19
C 3 AH 6 C 2 AH 8 Calcium Aluminate Cements Revisited Recent Advances in Understanding Conversion, Testing Protocols and Future Use Dr. Jason H. Ideker Assistant Professor and Kearney Faculty Scholar Matthew P. Adams Graduate Research Assistant 10 November, 2011 Concrete for the 21 st Century – Anna Maria Workshop XII

Calcium Aluminate Cements Revisited - McGill Universitywebpages.mcgill.ca/staff/Group3/aboyd1/web/Conferences/AMW XII... · C C 3AH 6 2AH 8 Calcium Aluminate Cements Revisited Recent

Embed Size (px)

Citation preview

C3AH6C2AH8

Calcium Aluminate Cements RevisitedRecent Advances in Understanding Conversion, Testing Protocols and Future Use

Dr. Jason H. IdekerAssistant Professor and Kearney Faculty Scholar

Matthew P. AdamsGraduate Research Assistant

10 November, 2011

Concrete for the 21st Century – Anna Maria Workshop XII

Introduction

Compared to ordinary portland cement (OPC) concrete, calcium aluminate cement (CAC) concrete is a considerably understudied material

• Early‐age volume change• Durability• Conversion• Conversion 

CAC Scientific Network – established by Kerneos Aluminate Technologies (formerly Lafarge Aluminates) in 2004(formerly Lafarge Aluminates) in 2004

• The University of Texas at Austin (2004)Early‐age behavior, volume change, durability

E l P l h i F d l d L (2006)• Ecole Polytechnique Federale de Lausanne (2006)Microstructural development

• University of New Brunswick (2007)Durability (corrosion, salt scaling, freeze/thaw, alkali‐silica reaction)

• University of Laval (2005‐2011)• University of Laval (2005‐2011)Testing strategies, rheology

• Oregon State University (2008)Early‐age volume change, conversion testing

History

1900s – sulfate attack of portland cement concrete in South of France1908 – Patent for calcium aluminate cement granted to Jules Bied1908 Patent for calcium aluminate cement granted to Jules BiedWWI – used for gun emplacements1945‐1973 – Post WWII reconstruction, rapid hardening properties 9 3 9 il f l f C C f b ildi l i1973‐1974 ‐ Failures force removal of CAC from UK building regulations1997 ‐ Concrete Society Report

Present  • continued use in building chemistry and refractory applications

Renewed interest as a • rapid repair materialp p• alternative binder with lower CO2 footprint • durability

CAC Hydration and ChemistryC iConversion

Figure - Courtesy of K. Scrivener

Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H., “Advances in Alternative Cementitious Binders,” Cement and Concrete Research, V 41 [12], December 2011, pp. 1232‐1243.

SEM Images of CAC Microconcrete (BSE)

T38 C

T20 C

tt

Scale Bar – 300 m Scale Bar – 300 m

20 C isothermal cure, 1 day, unconverted

38 C isothermal cure, 8 days old, fully converted

Lower strength high

Scale Bar 300 m

High strength, low degree of hydration, low porosity

Lower strength, high degree of hydration, higher porosity

SEM Images of CAC Paste (BSE)

70 C isothermal cure, Toff + 8 hrs

High degree of hydration high

70 C realistic ramping, Toff + 8 hrs

SEM Images: C. Gosselin

High degree of hydration, high degree of porosity Discrete porosity, metastable

phase development may limit porosity

Rigid Cracking Frame and Free Deformation Frame Results20 C CAC, OPC

400

800

1200

m/m

)

OPC 3 micro-concreteNo Admixtures20 °C Isothermalslight expansion

-400

0

400

Tota

l Stra

in (

m

GCX 58 micro-concrete0.6% Accel., 0.3% Super20 °C Isothermal

artificial cooling

-1200

-800

0 25 50 75 100 125 150 175

GCX 38 micro-concrete0.6% Accel., 0.3% Super20 °C Isothermal

Time from Initial Setting (Hours)

6November 21, 20116

Rigid Cracking Frame and Free Deformation Frame Results38 C CAC andOPC

800

1200

/m)

GCX 29 micro-concrete0.2% Accel., 0.4% Super38 °C Isothermal

GCX 51 micro-concrete0.6% Accel., 0.3% Super38 °C Isothermal

-400

0

400

Tota

l Str

ain

(m

/

-1200

-800

0 25 50 75 100 125 150 175

OPC 4 micro-concreteNo admixtures38 °C Isothermal

artificial cooling

0 25 50 75 100 125 150 175

Time from Initial Setting (Hours)

7November 21, 20117

Interim Summary – Early Age Properties

Highly temperature dependent

Immediate high temperature

curing to promote stable phase

formation in pure CAC

CAC – early‐age volume behavior vastly different than OPCSome benefits (expansion)

Rigid Cracking Frame Stress

8

Some benefits (expansion)Some challenges (shrinkage)

November 21, 20118

CAC Research and Testing at OSU

• Working with CACs since 2008 (Ciment Fondu, GCX, CAC+SCMs)• Early‐age volume change: chemical shrinkage, autogenous deformation• Strength of mortar cubes• Minor durability testing – ASR related• Development of a standardized lab procedure for predicting conversion

• Conversion testing since August 2011 Ciment Fondu• Conversion testing since August 2011 – Ciment Fondu• 24 hr cure in ambient, 24 hr cure in highly insulated box

• 50C submersion at 24 hr for all cylinders – monitor strengthy g• 38C submersion at 24 hr for all cylinders – monitor strength• 38C direct submersion – QC check

CAC – Curing Regimes

Ambient • Mixtures of metastable and stable hydrateshydrates

• Curing concrete cylinders roughly around 23 C

• May be typical of smaller elements y ypin the field

Self‐heating• Direct formation of stable hydrates• Temperatures seen in larger elements and/or hot‐weather concreting

Isothermal (38 C)Isothermal (38  C)• Increased conversion rate from metastable to stable hydrates

• Lab evaluation protocol for high andLab evaluation protocol for high and low strength determination

What is conservative?  What is li i ? H d b i l ?

Semi-Adiabatic Curing Box

realistic?  How do we best simulate?

Montogmery Data

11November 21, 201111

Accelerated Conversion Testing ‐ CAC

Equipment Used

Eirich Concrete Mixer and Control Panel

Temperature and Humidity Controlled Mixing RoomPanel Controlled Mixing Room

Insulated Curing Box

TemperatureCylinder End Grinder and CompressionTemperature Controlled Curing Bath Temperature Data Logger

Cylinder End Grinder and Compression Testing Machine

Temperature Controlled Curing Bath

Accelerated Conversion Testing ‐ CACi b h H il I l d C i BInexpensive Laboratory Water Baths

•Passive heating coils

•Must be monitored regularly

Heavily Insulated Curing Box•12” of dense styrofoam surround 16 –100x200 mm cylinders

l d d l fg y

•Temperature easily affected by ambient temperature

•Placed immediately after casting

•Cured for 24 hours

Temperature monitor

Tank h theaters

Submersible pump  and temperature recorders (not shown) Insulated Curing Box

Accelerated Conversion Testing –Preliminary Results

Cylinders (100 mm x 200 mm) : 24 Hours of Ambient Curing or 24 Hours of Insulated Box Curing followed by submersion at 50 C

35

40

Compressive Strength (f'c) Evolution Fondu Concrete Mixture 1

Cure for 24 hr in insulated box and then cure in 50°C water bath

CAC - Ciment Fondu Mixture Design: Mix 1

Cement: 400 (kg/m3)Water: 160 (kg/m3)

25

30Cure for 24 hr at ambient temp and then cure in 50°C water bath

Water: 160 (kg/m )w/cm: 0.4 Stone: 950 (kg/m3)(MC - 1.4%, AC - 2.6%)Sand: 740 (kg/m3) (MC - 3.6%, AC - 3.1%)Super: Opt 203, 1% by mass cement

15

20

f'c (

MPa

)

5

10

00 1 2 3 4 5 6 7 8

Time (Days)

Accelerated Conversion Testing –Preliminary Results

Mixture 3: Compressive strength: 100 x 200 mm cylinders Submerged in 38°C Water Bath Directly After Casting

CAC - Ciment Fondu Mixture Design: Mixture 3

Cement: 400 (kg/m3)Water: 160 (kg/m3)w/cm: 0.4

35

40

Compressive Strength (f'c) Evolution Fondu Concrete Mixture 3

Cure for 7 days in 38°C water bath

w/cm: 0.4 Stone: 900 (kg/m3)(MC - 2.4%, AC - 2.6%)Sand: 645 (kg/m3) (MC - 3.8%, AC - 3.1%)Super: Opt 203, 1% by mass cement

25

30

15

20

f'c (

MPa

)

5

10

00 1 2 3 4 5 6 7 8

Time (Days)

Interim Summary – Conversion Testing

Overall both 50C and 38C submersion provide rapid conversion of cylinders cured in ambient temperatures

After ambient cure38C – conversion at about 6 days50C – conversion at about 2 days

Values converge to uniform value for converted strength in both tests

Immediate submersion at 38C confirms roughly 100 hours to conversionImmediate submersion at 38C confirms roughly 100 hours to conversion

Highest temperature in insulated box ‐ ~90CHighest temperature in ambient cured cylinders ‐ ~50C

Conclusions and Future Work

Early‐age volume change• Vastly different behavior than portland

Early‐age volume change• Continued characterization of autogenous• Vastly different behavior than portland

cement• Highly temperature dependent

• Continued characterization of autogenous deformation, chemical and drying shrinkage, thermal influences

• Realistic time/temperature historiesRealistic time/temperature histories• Making the link between laboratory and 

field (Bentivegna Dissertation UT Austin)

Conversion Testing• Immediate high temperature curing not

Conversion Testing• Varying material parameters (w/cm,Immediate high temperature curing not 

applicable due to microstructural changes• Curing at 38 C immediately gives good 

predictor of converted test, not field 

Varying material parameters (w/cm, cement content, aggregate type)

• pure CAC systems to start• more complex systems after initial test 

compatible• Ambient curing for 24 hours followed by 

submersion at high temp give also good di i f d h

developed, verified

• Propose as new ASTM Standard

predictions of converted strength• 38 C (6 days to conversion)• 50 C (2 days to conversion) 

Thank you!                       http://web.engr.oregonstate.edu/~idekerj/http://gbml.oregonstate.edu/

18November 21, 201118

Questions?