27
PROD-F-015-01 C3.5 –Taylor-Green vortex at Re=1600 Summary of results / Energy balance 1 st International Workshop on High Order CFD Methods Nashville 7-8 january 2012 (AIAA ASM) Koen Hillewaert , Corentin Carton de Wiart Argo team leader , Research engineer Contact: [email protected] Doc. ref.: HOWORKSHOP-NS-001-00

C3.5 –Taylor-Green vortex at Re=1600 Summary of results

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

PROD-F-015-01

C3.5 –Taylor-Green vortex at Re=1600Summary of results / Energy balance

1st International Workshop on High Order CFD Methods‐Nashville 7-8 january 2012 (AIAA ASM)

Koen Hillewaert, Corentin Carton de WiartArgo team leader, Research engineerContact: [email protected]

Doc. ref.: HOWORKSHOP-NS-001-00

Page 2: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Flow physics

• (nearly) incompressible flow• analytical initial solution• transition to turbulence

Page 3: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Criteria

• Comparison to resolved computation with spectral code (5123) / M. Duponcheel UCL

– Evolution of the energy – Evolution of the dissipation (near peak)– Flow field at t=8 (near peak)

• Theoretical dissipation (incompressible) → measure for numerical dissipation

Page 4: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Reference results – enstrophy and dissipation

Page 5: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Flow structure at t=8

Page 6: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Reference results – energy spectrum at t=9

Page 7: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Overview

Participant Institution Method Time Resolution

Order / resolution / dt * 1000

A. BeckG. Gassner

IAG/UniStuttgart DGSEM RK5 2/128/4,4/192/3.2,8/224/3.1, 10/225/3,16/240/2

C. CartonK.Hillewaert

Cenaero DG/IP RK4 4/144/4, 4/192/, 4/288, 4/384, (5/192), (6/190)

J.B. Chapelier Onera DG/BR2 RK4? 4/192/7.3, 4/288/4.85

J. Debonis NASA Glenn FD RK4 (4,8,12) x (64,128,256) x 1.7

FD / DRP RK4 (4) x (64,128,256) x 1.7

T. Haga Iowa State DG-CRP RK4? 3/128/4, 4/192/4, 5/256/2, 3/192/4

J.M. Le Gouez Onera FV/Recon RK3? 3/220, 4/220, 4/292

S. Varadan Uni Michigan DG/RDG RK4 3/128

Page 8: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Theoretical and measured dissipation / 128

Page 9: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on theoretical dissipation / 128

Page 10: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on measured dissipation / 128

Page 11: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Difference theoretical & measured dissipation / 128

Page 12: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Theoretical and measured dissipation / 192

Page 13: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on theoretical dissipation / 192

Page 14: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on measured dissipation / 192

Page 15: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Difference theoretical & measured dissipation / 192

Page 16: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Measured vs theoretical dissipation / 256

Page 17: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on theoretical dissipation / 256

Page 18: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on measured dissipation / 256

Page 19: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Difference theoretical & measured dissipation / 256

Page 20: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on theoretical dissipation vs resolution

Page 21: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on measured dissipation vs resolution

Page 22: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Difference enstrophy – dissipation vs resolution

Page 23: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on theoretical dissipation vs CPU time

Page 24: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Error on measured dissipation vs CPU

Page 25: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Difference enstrophy – dissipation vs CPU

Page 26: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

HOW - Testcase C3.5 / Taylor-Green vortex

PROD-F-015-01

© 2012 Cenaero – All rights reserved

Concluding remarks

• Conclusions– Error evolution (difference measured vs theoretical diss.)

• Nyquist criterion: resolution ~ 256, O ≥ 4• Error ~ hp+1 

• Dissipation well targeted → ILES ?• Dispersion takes over wrt dissipation (DRP/DG)

– Computational efficiency• Explicit : increasing order for constant dof pays• DG / CRP methods higher accuracy / resolution• FD/FV & dedicated codes : higher computational efficiency

• Additional work– Error based on theoretical vs measured dissipation

• Independent of reference solution !• Qualitative correlation with error measure should be quantified 

– Homogenize test matrices• Grid convergence constant order • Order convergence on resolution ~ 256

– Resolve anomalies in some vorticity plots

Page 27: C3.5 –Taylor-Green vortex at Re=1600 Summary of results

DNS/LES with DGM

PROD-F-015-01

© 2011 Cenaero – All rights reserved

Acknowledgments

• Reference results and case setup– M. Duponcheel (UCL/FTL)– G. Winckelmans (UCL/FTL)