphere is pro-

    jected ont o a flat plane to per mit t he convenlcnr graph-

    ical presentation of data.

    The re are a variety of rllethods of projecting a

    sphere onto a plane, although t wo projections are most

    often encountered in s truc tural geology and tectonics.

    Th e first may be referred t o as a stereogrnphic projection

    o r as an equal- angle projection; the other is a Larnbert

    projection or an equal-area projcction. They differ only

    i n thc \vay the hemispherc is prvjected on to a plane

    :allcd thc imagc plane .

    For both types of projections, the image plane f o r

    the projection 1s tangetlt to the hcrnisphcre at 7 (Figure

    2.14)

    and parallcl to the plane containing the edge of

    rhc hemisphere. T h e equal-nrlgle projection (Figure

    2 . 14A)

    is constructed by using the highest point on the

    spllere opposite

    t h e

    image plane, the zenith point

    Z

    as

    the project ion po int . .I-he projection of a point on the

    lienlisphere is defined hy constructing a line from the

    zenith point through the point on the hemisphere

    (1'

    o r Q o the image plane (I o r Q ).T h u s ally orientation

    of line has a un iq~ ie rojection o n the imagc plane. A

    great circle on the hemisphere is projccted by drawing

    _

    gc p s n c

    Figure 2.14 Projection of the lowcr half of the plotting sphere

    onto the image plane.

    A.

    Th e principle of stereographic, or

    equal-angle, projection. The zcnith point

    Z

    is the projection

    point. Points and

    Q

    on the plotting hemisphere are projected

    to points

    P

    and Q on the irnagc plane by a line passing from

    Z

    thro~igh and

    Q,

    respectively, to. the image plane.

    A

    great

    circle is dcscribed on the image plane by projcctingeach point

    of the grear circle on the plotting hemisphere to the image

    plane. El. The principle of Lambert , or equal-area, projection.

    I hegoint P is projected to the irnage plane by constructing a

    cord of the spherr from T (th e tangent point of the image

    lane)

    to P and rotating that cord in a vertical plane about T

    down to C in the image plane. Thc end of the rotated cord

    P

    is the projected point . The great circle is projected by rotating

    each point of the gredt circle on rhe plotting hemisphere down

    to the image plane in a sirnilar manner.

    Techn ique s

    oi

    St ruc tu ra l Geology a nd Tectonics

    21

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    12/23

    lin cs tr on i t hc 7criitIl p o1 11 t h ~ o ~ ~ ~ l ill po in t\ ;1101ig

    11.l1

    great c i rc le . 'The locus

    o f

    r n t c r s e c t i o ~ ~ sf rllosc 1111:

    w i t h t h e i m a g e p l a n e d e l in c s t h c projection which aga rn

    i s un ique fo r any g iven o r i en t a t ion o f p l ane .

    -The a d v a n ta g e of th is 0 . p ~ f pr oj ec ti on is t h ~ r

    ang le s be tween l i nes o n t li c I i en~ i sphe re rc no t d i s to r t ed

    by r il e p ro j ec t ion . M orco vc r , c i rc l c s on the hemisphere

    rcmain c i rc les or1 the proicct ion, a l though the center ol

    t l ~ c i r cl c o n t h e h e m i s p h e r e d o e s n o t p r o j e c t t o t h c

    ceii ter- of t l ic c i rc le on th e ima ge plane . All gr eat c i r c l e

    arc i l lso arcs of circles o n the irnage pIa11c. ,Arcas tha t

    arc ecl~l31on the hemisphe re , howeve r , a rc i n gene r .11

    n o t e q u a l o n t h e i m a g e p l a n e .

    A n e q u a l - a r e a p r o j e c t i o n i s c o n s t r ~ i c t e dby usirlg

    t h e p o i n t o f t a n g e n c y 7' be tween the he rn i sphc rc and

    the imag e p l ane a s a ce r it e r o f ro t a t i o r i (F igure 3 14Rj

    T h e p r o j ec t io l i of a poin t on the hemisphe re i s de t e r -

    mined by cons t ruc t ing a cho rd f ror ii T t o t h e p o i n t

    l ' o n the hernisp here arid rota t i ng this chor d in a ver tica l

    p l ane abo11t o~ vr i o C' in th e ima ge plane . T h e encl

    of t hc c l~ or d in rhc image p l ane de f ines tl ie p ro j ec tion

    of

    t he po in t .

    l'r-elections

    of g rea t c i rc l e s a re cons t l -uc t cd ,

    in p r ~n c ip l e , y ro t a t r ll g all poin t s on the g rea t c r rc l e

    fro111 the hc rn i sphc re do w n t o t h e image p l ane in a

    s imi l a r manne r . Th i s p ro j ec t ion has t he advan tage tha t

    a n y t w o d ~ f f e r e n t u t e q u a l a r e a s

    o

    the l icni ispl icrc are

    a l s o e q u a l o n t h e i m a g e p l a n e . I t is t li er ef or c ~ ~ s c do

    presen t da t a w hen the s t a ti s t i ca l concen t ra t ion o f po in t s

    i s impor t an t t o t he i n t e rp re t a t i on , because those con-

    ce r i t l - a t i ons a re no t d i s to r t ed

    h y

    t h e p r o j e c t i o n . T h e

    shapes o f a rcas o n t he he rn i sphe re a re no t p re se rved by

    t h e p r o j c c t i o ~ i ,h o w e v e r , s o a n g ~ i l a r e lr lt io n s hi p s a r e

    distorted

    al r l iougl i they can st i l l be determined i f t he

    a ng le s ar e i ~ ~ e a s u r e dlong a g rea t c i rc le .

    Geophysical Tcchniques

    A l t h o u g h m a p p i n g r o c k s t h a t a r e ex p o s e d a t t h e s r ~ r t a c e

    p r o v id e s g o o d i n f o r r n a t ~ o n b o u t t h e t h r e e -d i m e n si o n a l

    s t ruc tu re nea r t he su r face , i t c an no t r eveal t he s t ruc tu re

    of a reas cove red by a l luv ium, deep so i l s, vege ta t ion , o r

    wa te r such a s l akes , se' ls , a nd oceans . N or c an sur face

    m a p p i n g p r o v i d e i n f o r m a t i o n a b o u t s t r u c tu r e a t g r e at

    d e p t h . I n f o r m a t i o n a b o u t t h e s h a p e s

    of

    m a j o r f a u l t s a t

    d e p t h , t h e p re s e n ce o f m a g m a c h a m b e r s a t d e p t h , t h e

    loca t ion o f t he c rus t -mant l e bou nda ry , o r t he t h i ckness

    a n d n a t u r e o f t h e l i th o s p h e r e a n d t h e l o n e r m a n t l e c a n

    com e on ly f ro m the in t e rp re t a t i on o f geophys i ca l mea -

    sure rnen t s , and e spec i a lly f rom se i smic , g rav i ty , and

    magn e t i c measuremen t s . W e rev iew bri ef ly t he app l i -

    ca t ion o f t hese a spec t s o f geophys i c s t o l a rge -sca le s t ruc -

    ture and tec tonics because they have becori le essent ia l ,

    a n d b e c a us e a s t r u c t l ~ r a l e o l o gi s t m u s t a t l ea st b e a w a r e

    22

    I N T R O D U C T I O N

    01 t l ir t c c l ~ ~ i ~ q ~ ~ c s

    ~ r i c l

    l i c ~ r

    I I ~ I I I . ~ ~ I O I I S

    A ~ L L ~ ~ I I I ~o5 -

    cr.lge

    of

    tlicsc

    topics

    ho ~v ev es , ~o i t l d rq i l l rc a r l ea st

    a . ;cpar ,l te bo ok , and \vc enco urag e studcri t s to tnkc

    a p p r o p r i a t e c o u r s e s in g c o p I i y s ~ c s .

    Se i smic waves a re osc i l l a t ions o f e la s t i c de forma t ion

    thn t p ropaga te away f ro in a source . Waves f ron i l a rge

    sources

    SL IC I I

    :IS m a j o r e a r t h q u a k e s a n d n u c l e a r e x p l o -

    bions c a n be de t ec t ed a ll a ro und t li e wor ld . Sma l l e s -

    p los ions a re o f ren used a s sources t o i nves t iga t e s t r uc t ~ i r e

    a t a Inore l ocal sca l e . Body waves , which can t r ave l

    a n y w h e r e t l ir o u g h a s o li d b o d y , a r e o f t w o k i n d s: com-

    press iona l (1 ) w a v es , f o r ~ ' l i i c l i h e p a r t ~ c l emot ion i s

    pa ra l l e l t o t he d i rec t ion o f p ropaga t ion , and shea r (S)

    waves , fo r which the pa r t i c l e [no t ion i s norma l t o t he

    d i rec t ion o f p ro pag a t ion , ( 'The des igna t ions P a n d

    S r e fe r to p r im a r y a n d s e c o n d a r y w a v e s , s o n a m e d

    because o f t he norm a l sequence o f a r r iva l o f t he waves

    as revealed o a s e i s m o g r a m . ) 1) waves t r ave l f a s t e r t han

    S

    vLlves. [ 'hey are th erefo re the f i rst waves to arr ive a t

    a

    d e t e c t o r f r o m a s o u r c c a n d t h u s a r e t h e e a s i e r t o

    r e co g n rz c a n d m e a s u r e . F o r t h ~ s e a s o n , a n d b e c a u s e

    exp los ion s gene ra t e most ly waves , t hey a re t he waves

    ~ x c d o ~ n i n a n t l ysed t o i nves t iga re t he s t ruc tu re o f t he

    F.ar th. .The propagat ion of se ismic waves [nay be dc-

    sc r ibed by the se i smic rays , which a re l i ne s eve rywhere

    pe rpend icu la r t o t he se i smic wave f ron t s . Three types

    o f s ei sm ic s t ~ ~ d i e sr e p ~ r t i c u l a r l y n ~ p o r t a n tn s t ruc tu re

    and tec tonics: se ismic refrac t ion, se isrnic ref lec t ion, and

    fi rst -mot ion studies.

    S e is m ic r e f ra c ti o n s t ~ i d ~ c snvest rgate the st ructure

    oi t h e E a r t h h y m e a n s o f th o s e s e ~ s m i c a y s t h a t a r e

    t ra r~srn i t t ed h roug h bound a r i e s a t which se i smic ve-

    loci ty change s. Th e chan ge in se ismic velocity refrac ts ,

    o r bends , t he rays ( see Box 2.1) s o t h a t i n t h e E a r t h ,

    wh ere se i smic ve loc ity generally i nc reases wi th dep th ,

    t h e r a y p a t h s t e n d t o b e c o n c a v e u p w a r d . T h e t r a v e l

    t ime of r ays f rom the source to d i f fe ren t r ece ive rs i s

    p lo t t ed aga ins t t he d i s t ances of t he rece ive rs f rom the

    source . Such p lo t s m ak e i t poss ib l e t o de t e rmine the ray

    ve loci ty i n t he deepes t l aye r t h rough which the ray t r av-

    e l s . By measur ing t r ave l t imes fo r r ays t ha t pene t ra t e

    to g rea t e r and g rea t e r dep ths , t he i nves t iga to r can de -

    t e rmine the ve loc ity s t ruc tu re o f t he Ea r th .

    T h e v e l o c i t i e s o f

    P

    a n d S w a v e s d e p en d o n t h e

    d e n s it y a n d t h e e la s ti c c o n s t a n ts o f t h e r o c k . T h u s k n o w -

    ing how se i smic

    P

    and S ve loc i t i e s va ry wi th dep th

    p r o v i d e s i n f o r m a t i o n a b o u t t h e d i s t r i b u t i o n of t h e d e n -

    si ty and c l r l st ic propert ies in the Earth, and locat ing

    where changes in se ismrc veloci ty occur reveals where

    t h e r o c k t y p e c h a n g e s .

    A l t h o u g h

    seismic

    re f rac t ion s tud ie s g ive a good

    rcconna i ssancc v i ew of t he s t ru c tu re o f a l a rge a rea ,

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    13/23

    eismicRefraction

    The tirnc I-eq~iircdor scisrnic rays t o travel directly

    from a source to different detection stations distrib-

    uted around the source is affcctcd by the par-ticular

    paths thc seismic rays take, and these in turn at-c

    determined by the structure and the seismic vclocity

    o f the material along each path.

    If

    a scisr-nicray travels

    obliqucl~~cross a boundary from a low- to high-

    seismic-velocity material, it is refracted a way f rom

    t h c nor-ma1 to ) he bounda1-y (Figure

    2 .1 .1 .

    If the ray

    travels h or n h igh- to low-velocity material, it is re-

    fracted toward t he normal to the boundary.

    Travel-time meaw rcme nts can be interpreted to

    reveal t he va riation of scisrnic \kravc velocity with

    depth. The principle is illustrated in Figure 2.1.2,

    which shows the location of a seismic source and an

    array of detec tors. Som e of the ray paths shown stay

    within the crust; others travel in part through the

    upper mantle. A time--dis tance plot indicates the ar -

    rival tiriles of those difrercnt rays at the detectors.

    Because t11e se ism ic velocity in th e mantle is higher

    than tha t in the cr-u st, niantlc rays rcach dis ta~l tdc-

    tcctor-s bcfure crust al r;lys. F or th e layered stru ctur e

    shown, thc diffcre ~~cen arrival times at the different

    detector-s rellccts thc spe ed of the rays th rough the

    deepest laycr along the ray path. Thus the slopes of

    the two lines on the time-dista nce plot are the inverse

    of the velocities in the cru st an d mantle, respectively.

    If a laycr that has a lo wer seismic veiocity occur s

    at depth between rocks that have higher seismic vc-

    locitics, rays ar c bcnt towar-d the nor- md to the bou nd-

    ary upon enter ing the laycr and away h-on1 he no rmal

    Normal

    to

    boundary

    sin

    i

    V

    sinr

    Se~smic y

    Figurc

    2.1.1

    Refraction of seismic rays. Refraction is

    a w a y trom the normal to thc boundary

    i f

    the ray travels

    f r o r n

    a

    low ro a high-seismic-\,clocity nia ter ~al here Vt

    ro z or V, to V, . Refract~on s toward the riornial to

    rhe houndar)

    i f

    the ray travels from a higll- to a low-

    se~srnic-velocitym.~terial V 2 to V.3 .

    upon leaving (Figure 2.1.1). Seismic rays, thcrcforc,

    can never reach their maximum depth in that layer,

    and the seismic velocity of that layer-and therefore

    its very existence-cannot be detected on a time-

    distance plot

    A Travel time

    o

    crustal P waves,

    Figure 2.1.2 Illustration of the principle of scisrnic refraction in a two-layer structure. The diagram

    shows ray paths for P waves through the structure. The travel-time plot indicates the arrival

    tlmcs of the rays at the different detectors.

    Techniques of Structural rology dnd Tectonics

    3

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    14/23

    b igurc 2.15 S e ~ s m ~ ceflcctioti profiles. Illdividual sclsrnlc records are thc w avy ve rt~ cal ~ nc s

    p lot ted a~ dc, : sidc along

    tlle

    tl~staricc xis. 7 hc vcrt~ cal x l s IS the two-way travel

    t1111c.

    I caks

    In

    each record .ire sliadcd black to show up reflcctors

    tha t nn

    be trnccd

    f r o r r i

    otlc record

    to

    t h

    next. C;ood ho r~ zo nta l eflcctors are p:lrticularly evid cr~ t clow nhout 1.7 s in the left half of thc

    A IJr3mlgrated seismic profile. B. Facitzg

    page

    M ~gr atcd eismic profile.

    t h e t e c h l l ~ q t ~ ea s se ve ra l d ~ s a d v a n t a ~ e s .h e p r e s en c e

    o f l o w - v e l o c ~ t ya y e r s c a n n o t b e d e t e ct e d ( B o x 2 .1 ) . D e e p

    s tr uc tu re s o r d ~ n a r ~ l ya n b e d e t ec t e d o ti ly a t d ~ s t a n c e s

    f r o m t h e s o u r c e t h a t a r e g r e a t e r t h a n t h e d e p t h . T h e

    prope r t i e s o f t he Ea r th a re ave raged ove r l a rge d i s t ances ,

    so de t a i ls o f s t ruc tu re a re l o s t .

    A nd

    n o ~ i h o r i z o n t a l r

    d i s c o n t ~ n u o u s a y e r s a n d c o r n p le x s t r u c t u r e a r e d i ff ic u lt

    o r ~ m p o s s i b l e o r e so l ve .

    In se ismic ref lec t ion studies, re f lec t ions of P waves

    off i n r c r ~ ~ a loun da r i e s a rc used t o i nves t i ga te t he s truc -

    tui-e

    of

    t he Ea r th . Se ismic s i gna l s a re r ecorded by a s

    m: iuy a s sevc ra l hun dred to seve ra l t li ousar ld geoph oncs

    a t a t im e . T h e r e s u l t ~ n g a t a a r e a n a l y z e d

    by

    c o m p u t e r

    ( B o x e s 2 . 2 a n d 2 . 3 ) , a n d t h e s e i s n i o g r a m s a r e p l o t t ed

    sidc by side o t i t h e d ~ s t a n c e x i s ( F i g ur e 2 . 1 5 A ) . .i l lr

    24

    INTRODUC I ION

    i n d tv i d u al p e a k s o n t h e s e i s m o g r a m , o r e v e n ts , r e c o r d

    the two- way t r ave l t ime fo r e ach re fl e c ti on , wh ich i s

    t he t ime requ i red fo r a wave t o t r ave l f rom a su r face

    po in t t o a r e f le c to r an d back t o t he sam e su r face po in t .

    Peaks in each record a re shade d b l ack so t ha t s t ro ng

    s ig n a ls in a d j a c e n t s e i s m o g r a m s a t t h e s a m e t w o - w a y

    t r av c l t l m e s h o w u p a s l in es t h a t i n d i c a t e a c o n t i n u o u s

    reflector.

    S o p l ~ is t ic a te d c o n i p ~ ~ t e r i z c digi ta l processing of

    t he sc i s rn l c r ecords , i nc lud ing t he ve ry impor t an t p ro -

    cesses of s t a c k ~ l i ~n d m i g r a t i o n , al l o w c o m p l ex s t r u c -

    tu re s to

    be resolve t i

    (Figure 2 .15B)

    a n d

    therefore yie ld

    a il i n c o n ~ p n r a b l c n la g e o f t h e s u h s u r f a c c s t ru c t u r e . T h e

    s t ack ing o f sei smic r ecords is a me tho d o f enhan c ing

    the s i gna l - t o -no i se r ,~ r io y add ing t oge the r r e f l ec t ions

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    15/23

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    16/23

    Locatioi~ f observations

    I~riieocation of features

    Sr~aceocation of features

    A

    Seismic section

    6

    igrated seismic section

    C

    eologic section

    Figure

    2.16

    Diagranls illustrating the effects of migration. A. An ~rnrnigrated eismic section with

    n i ~ ~ l t i ~ l entersecting curved reflections.

    0

    he sarne section as in part A alter migration. The

    ambiguities and artifacts of the un~nig ra tcd ection are all rcmoved. C. The corresponding gcologic

    srction. The depth scale is different frorn the two-way travel-time scale because seismic velocity

    varies with depth.

    pattern of colnpression or rarefaction first motions that

    radiate out from a sudden slip event on a fault is char-

    actcristic of the orientation of the fault and the sense

    of slip (Box 2.4 . First-motion studies, therefore, are

    used to determine the orientation of, and sense of slip

    o n , faults at depth. Regional patterns of first motions

    reveal large-scale tectonic [ noti ons of tlie plates. Figure

    2.17

    show s the radiation patterns th at ar e characturistic

    of the three basic types of faulting: normal, thrust, and

    strike-slip.

    Ana lys i s

    o

    Gra vity Alzornalies

    Gravity measureme nts are perhaps the second most im-

    portant geophysical technique (after seis~ni cechniques)

    used in str uctur al geology and tectonics.

    A

    gravity

    anomaly (from the,Greek word anomalia, which means

    irregular ity o r unevenness ) is th e difference betweer1

    a nleasured value of th e acceleration of gravity, to which

    certain corrections are applied, and th e reference value

    for the particular location. Th e reference value is de-

    termined from a n internationally accepted formula that

    gives the gravitatio nal field for an elliptically sym metric

    E ar th . ~ e c a u s eravity anomalies arise from differences

    in the density of rocks, the goal in str ucti~ ral eology

    is to relate rhese

    differences

    in density to structural

    features. If n o density contrasts exist, then the structure

    can have no effect on the gravitational field, and grav-

    i t y

    anomalies cannot aid in the interpretation of thar

    structure.

    The structure at depth i interpreted by nlatching

    tlie gravity anom aly profile observed a long a linear triiv-

    erse with the anomaly profile calculated from a n as-

    sumed ~ no dc l f the structure. Thc model is adjusted

    until the model an omal y profile s how s a satisfactory fit

    to the observed a ~lo mal y rofile. Although the mode l

    can never be unique, it is usually co~lst rain ed y surface

    mapping and possibly by seismic data.

    I n order to calculate an anomaly, we must correct

    t h e m e a s ~ ~ r e dalue to the same reference used for the

    stan dard field. All measurements are therefore corrected

    to sea level as a common reference level. This altitude

    correcri on, thc free-air correction, results in an increase

    i11

    most larid-based values but leaves surface observa-

    Normal Thrust

    fault fault

    Strike-slip

    fault

    Figure 2.17 Equal-area projections showing the radiation pat-

    tern of coinpression first motions C ) arld rarefaction first

    motions R) for the three main types of faults. Thc fault on

    wh ic l~ he ear thquak e occurs is assurncd to be at the cerlter

    of the plotring sphere. All orientations that plot within a given

    sector are the orientations of rays when thep leave the source

    that have the indicated first motion. Planes separating the

    sectors are nodal planes, one of which niust be the fault plane.

    Material on each side of the fault moves toward the compres-

    sion sccrors, defining the sense of shear on the fault.

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    17/23

    tackingof

    Seisl raic

    Records

    lir

    practice

    da ta a1 e gatliei-ed fi.c~ni larg e liiicai.

    ai-]-a> f s l i o t po in t s and gcopI lon~%\ .,ac i gco plio nc

    I-ccor-CIS arly reflCctiorls fr.i~ni l iflc~.cnt iepths, an d

    the stacking is doi ic by con-iputcr o proclucc cnl i r~ncct l

    sz isrnograms a t each poili t in t l ie profile. Figu re 2 . 1 5A

    I \ a n

    cs:umplcs of a stac i\ctl seisn lic profil e, whic h

    \ l i o \ i h abunclant hor.izontal rcflccto~-s ~ t shiillow

    ~ l~ - [ lL l l s .

    I:igurc

    2 . 2 . 1

    i l lusrra tcs the pr inciple in\olvcd in tlie

    corliilioll clcpth-point stacking

    of

    xcisnlic rcco l-(is.

    c.splosioiis a1.c dctoriated at shot poirlt S1,

    S2

    S 3

    i r l l i i S4,cilcctiorls rr-om

    thc

    snnic poinl / on 11or.i-

    z o ~ ~ t a l~ ~ h s u r f a c c,oundar.v \ri l l he ~.eccivcd t gco-

    p l i o ~ ~ c s;, , G2,

    ;:.

    ;lncI G 4 , rcsji)ccti\.cly.T h c s a n i c

    is ti 11c foi- all ~ 1 1 1 ~ 1ol-izontal reflectors bclo\v 111c

    j~oili t 1

    'I'llc

    coi-I-csponcl inghot points and gc-oplioncs

    .C,

    aritl

    Gi

    1.e i~quidistan t rom the point abo \ ,c

    P.

    I1 t lic t i -avcl ti rnes a re co rrecte d for the di l kr enc c in

    l eng th o l t he ray pa ths , t l ie I - ecords can be added

    toget l icr , or stac ked . Tl ie t ime-col-rec ted sigr la ls f rom

    t ic r e f l c c t i o ~ ~ st P re in force one ano the r , and the

    Shot

    points

    Geophones

    s ig na ls f r o m I - a ~ ~ d o r noisc tend to cancel o u t , t he reby st S S S4

    G

    G, G, GI

    i~ lcre asin g hc sigrla l- to-noise ra t io . The resul t i s an

    cnl iancct i se ismo gram s how ing the ref lec t ions as they

    \voulcl appear

    i f

    the sh ot point anci r rce iver

    wo.c

    h o t l ~

    a t p.

    T'igure 2.2.1 Tlic j > r ~ l i c ~ ~ I cf stacking of sc~s niic ecords.

    l < x ~ ~ i o s i o i ~ src se t oli a r sho t po in~s 1 , C7

    S j

    and

    S4.

    Tlie

    r.lys

    rcflecrcd froln rhc same point

    1

    on I ~rcflccror

    ; ~ t

    cptli a rc rccc ~ve d, ol- each of tile cxp losi o~is , t gco-

    plioiics

    G I , G2 G j ,

    and C4 rcspccti\,cly Adjusting the

    a r r ~ v a l imes of tlicse reflectlor~s or tile d~ffc rcn r engths

    of

    r a y

    p.lth allows the fo~~r-ccords to bc added together,

    I

    which cllliances the si gr~a l rom the reflection a t P nnd

    : I :

    canccls out rando m nolsc. -Phc cffcct is a n Increasc in thc

    . ,

    s i g l l a - t ~ ) - ~ i o ~ ~ eatio.

    t i o n s a t s e a u n c h a n g e d .

    I f

    t h ~ s s the only

    correction

    a p p l i e d , t h e ca l c ul a te d a n o m a l y i s c ~ l l e d a frcc-a i r

    a n o m a l y .

    T he Bougue r cor rec t ion i s a l so f requen t ly app l i ed .

    I t is assumed tha t betw een sea level and t he a l t i tude of

    the

    me surement

    is a uiiiforrn layer of continental c r u s -

    t a l rock tha t r epre sen t s an excess o f n i a ss p i l ed on the

    sur face . Th i s a ssum ed excess g rav i t a t i ona l a t t r ac t io n is

    the re fore su t l t r ac t ed f rom l and-based measurement s . At

    sea , i t i s a ssumed tha t a l l dcp ths o f wa te r r epre sen t a

    de fi ci ency o f m ass , because wa te r i s l e ss dense t l i a i~ ock .

    Th e a ssume d de f ic iency in g rav i t a t i ona l a t t r ac t ion is

    t h e re f o r e a d d e d t o s e a - b a se d m e a s u r e m e n t s . T h e B o u -

    gue r anom aly re su l t s f rom app l i ca t ion o f bo th the f ree-

    a i r an d L l o ~ ~ g u e sor rec t ions .

    T h e

    gravi ta t ior ia l effec ts of local topography, h o w -

    ever di ffe r measu r , l b ly f rom tho se o f a un i fo rm l aye r .

    Th us a re f inement of t he s im ple Bougue r an om aly cal lcci

    t h e c o m p l e t e B o u g u e r a n o m a l y r e q u i r es n t e r ra in cor -

    rec t ion to acco unt fo r t he l oca l e ffcccs .

    T h u s , th e B o u g u e r a n o m a l y c o m p a r e s t h e m a s s of

    ex i s t i ng rocks a t dep th to t he mass o f s t anda rd co i i t i -

    nen ta l crus t who se e levat ion is a t sea level . Boug uer

    ~ ln om al i e s r e ge i le ra lly s t rong ly nega t ive ove r a re as o f

    high topography, indicat ing that there i s a def ic iency of

    mass be low sea l evel comp ared to s t a nda r d con t inen ta l

    c rus t . Th ey a re s t rong ly pos i t i ve ove r ocean bas ins , i n -

    d i ca t ing tha t t he re is an excess of m ass be low the ocenn

    b o t r o i n c o m p a r e d t o s t a n d a r d c o n t i n e ~ i t a l r u st .

    T h e a rea unde r a g rav i ty ano ma ly p rof il e p rov ides

    a unique measure of the tota l excess or def ic iency of

    mass a t dep th , and the shape o f t he p rofi l e cons t ra ins

    the poss ib l c d i s t r i bu t ion of t he ano mal ous n i a ss. T he

    inter pre ta r ion of mas s dist r ibut ion is not un ique, hob\ '-

    e v e r , b r c a u s c a gi ve n a n o m a l y p ro f il e c a n be p r o d ~ ~ c e d

    by a wide range of densi ty di fferences an d distributions.

    Flgrire

    2.1

    S A , f o r e x a m p l e , s h o w s t h r e e s y m m e t r ic b o d -

    l es o f t he sam e dens i ty , each o f which p rodu ces t he sam e

    symmet r i c g rav i ty anomaly . F igure 2.18U, C i l lust ra tes

    I1ow the fau l t ing of di fferent densi ty dis t r ibu t ions affec ts

    Tcchrlrques

    of

    St r u c t u r a l

    Geology and Tectonics

    7

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    18/23

    Altliough horizonla1 or v c l ~t~all o\vly lippir ig 1.cI1c.c.-

    1o1.sarc conilrlon in untlcforrrieil vtiirnc~~tary; ~ \ i i i \

    (sli;lllo\v part s of Figure

    2 .

    15 , I I I L I I I

    of

    tlic s1r.uctul.c

    O ii~:~,r.estn str-uct~~ralrid tcctor11(. li\cstigation\ is

    a grc;it deal moi.c c~ornp1i.u dcc,1>c.r. art s of Figi~ r-c

    2 . 15) .For cxarnplc, I x ~ i\

    < ; i l l

    s ig~~i i icantrid \*~u.i;il?le

    dips and discor ~t i r iuo~ ~\c tI (possiblv tr.ilncatcc1 l ~ y

    fault) ;ire common. S11c.11 tr-uc,tirri. gi1.c 1-ixc to d i \ -

    tort ions a ~l d i-tifacts r ~ ei s~ ni c rofiles (F1grii.~.

    .

    IS),

    which m ust be coi-rcctcd by mig ratiorl.

    LVc shall describ c thc PI- in~ .ipl rf niig~-:~tion

    y

    ~rsing n example

    for

    which thc. seismic velocity of

    the m aterial is coris ta~l t, nti the so urc e and clctector-

    arc at th e sam e point

    p

    (Figuw 2 . 3 . 1 A .

    A

    pal.ticulai.

    rcflcction that apparently plots at I1bclo\v tlic dctcc-

    tor could corn? h-oin a boundary that is tangcnt to

    in

    point on a circular a rc of constant t\vo-way travel

    tiinc having I-adius

    pP

    around

    p

    Cor cxarnplc, from

    I . O n t\Vo adj;tcent rcflcc tion scibmogi arns (Figure

    2 . 3 .

    I

    R ,

    a rcflcclion z~ppai.cntlyplots

    a

    beneath

    and at Pz bcnc;~th

    12

    [ t ~vo uid llcrcfo~-c ppear

    that the rc[lcctor had the dip of thc linc PIP2 . 111 fact,

    howcvcr, the

    reflector

    musf bc thc corum on tangcnt

    to lht' t\vo constan t-trav cl-tiri~c u-cs of I - ~ C ~ ~ L I SIPI

    about pl and p P abo~11 2. Tlir ~rcflcctions mus t

    thcrcForc colnc from points I [ ancl 1 ;. T ~ L ~ sn un-

    Apparent position

    of reflecting polnt

    cor I-c~ctccii-or~lcho\ vs cl.l-onc%oi \ oc;itions

    arid

    clips

    for. dil~pi iig .cflcctor.\,n d the. I-clicctionpoints PI a ~ ~ d

    I J 2

    rnirst Ilc 111igr-ntcdtlu~ig hcir r.e\pccti\.c cori\tnnt-

    ti-;t\.cl-tirncL I I . ~ . ~o th e cor rect location s at ar1c1

    1 3. TI?' 11igllc1.ile tru c dip, t h e gr~3;atcr lie d is to r~ io r~ .

    i'c,~-tii.al.ctlcctor a plot on un~iiigr ;itetl cisinic profilcs

    :I\

    :in alignmelit of rcflcctio~isla~.irig 45 ip.

    1s th e scisrnic sollr-ce and the clctcctor ar c not at

    thc s;unle po ir~ t, lic a rc of consta~l t wo-way

    travel

    t ~ m c ccorncs

    a n

    cllipsc, a nd it is fui-thcr- distor ted i f

    the vclocity is [rot constan t. These a - c co~nplicatioris

    that ninst he accourlted for

    in

    any analysis or a real

    scisniic. i.ccor-cl, alth oug h the pr-inciple rcmain s the

    sanlc.

    Another problem occurs

    i f a

    reflector is discon-

    tinuous. The end of the reflector acts as a defracrion

    point wliich tnkcs cnergy from a ny anglc o f inciderrcc

    and I-adia tcs it i r ~ ll directions as though the point

    \\,ci-c.

    a

    ncw sour-c:c (point n Figul-c 2.3.2 . 'l'hc

    sig~wtls1.ccordcd by the nearby

    detector s for

    cs-

    ; ~ r i ~ l ~ l c ,t

    171

    p2, ancl p3-t1icxn plot along a pal-abolic

    ar c on ;in unco srcctcd scisrnic prolilc (the dotte d line

    in Figul-c 2.3.2; scc also Figures 2 . 1 5 A , 2.16A , bc-

    caus e th e t\vo-way tl.avc1 times for the signal incrcasc

    as t l ~ c istance or th e detector From tllc encl of the

    r.cflcctor illel-cases. The lo cation for

    l

    possiblc dif-

    Figure 2 3 1 Tile migration of seismic signals corrects the sc~srnic ecords to give the true location

    and dip of rrflectorr. In t h ~ s xample, seismic velocity is considered constant, and the shot point

    and receiver are hotti located at the same polnt. A . A reflection rece~vcd at appears on the

    seismrc record a t a two-way travel time that plots at

    P .

    In fact, the signal could come from any

    rcflcctor, such as

    P ,

    that is tangent to the seinicircular arc of radius p P around p . That arc is

    the locus of constanr rwo-way travel tlme. B. Reflections deiccted at p , and p2 plot vertically

    below each point at 1 ; and P z , respectively, giving the reflector- tlic apparcnt dip and location

    of

    the linc l',Pz. Thc t ~ u r o ~ ~ ~ t i o nnd d ~ pf thc reflector, ho~vrver,must be given by the lint: P l r P z ' ,

    which 15 thc corlltnoll tangent to the constant two-way travel-time arcs about pl and p z , respec-

    tively. Notc that

    PI

    is the act~~nlocation of rhr reflector below p 2

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    19/23

    I~.:rcti:)li oinis that could gc nc r a ~lic si;:n:tl r-cc.ol.clcd

    at a given rc:cci\ier, however, rnltst lie along ;in 2u.c. of

    coilstant t\r,o-\vay l.a\.c*l i n ~ e llout that rcci~ivci. t11c

    tl;tslied arcs

    i l l

    Figure

    2 . 3 . 2 .

    I'hc true locatioi~

    f

    t11c

    c iffr;li,tion poiiit is th e co mm on intcrscct ion uf t he

    arc\ const~~uctei i.01- several dctectol-s. Thus

    rnigl-sting

    cach signal along its arc to the colilrnon po ii~ t ticn-

    tifics the t rue locatior~

    f

    the diffrac:tion point 11.

    111practice, the process of migration consists of

    taking cach individual event on a reflection seismo-

    gram , migrating it

    along

    its arc of constant two-way

    travel tinic, an d adding t hat event t o arly othcl- seis-

    mogram intersected by that arc at the point of inter-

    section. The r es~ dti ng eisnlic profile is then

    a

    series

    of'seisniogra~ns,each of which corisists of the original

    ~-i.('

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    20/23

    +-- ;r;lvlty

    i310f

    C?

    Thrust fa;: t

    .

    I

    A

    Figure 2.18 Illustrntiou of tlic . lri lhig~~ity

    and the non~~ niqucn css nherent i n tllc 1 I

    a n d normal tlisplaccrncnt of a dense base-

    Thrust

    Incnr ovcria~nby Icss densc str ata . Th e

    nsyrnrnctry

    of

    thc: a t i o m a l y rcflccrc

    r l ~ a r

    f

    thc 11ndc1-ly~ng

    ~ I . L I C I I I ~ C , ,

    t i le d~stinc-

    tion among thc thr cc d~lfcrcrirsrructurcs

    \ ,~ ln iosr eg l~~ il , lc , . T l ~ cffcct 011 grav-

    i t y

    . ~ ~ i o ~ i i . l l ~ c sf \ .c~t icnl ,hrust, and nor-

    m a l dirplacerncrit of a

    cicnsc

    laycr within

    Normal

    less

    dcllsc

    layers.

    Th c rhrcc stru tures pro

    e

    Gravity effectof a

    fau l ted dense

    dtccc m a rkadly diffcrcnr gravity .~~ ior na lie s. basement

    Thrust

    Normal

    C ravity effect of a faulted

    dense

    layer

    thc gravi ty ano ma ly profi le . If a low-dc nsi ty laycr ov-

    e r li e s t li ick h ighe r -dens i ty l ayc r and t l ~ c t ruc tu re is

    f . 1 ~ 1 l t e d F ~ g u r c

    .1813),

    t he g rav l ty an o~ na ly rof il c is

    nsvmnle t r l c , bu t t h e d iHeren tgco rne t r i e s of f au l t i ng havc

    only

    :I

    rlilllor cffcct

    o n

    t h e ; l n o m a l y s h a p e .

    f

    tlie dcnscr-

    n i n t c r ~ ~ l lS in a relatively t h i n l a y c r ( F i g ~ ~ r e.18C:), t hc

    g r av i ty a r l om a ly ~ r o f i l es ag ain a s ym m et ric , t l i o ~ ~ ~ l lhe

    s h a p c i s d i f f c r c n t f r o m t h a t i n F i g u r e 2.15l3 nd the

    cffcct of di fferent faul t geometry is s ignif icant . Thus

    a l t l i o ~ ~ g l ih e a n o m a l y s h a p e i m p o s e s c o n s t r a i n ts o n t h e

    possible s t rucr urc , to be re l iable , gra vi ty 111odels should

    he based o n a d d ~ t i o n a l t ru c t u r a l a n d g e op l iy s lc a l 111

    f o r r n a t ~ o n .

    Geomagne t i c S t ud i c s

    A mag ne t i c fi eld is a vec to r quan t i t y t ha t has bo th tnag-

    n i tud e and d i rec t ion . F or t he E a r th s magne t i c f ie lc l, t he

    n i a g n i t u d e c a n b e specified

    b y

    t hc magni tudes o f t he

    h o r i z o i ~ t a l n d v e r t ic a l

    components

    of t he f i e ld . The

    orienta t ion is speci f ied b y t he dec l ina t ion and inc l ina -

    t i on , \ vh l ch a r e e ssen t i a l ly t he t r end an d p lunge o f t he

    f ie ld l i ne , t hough the inc l ina t ion a l so i~ i c lud es he po-

    l a r i ty , which de f ines whc the r t he mag ne t i c vec to r po in t s

    u p or do wn . S tud ie s o f t he Ea r th s m agne t i c f ic ld i nc lude

    t h e s t ~ ~ d yf m agne t i c ano mal i e s a nd o f pn leornag ti e tr sm.

    Magn e t i c ano lna l i e s a rc mcas urcme nt s o f thc va r i-

    a t i on of th e Earth s mag net ic f icld re la t ive to sorne lo-

    s , l l iy t l e f i l l ed re fc re~~cc . here

    IS

    no in t e rna t iona l

    s r ; l n d n ~ - dcfcrencc f ie ld fro m which a nom al ies are meas-

    111-cil,hc ia use th e Earth s niagnet ic f ield

    S

    not cons t an t

    and c l i : l nges s~g~ l i f i can t lyvcn on a human t lme sca l c .

    Reg iona l ma ps o f magne t i c anom al i e s a rc made hy

    sing both ae r i a l and sur face measurements. T h e p r i n-

    c ipal u se o f c o n t in e n t al m a g n et ic a ~ ~ o m a l yaps is to

    i n f e r t h e p r e s en c e o f rock types and s t ruc tu re s t ha t a re

    cove red by o t h e r r o c k s, s e d i m e n t s , o r w a t e r. I n s o m e

    cases , t he p re scnce o f pa r t i cu l a r rock types a t dep th can

    be in fe r rcd on the bas i s o f cha rac te r i s t ic pa t t e rns o n a

    magnetic anomaly map . For example , rhc ex t ens ion o f

    rocks o f t he Can ad ia n sh i e ld benea th th rus t f au l t s o f

    the Canad i l n Rocky M oun ta ins c an be in fe r red f rom

    t l ie ex t ens ion of t he sh i e ld m agne t i c pa t t e rn bcnea th the

    t h r u s t f r o n t .

    M ar in e ~n agn c t i c u rveys have re su l t ed in t he we ll -

    kn ow n m aps o f t he sym met r i c pa t t e rns o f r ii agnet ic

    a n o m a l i e s w h ~ c h a v c b e e n s o f u n d a m e n t a l t o t h e d e-

    \ , c lop men t o f p l a t e t ec ton ic t heory . Wh en cor re l a ted

    ~v i t l i l ic ~ na gn e t i c eve rsa l t im e sca l e , the se maps can

    he in t e rp re t ed to g ive a ma p o f t he age of ocean bas ins.

    Magne t i c anorna l i c s a l so can be used in a mannc r

    s i n ~ i l u r o g r a v it y a n o n l a l i e s t o i n f e r s tr u c t u r c a t d e p t h ,

  • 8/9/2019 Capitol2-Techniques of Structural Geology and Tectonics

    21/23

    :is 11ioll1.l.; 1;lsed

    011

    grav i t y . i l i o rua l i c s ,

    a n d

    Tor sinj11;ir-

    rr: lsi)l ih.

    I y n \:,lriety o t p ~ - o c e s e sh a t i n c l r ~ d s , st al li z nt io r i,

    c o i ,l i ng , s c i i i r n c n t a t i o n , n liil c h e n ~ i c n l e a c t i o n i l l t h e

    F , n ~ [ h ' s i ~ a g r i c t i c ie lc l, r o c k s c a n b c c o m c r n a g n e r i z c d in

    I d i r e c t io n p a r a l l e l t o t h e a n i h i e n t f iz ld a n d c a n p r e s e r v e

    t h a t n ~ a g n e t i s m v e n

    r

    t h e r o c k s a r c r o ta t