22
CAESAR II STATIC LOAD CASE EDITOR Loren Brown Senior Engineer/Developer & l l CADWorx & Analysis Solutions Intergraph Process, Power, & Marine

c2_static Load Case Editor [Compatibility Mode]

  • Upload
    sandygo

  • View
    122

  • Download
    1

Embed Size (px)

Citation preview

Page 1: c2_static Load Case Editor [Compatibility Mode]

CAESAR II STATIC LOAD CASE EDITOR

Loren BrownSenior Engineer/Developer

& l lCADWorx & Analysis SolutionsIntergraph Process, Power, & Marine

Page 2: c2_static Load Case Editor [Compatibility Mode]

CONTACT USCONTACT US

• Feedback: Elvira Ballard@Intergraph comFeedback:  [email protected]

S i @ h• Suggestions: [email protected]

• Technical Support: [email protected] @ g p

Page 3: c2_static Load Case Editor [Compatibility Mode]

TYPES OF LOADSTYPES OF LOADS

• Primary Loads – Force driven causePrimary Loads  Force driven, cause catastrophic failure.– Weight Pressure Point Loads Uniform Loads– Weight, Pressure, Point Loads, Uniform Loads, Hanger Loads, Wind and Wave loads.

• Secondary Loads – Strain based cause fatigue• Secondary Loads – Strain based, cause fatigue failure.

Temperature Displacements– Temperature, Displacements.

Page 4: c2_static Load Case Editor [Compatibility Mode]

AVAILABLE LOAD TYPES IN CAESAR IIAVAILABLE LOAD TYPES IN CAESAR II

• W (Weight), WNC (Weight No Contents)W (Weight), WNC (Weight No Contents)• WW (Water‐filled Weight)• P (Pressure) HP (Hydrotest Pressure)• P (Pressure), HP (Hydrotest Pressure)• T (Temperature), D (Displacement)H (H P l d ) F (C t t d L d )• H (Hanger Pre‐loads), F (Concentrated Loads)

• U (Uniform Loads)• Win (Wind), Wav (Wave and Current)• CS (Cut Short or Cut Long)

Page 5: c2_static Load Case Editor [Compatibility Mode]

Available Stress Types in CAESAR IIAvailable Stress Types in CAESAR II

• OPE – OperatingOPE  Operating 

• SUS – Sustained

i• EXP – Expansion

• OCC – Occasional

• HYD – Hydrotest

• HGR – Hanger DesignHGR  Hanger Design

• FAT ‐ Fatigue

Page 6: c2_static Load Case Editor [Compatibility Mode]

Load Case DefinitionLoad Case Definition

• Operating case contains all loads in theOperating case contains all loads in the system.– L1 = W+P1+T1+H (OPE) this is called a basic load case– L1 = W+P1+T1+H  (OPE)  this is called a basic load case

• Sustained Case contains only primary loads.L2 W P1 H (SUS)– L2 = W+P1+H  (SUS)  another basic load case

• Expansion Case is the difference between the operating and sustained cases.– L3 = L1‐L2  (EXP)  this is called a combination load case

Page 7: c2_static Load Case Editor [Compatibility Mode]

Combination Load CasesCombination Load Cases

• Used to add or subtract results fromUsed to add or subtract results from previously defined primitive load cases.

• Necessary for proper EXP and OCC code stress• Necessary for proper EXP and OCC code stress definition.

N d f i i l d• Not used for restraint or equipment load definition, nor for displacement reporting.

Page 8: c2_static Load Case Editor [Compatibility Mode]

Why subtract SUS from OPE?Why subtract SUS from OPE?

• Why not simply use L3 = T1 (EXP)?Why not simply use L3 = T1 (EXP)?– Because the restraint configuration may result in an incorrect solutionan incorrect solution. 

– Nonlinear restraints drive the restraint configuration.configuration.

– Other loads in the system combine to change the restraint configuration.g

Page 9: c2_static Load Case Editor [Compatibility Mode]

Nonlinear RestraintsNonlinear Restraints

• Stiffness of Restraint changes depending onStiffness of Restraint changes depending on position of pipe or forces on restraint.

• Examples:• Examples:  – Uni‐directional Restraints (+Y)

G i i– Gaps in restraints

– Friction

– Large‐rotation rods

– Bi‐linear Restraints

Page 10: c2_static Load Case Editor [Compatibility Mode]

Force vs. Distance in Nonlinear Restraints

Page 11: c2_static Load Case Editor [Compatibility Mode]

Example 1: T1 (EXP)Example 1:     T1 (EXP)

L3 = T1 (EXP)

Thi i h th li i d l d iThis is how the line is modeled in Caesar II. The gaps are equal on both sides of the pipe. No loads are yet applied.

The thermal forces have closed the gap on the right side.

Total Displacement for T1 (EXP) = 1 x Gap

Page 12: c2_static Load Case Editor [Compatibility Mode]

Example 2: L1 – L2 (EXP)Example 2:   L1  L2 (EXP)L2 = W+P1 (SUS) L1 = W+P1+T1  (OPE)

Weight has caused the pipe to close the gap to the left. This can happen when the pipe pivots about a different restraint.

Operating conditions have caused the pipe to close the gap to the right, even against the weight force trying to hold it on the left.

Page 13: c2_static Load Case Editor [Compatibility Mode]

Example 2 (con’t)Example 2 (con t)

• If we subtract the displacements of the SUSIf we subtract the displacements of the SUS case from OPE we get:– Total Displacement for L1 L2 = 2 x Gap– Total Displacement for L1‐L2 = 2 x Gap

– In a linear system T1 (EXP) = L1 – L2 (EXP)

In a nonlinear system this is not guaranteed– In a nonlinear system this is not guaranteed.

– This represents the effect of temperature in the presence of other loadspresence of other loads.

– This is a displacement stress range, not starting from the neutral positionfrom the neutral position.

Page 14: c2_static Load Case Editor [Compatibility Mode]

Occasional Load CasesOccasional Load Cases

• For most piping codes (not the offshoreFor most piping codes (not the offshore codes):– Set up an OPE case that includes the occasional– Set up an OPE case that includes the occasional load

– Subtract the standard OPE case from the OPE thatSubtract the standard OPE case from the OPE that includes the occasional load.  We call this the segregated occasional load case.

– Add the above load case results to the SUS load case results for the code stress check

Page 15: c2_static Load Case Editor [Compatibility Mode]

Example 3: Occasional Load CasesExample 3:  Occasional Load Cases

• Assume we have a uniform load representing a ssu e e a e a u o oad ep ese t g aseismic load, U1.– L1 = W+P1+T1 (OPE) standard operating– L2 = W+P1 (SUS) – L3 = W+P1+T1+U1 (OPE) operating with occasional loadL4 L1 L2 ( X )– L4 = L1‐L2 (EXP)

– L5 = L3‐L1 (OCC) segregated occasionalL6 = L2+L5 (OCC) * i l d t– L6 = L2+L5 (OCC)   occasional code stress case

* use scalar combination method.

Page 16: c2_static Load Case Editor [Compatibility Mode]

Combination MethodsCombination Methods

• Algebraic:g– Used for subtracting two load cases.– Takes the displacements from the referenced cases and subtracts themand subtracts them.

– Then computes forces, moments, and resultant stress from these displacements.

• Scalar:– Used for adding two load cases.Adds the stresses from the two referenced load cases– Adds the stresses from the two referenced load cases.

– Unlike algebraic the stresses are not recomputed from displacements.

Page 17: c2_static Load Case Editor [Compatibility Mode]

Notes on combination methodsNotes on combination methods

• Don’t use algebraic for adding two load casesDon t use algebraic for adding two load cases.– You can’t take credit for occasional loads acting opposite to operating loadsopposite to operating loads.

• Don’t use scalar for subtracting two cases.This results in a lower code stress than actual– This results in a lower code stress than actual.

Page 18: c2_static Load Case Editor [Compatibility Mode]

Output TypesOutput Types

• DisplacementDisplacement– Usually reported only for basic load cases

• Force• Force– Usually reported only for basic load cases

• Stress– Reported based on code requirements.

Page 19: c2_static Load Case Editor [Compatibility Mode]

Example 4 – Restraint LoadsExample 4  Restraint Loads

The algebraic difference between these two conditions will result in a positive force on the restraint.  This is an impossible condition.  But the EXP code stress is pcorrectly computed for this condition.

Page 20: c2_static Load Case Editor [Compatibility Mode]

What to reportWhat to report

• Suppress the HGR cases and the segregatedSuppress the HGR cases and the segregated occasional load cases.

• Report displacement, force for all primitiveReport displacement, force for all primitive load cases.

• Don’t report stress for the operating loadDon t report stress for the operating load cases.– This is not true for offshore codes, nor FRP codes, , ,nor buried pipe codes.

• Report only stress for combination load cases.

Page 21: c2_static Load Case Editor [Compatibility Mode]

Using the Hot Modulus of ElasticityUsing the Hot Modulus of Elasticity

• It is required to use the cold modulus ofIt is required to use the cold modulus of elasticity for stress computation.

• You can reduce restraint loads by use of the• You can reduce restraint loads by use of the hot modulus of elasticity.

C id i l OPE i h h• Create identical OPE cases, one with hot modulus for restraint loads, and one with cold 

d l f i h bi i i h SUSmodulus for use in the combination with SUS for determining EXP stress.

Page 22: c2_static Load Case Editor [Compatibility Mode]

Using the Friction MultiplierUsing the Friction Multiplier

• Friction Multiplier acts on the Mu valueFriction Multiplier acts on the Mu value entered on each restraint in the model.

• Input 0 0 for no friction and 1 0 for full• Input 0.0 for no friction and 1.0 for full friction.

C id i l l d b h h• Create identical load cases, but change the value of Friction Multiplier on one of them.

• Compare the results in the Restraint Summary and report the worst‐case results.