16
CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc – www.canarie.ca [email protected]

CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc – [email protected]

Embed Size (px)

Citation preview

Page 1: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

CA*net 4 Optical Update

Bill St. Arnaud

CANARIE Inc – www.canarie.ca

[email protected]

Page 2: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca
Page 3: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

CA*net 4 Update

> 2 x 10 Gbps lambdas coast to coast> 2 x 10 Gbps lambdas at Seattle, STAR LIGHT and

MAN LAN> 3rd lambda planned for later this year> Most institutions connected with metro dark fiber> Long haul dark fiber with DWDM

– 3700 km in Ontario– 2500 km in Quebec– 500 km in British Columbia

> Support for e2e lightpaths to most institutions

Page 4: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

CA*net 4 is NOT an optical switched network

> CA*net 4 is made up of many parallel application empowered or customer empowered specific networks eg:– Computer back planes (Westgrid)– High energy physics network

> It extends the Internet 2 architecture of GigaPOPs connecting a small number of R&E institutions to a much finer scale with many parallel “application empowered” Internet 2 like networks connecting individual researchers and/or applications– With added feature that the application or user can dynamically manage

their own IP network topology– Application empowered networks peer with each other at GigaPOPs and at

optical switches which provides for greater reliability> The CA*net 4 wavelengths and switches are partitioned such that

application empowered networks can control their own partition and incorporate alarms, topology and discovery into their IP network– User controlled traffic engineering– New ITU draft standard – Y.1312 - Layer 1 VPNs

Page 5: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

UCLP Software Status

> GRID FTP across lightpaths demonstrated at November workshop

> MonFox – www.monfox.com TL1 secure shell proxy deployed – Allows segregation of cross connect and lightpaths on ONS

15454 from production lightpaths

> UCLP software to go into full production across CA*net 4 in February

Page 6: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

Lightpaths for Asia

> CA*net 4 has provisioned dedicated lightpaths for Taiwan and Ireland

> In discussions with Korea and other countries> These users will be able to do the following:

– Create daughter lightpaths and offer them to other users (or countries)

– Change the interconnection or peering of the lightpaths at will• E.g. Direct connect between Taiwan and Ireland

– Use lightpaths as a restoral or protection path for their existing connection to STAR LIGHT

Page 7: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

Taiwan Ireland

GigaPOP

STAR LIGHT

CA*net 4

User controlled topology

Seattle

TaiwanTaiwan control switch directly using UCLP software

NYC

Ireland

Page 8: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

Applications

> Distributed back planes between HPC Grid centers– Westgrid 1 GbE moving to 10 GbE– SHARCnet 10 GbE

> Distributed Single Mount file systems – Yotta, Yotta - SGI– Needs very consistent performance and throughput to truly act as a

back plane– Frequent topology changes to meet needs of specific applications

> Canada ATLAS – 980 Gbytes FCAL data once a month from CERN to Carleton U, UoAlberta, UoArizona, etc– Will significantly increase to Terabytes when production runs start– Would take over 80 days on IP R&E network

Page 9: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

> CERN Low level trigger data to UoAlberta with GARDEN– Initially streaming data rates 1 Gbps moving to 10Gbps later in

the year> Canadian virtual observatory

– .5 Tbyte per day to UoToronto and UoHawaii– 250 Mbps continuous streaming from CCD devices

> Neptune – Canada (and US?) under sea laboratory – multiple HDTV cameras and sensors on sea floor

> Canada Light Source Synchrotron – remote streaming of data acquisition to UoAlberta – 2 to 5 Gbps continuously

> Canadian remote Nano and micro electronics laboratories

Applications- 2

Page 10: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

Global Participation: GLIF

DWDM SURFnet

10 Gbit/s

SURFnet10 Gbit/s

SURFnet10 Gbit/s

IEEAF10 Gbit/s

DwingelooASTRON/JIVE

DwingelooASTRON/JIVE

PragueCzechLight

PragueCzechLight

2.5 Gbit/s

NSF10 Gbit/s

StockholmNorthernLight

StockholmNorthernLight

CA*net4

2.5 Gbit/s

New YorkMANLANNew YorkMANLAN

TokyoWIDETokyoWIDE

10 Gbit/s

10 Gbit/s

10 Gbit/s

10 Gbit/s

IEEAF10 Gbit/s

10 Gbit/s

10 Gbit/s

2.5 Gbit/s

2.5 Gbit/sTokyoAPANTokyoAPAN

AmsterdamNetherLightAmsterdamNetherLight

GenevaCERN

GenevaCERN

LondonUKLightLondonUKLight

ChicagoStarLightChicagoStarLight

Source: Kees Neggers, SURFnet

Page 11: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

European lambdas to US–10Gb Amsterdam—Chicago–10Gb London—Chicago–10Gb CERN — Chicago

Canadian lambdas to US–10Gb Chicago-Canada-NYC–10Gb Chicago-Canada-Seattle

US lambda to Europe–5Gb Chicago—Amsterdam

US/Japan lambda–2.5Gb Chicago—Tokyo

European lambdas–10Gb Amsterdam—CERN –2.5Gb Prague—Amsterdam–2.5Gb Stockholm—Amsterdam–10Gb London—Amsterdam

IEEAF lambdas (blue)–10Gb NYC—Amsterdam–10Gb Seattle—Tokyo

TransLight Int’l Lambdas

NorthernLight

UKLight

CERN

Czech Light

SunLight

Pacific NW GigaPOP

MANLAN

Page 12: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

TransLight Goals

> TransLight enables Grid researchers to:– Experiment with deterministic provisioning of dedicated circuits – Compare results with standard and experimental aggregated Internet traffic

(e.g., TransPAC efforts)

> TransLight tests include: – Moving large amounts of data – Supporting real-time collaboration and visualization – Empowering applications to request services

> TransLight is the initial infrastructure part of GLIF, the Global Lambda Integrated Facility, an direct result of Euro-Link activities

Page 13: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

GLIF: Global Lambda Integrated Facility

3rd Annual Global Lambda Grid WorkshopReykjavik, IcelandAugust 27, 2003

GLIF is a collaborative initiative among worldwide NRNs, consortia, and institutions with lambdas

www.glif.is (Coming soon!)

Page 14: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

GLIF Founding Members

> Argonne National Laboratory

> Cal-(IT)2

> Caltech

> CANAIRE

> CERN

> CESNET/ CzechLight

> DataTAG

> IEEAF

> Indiana University

> Internet2

> JISC (UK)

> MIT

> NSF (USA)

> National LambdaRail

> NetherLight

> NORDUnet/ NorthernLight

> Northwestern University

> Pacific Northwest GigaPoP

> Pacific Wave

> StarLight

> SURFnet

> TeraGrid

> TERENA

> TransLight

> UKERNA/JANET and UKLight

> University of Amsterdam

> University College London

> University of Illinois at Chicago

> University of Maryland

> University of Washington

> USAwaves

> WIDE Project

Page 15: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

International and National Commitment to Lambdas

> Dutch government on November 28, 2003 funded SURFnet6 and its research for 5 years

> United Kingdom is funding UKLight for 5 years> Canada’s CA*Net4 is funded for several years> IEEAF is providing 2 OC-192s for lambdas> US University consortium has partially funded The National Lambda

Rail for 5 years> The US Department of Energy and Department of Defense are building

domestic O-O-O networks> The US National Science Foundation has funded the TeraGrid

DTF/ETF nx10Gb networks; is allowing UK and PRAGMA (Asia) to connect

> Asia and Australia are bringing lambdas to the US

Page 16: CA*net 4 Optical Update Bill St. Arnaud CANARIE Inc –  Bill.st.arnaud@canarie.ca

GLIF Rationale

> Re-configurable networking or user controlled traffic engineering of lightpaths (e.g., OptIPuter and Westgrid on CA*net 4) for optimum throughput and workflow between the facilities.

> Layer 1 VPNs are required for security and traffic segregation.   AEONs as simple replacements for VPNs may be easier to manage and configure (e.g., the Taiwan and Ireland lightpaths provided across CA*net 4)

> Government funding and allocation of network costs are important factors.

> Eliminate cost of high-end routers. Switches are significantly cheaper than routers and so AEONs are routed at the edge (or even at the individual server) rather than in the core