10
82 燃料電池 Vol.18 No.2 2018 1.Introduction Polymer electrolyte fuel cells(PEFCs)are considered a promising technology for clean and efficient power generation and are becoming increasingly important as alternative power sources for stationary, transporta- tion, or portable applications, in particular for residential co-generation systems or electric vehicles, due to their high efficiency, rapid start-up, and low emission profile. The operation of PEFCs above 100 ℃ provides numer- ous advantages, like reducing the affinity of the Pt cata- lyst to carbon monoxide, which is a by-product of the reforming process, and thus increasing CO tolerance. As a result, the operation of PEFCs above 100 ℃ allows using impure fuel streams and simplifies fuel process- ing. High-temperature operation also increases the heat transfer rate because of a lager temperature gradient between the fuel cells and external environment, sup- plying waste heat that can be easily utilized by other processes(e.g., co-generation of heat and power or on- board reforming). Therefore, the heat management sys- tem is simplified, increasing the weight- and volume- specific energy densities and the overall energy density of PEFC systems. The electrochemical kinetics of both electrode reactions are also enhanced by increasing the PEFC operation temperature. In particular, the rate of the oxygen reduction reaction is significantly increased, improving the performance of PEFCs as a whole. These factors result in increased efficiency and simplification of PEFC systems. The perfluorinated sulfonic acid(PFSA)ionomer has been commonly used as both a polymer electrolyte mem- brane(PEM)and proton conductor in anode and cath- ode catalyst layers(CLs)of state-of-the-art PEFCs due to its high proton conductivity and high chemical and mechanical stability. However, this ionomer is not ap- plicable to PEFCs operating above 100 ℃, since it leads to loses of proton conductivity and mechanical strength, also causing considerable permeation(crossover)of fuel, hydrogen, and oxidants, air or oxygen, above its glass transition temperature(~110 ℃). Alternative ionomers based on non-fluorinated materials, showing stability above 100 ℃, processability, environmental adaptability, and low production cost, in addition to chemical and electrochemical stability, are in high demand. Intensive research efforts have been devoted to developing alter- 投稿 論文  Paper Application of Sulfonated Carbon Ionomer to Catalyst Layers of Polymer Electrolyte Fuel Cells Tomoya Oyama, Kazuki Matsumoto, Tetsuo Take Department of Chemistry and Energy Engineering, Faculty of Engineering, Tokyo City University Abstract:We have developed a sulfonated carbon ionomer and applied it to the anode and cathode catalyst layers (CLs)of polymer electrolyte fuel cells(PEFCs). The above ionomer can be prepared by the thiol group oxidation method, while its ion exchange capacity(IEC)can be controlled by changing the proportions of carbon black, 3 -mercaptopropyltrimethoxysilane, and H O used in the synthesis. The sulfonated carbon ionomer can be used in both anode and cathode CLs of PEFCs, leading to their decreased performance, as compared with that of PEFCs utilizing the perfluorinated sulfonic acid(PFSA)ionomer at 80 ℃ and a relative humidity(RH)of 100%. The performance of PEFCs employing the sulfonated carbon ionomer hardly depends on its IEC and decreases with decreasing RH at 80 ℃. These performance decreases are larger than those observed for the PFSA ionomer. On the other hand, PEFCs using the sulfonated carbon ionomer are superior to those based on the PFSA ionomer at temperatures above 100 ℃ and RHs below 100 %. Key Words Polymer electrolyte fuel cell, Sulfonated carbon ionomer, Catalyst layer, Gas diffusion electrode, Operation at temperatures above 100 ℃ and RHs below 100 %

稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

82 燃料電池 Vol.18 No.2 2018

1.Introduction

 Polymerelectrolytefuelcells(PEFCs)areconsideredapromising technology for cleanandefficientpowergenerationandarebecoming increasingly importantasalternativepowersources forstationary, transporta-tion,orportableapplications,inparticularforresidentialco-generationsystemsorelectricvehicles,dueto theirhighefficiency,rapidstart-up,and lowemissionprofile.TheoperationofPEFCsabove100℃providesnumer-ousadvantages,likereducingtheaffinityofthePtcata-lyst tocarbonmonoxide,which isaby-productof thereformingprocess, and thus increasingCO tolerance.Asaresult,theoperationofPEFCsabove100℃allowsusing impure fuel streamsandsimplifies fuelprocess-ing.High-temperatureoperationalso increasestheheattransfer ratebecauseofa lager temperaturegradientbetween the fuel cellsandexternalenvironment, sup-plyingwasteheat thatcanbeeasilyutilizedbyotherprocesses(e.g.,co-generationofheatandpoweroron-boardreforming).Therefore,theheatmanagementsys-tem is simplified, increasing theweight-andvolume-specificenergydensitiesandtheoverallenergydensity

ofPEFCsystems.Theelectrochemicalkineticsofbothelectrodereactionsarealsoenhancedby increasingthePEFCoperation temperature. Inparticular, therateoftheoxygenreductionreaction issignificantly increased,improvingtheperformanceofPEFCsasawhole.ThesefactorsresultinincreasedefficiencyandsimplificationofPEFCsystems. Theperfluorinatedsulfonicacid(PFSA)ionomerhasbeencommonlyusedasbothapolymerelectrolytemem-brane(PEM)andprotonconductor inanodeandcath-odecatalystlayers(CLs)ofstate-of-the-artPEFCsdueto itshighprotonconductivityandhighchemicalandmechanical stability.However, this ionomer isnotap-plicabletoPEFCsoperatingabove100℃,since it leadstolosesofprotonconductivityandmechanicalstrength,alsocausingconsiderablepermeation(crossover)offuel,hydrogen,andoxidants, airoroxygen,above itsglasstransitiontemperature(~110℃).Alternative ionomersbasedonnon-fluorinatedmaterials, showing stabilityabove100℃,processability,environmentaladaptability,and lowproduction cost, in addition to chemical andelectrochemicalstability,are inhighdemand.Intensiveresearcheffortshavebeendevotedtodevelopingalter-

投稿論文 Paper

Application of Sulfonated Carbon Ionomer to Catalyst Layers of Polymer Electrolyte Fuel Cells

Tomoya Oyama, Kazuki Matsumoto, Tetsuo Take Department of Chemistry and Energy Engineering, Faculty of Engineering, Tokyo City University

Abstract:Wehavedevelopedasulfonatedcarbonionomerandappliedittotheanodeandcathodecatalystlayers(CLs)ofpolymerelectrolytefuelcells(PEFCs).Theaboveionomercanbepreparedbythethiolgroupoxidationmethod,while its ionexchangecapacity(IEC)canbecontrolledbychangingtheproportionsofcarbonblack,3-mercaptopropyltrimethoxysilane,andH2O2usedinthesynthesis.ThesulfonatedcarbonionomercanbeusedinbothanodeandcathodeCLsofPEFCs,leadingtotheirdecreasedperformance,ascomparedwiththatofPEFCsutilizing theperfluorinatedsulfonicacid(PFSA)ionomerat80℃andarelativehumidity(RH)of100%.TheperformanceofPEFCsemployingthesulfonatedcarbon ionomerhardlydependson its IECanddecreaseswithdecreasingRHat80℃.TheseperformancedecreasesarelargerthanthoseobservedforthePFSAionomer.Ontheotherhand,PEFCsusingthesulfonatedcarbonionomeraresuperiortothosebasedonthePFSAionomerattemperaturesabove100℃andRHsbelow100%.Key Words:Polymerelectrolyte fuel cell,Sulfonatedcarbon ionomer,Catalyst layer,Gasdiffusionelectrode,Operationattemperaturesabove100℃andRHsbelow100%

Page 2: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

83燃料電池 Vol.18 No.2 2018

nativedual-use ionomers(asbothPEMsandprotonconductors incatalyst layers)forthePEFCs.Recently,asulfonatedsilaneionomer1)andnon-fluorinatedhydro-carbon ionomers,suchassulfonatedpolyether(SPE)2),sulfonatedpolyetheretherketone(SPEEK)3)−7),sulfo-natedpolyetherketoneketone(SPEKK)8), sulfonatedpolyaryleneether(SPAE)9),10),andsulfonatedpolysulu-fone(SPS)11)havebeendeveloped forcost reduction,elevationof the operating temperature, andavoidingenvironmentalpollutionbyfluorideafterdisposal.How-ever,theapplicationofhydrocarbonionomersascatalystlayer(CL) ionomersoftendecreases theperformanceofPEFCs. Ingeneral, theprotonconductivityofhydro-carbonionomersishighunderhighhumidityconditionsbutdecreasessteeplywithdecreasinghumidity,leadingto lowcatalystutilization inthegasdiffusionelectrodes(GDEs)ofPEFCs. Inthiswork,wehavepreparedasulfonatedcarbonionomerandapplied it tobothanodeandcathodeCLsofPEFCs,supposingthatthisionomerwithhighprotonconductivityexhibitsnoharmfuleffectson theperfor-manceandstabilityofPEFCsabove100℃,becausecar-bonmaterial isusuallyusedasaPtcatalystsupport inCLsofphosphoricacidfuelcellsat200℃andpossesseshighheatdurability.Wehaveevaluatedtheeffectsofus-ingthesulfonatedcarbon ionomer in theanodeand/orcathodeCLsofPEFCs,itsionexchangecapacity(IEC),andtherelativehumidity(RH)ofthereactantgasesonPEFCperformancebyconductingthesinglePEFCtestsat80℃andRHof100%.Subsequently,wehavealsoevaluatedtheeffectsof temperaturesabove100℃andRHsbelow100%on theperformanceofPEFCsutiliz-ingthesulfonatedcarbon ionomerbyconductingsinglePEFCtests.

2.Experimental

2.1 Preparation of the sulfonated carbon ionomer

 Thesulfonatedcarbon ionomerwaspreparedbyus-ing the thiol group(SH)oxidationmethodusedbyMunakataetal. for thesurfacesulfonationofaporoussilicamembrane12).The surface sulfonationof carbonblack(Aqua-Black®162 ,TokaiCarbonCo.,Ltd.,Japan)wasconductedasshown inFig.1 ,covalentlyattaching

sulfonicacidgroups(SO3H)tothecarbonblack.First,thecarbonblackwasrefluxed in3-mercaptopropyltri-methoxysilane(3-MPTMS,KBM-802 ,98 . 9%,Shin-EtsuChemicalCo.,Ltd.,Japan)solutionat110℃for24htoattachSHprecursorgroups,withacetone(99.0%,ShowaChemicalCo.,Ltd., Japan)usedassolvent.Theweightratioofacetonetocarbonblackwassetat15 : 1 .Second,theSHgroupson thecarbonblackwereconverted toSO3Hgroupsbyoxidationwith10wt%H2O2aqueoussolution(30wt%H2O2aqueoussolution,ShowaChemi-calIndustryCo.,Ltd.,Japan)at70℃for2h.Theweightratiosof3-MPTMSandH2O2tothecarbonblackwerevariedtochangetheIECofthepreparedsulfonatedcar-bon ionomer.Theweightratioof3-MPTMStocarbonblackwassetat0 . 5and1 ,andtheratioofH2O2tothecarbonblackwassetat2and3 .

2.2 Characterization of the sulfonated carbon ionomer

 Fourier transform infrared(FTIR)spectroscopywasperformedusingtheFTIRSpectrumOne®spectrometerandtheUniversalATRAccessory®(PerkinElmer Inc.,USA)toverifypresenceofSO3Hmoietiesonthepre-paredsulfonatedcarbon ionomer1),with triglycinesul-fateusedasadetector.TheIECofthepreparedionomerwasalsomeasured toestimate theamountof formedSO3Hgroups.Thesulfonatedcarbon ionomersamplesweredriedat120℃for30mininair.Thesampleswereimmersedin20cm3ofasaturatedNaClaqueoussolution(NaCl, 99 . 5%,ShowaChemicalsCo.,Ltd., Japan)andshakenfor24hwithashakertoexchangetheprotonsofSO3Hunitsforsodiumions.Thesolutionwasfiltered,

Fig. 1  Outline of surface sulfonation procedure by SH oxidation method.

Page 3: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

燃料電池 Vol.18 No.2 201884

andthefiltratewastitratedagainst0 . 01MNaOHaque-oussolution(NaOH,93 . 0%,ShowaChemicalsCo.,Ltd.,Japan)usingapotentiometric titrator(AT-510 ,KyotoElectronics IndustryCo.,Ltd., Japan)toquantify theamountofprotons.Basedontheobtainedresultandtheweightofthesulfonatedcarbonionomersample,theIECwasestimatedusingEq.(1)13):  IEC=(V× C)/Wdry   (1)whereIEC[mmolg−1=meqg−1]istheionexchangecapacity,V[L]isthevolumeoftheNaOHsolutionusedfor titration,C[mmolL−1] is theconcentrationof theaboveNaOHsolution,andWdry[g]isthedryweightofthesulfonatedcarbonionomer.

2.3 Preparation of GDEs and membrane-electrode assemblies

 GDEswitha three-layerstructure, i.e.,CL/micropo-rous layer(MPL)/wet-proofed carbonpaper,werepreparedforeachsinglePEFCasfollows.Carbonpaper(360µmthick,TGP-H-090 ,TorayIndustryInc.,Japan)was immersed in anaqueousdispersion ofpolytetra-fluoroethylene(PTFE,31-JR,60wt%,DuPont-MitsuiFluorochemicalsCo.,Ltd.,Japan)for2min,driedat60℃for30mininair,andthensinteredat350℃for1min.Thiswet-proofingprocedurewasrepeateduntilaPTFEloadingof 5wt%was reached.TheMPLwas formedon thewet-proofedcarbonpaperas follows.Ultrapurewater,methanol,andthePTFEdispersionweremixedwithcarbonblack(VulcanXC-72R,CabotCorporation,USA).Theweightratioofultrapurewater/methanol/carbonblack/PTFEwascontrolledat10/10/1 .0/0 . 84 .Thecomponentsweremixedunderultrasonicagitation(SU-9THultrasoniccleaner,ShibataScientificTechnol-ogyLtd.,Japan)untilauniformpastewasobtained.Theresultingpastewasrepeatedlycoatedontoone faceofthewet-proofed carbonpaper followedbydryingatambienttemperatureuntilreachingaloadingof10 − 15wt%.Thepaste-coatedwet-proofedcarbonpaperwasthenhot-pressedwithaminiTESTPRESS®-10hot-pressingapparatus(ToyoSeikiSeisaku-sho,Ltd.,Japan)at120℃under1MPafor1minandheatedat350℃inairfor1htoformtheMPLonthewet-proofedcarbonpaper.Thegasdiffusion layer(GDL)of theGDEwascomposedof theMPLandthewet-proofedcarbonpa-per.

 TheanodeandcathodeCLsweredepositedovertheGDLsurface.Toprepare thecatalystpaste,500mgofPt-loadedcarbonblackcatalystpowder(Pt/Ccatalyst;46 . 7wt%Pt supportedonhigh-specific-surface-areacarbonblack,TEC10E50E,TanakaKikinzokuKogyoK.K.,Japan)weremechanicallymixedwith2451mgofultrapurewaterand549mgof1-propanol(99.5%,WakoPureChemicalIndustries,Ltd.,Japan)inaplanetaryballmillfor1husingzirconiaballs.Thepreparedsulfonatedcarbon ionomeror the commercialPFSA ionomer(5wt%Nafion®solution;D-521 ,E.I.duPontdeNemoursandCompany,USA)wereaddedintothemixture,whichwasmechanicallyhomogenizedintheplanetaryballmillfor1husingzirconiaballs.Theweightratioofthedrysulfonatedcarbon ionomeror thedryNafion® ionomertoPt in thecatalystpastewasset to1 .ThepreparedcatalystpastewasfourtimesspreadontotheGDLswithasurfaceareaof27cm2.Theobtainedcatalyst-coatedGDLsweredriedat2℃ inair for1h.TheamountofloadedPtwasadjustedto0 . 45±0 .02mgcm−2intheanodeCLand0 . 30±0 .02mgcm−2inthecathodeCL. Themembrane-electrodeassemblies(MEAs)werefabricatedbyhot-pressing thePEMsandwichedbe-tween twoGDEs(anodeandcathode)using thehot-pressingapparatusat120℃under1MPafor1min.ThecommerciallyavailablePFSAmembrane,Nafion®NRE212(50µmthick,E. I.duPontdeNemoursandCompany,USA),andapoly(styrenesulfonicacid)-graftedpoly-ether ether ketone(ssPEEK)membrane 14)(30 µmthick)wereusedasPEMs.ThessPEEKmembranewasdonatedbyIHICorporation,Japan.Thegeometricalsur-faceareasofallelectrodeswere25cm2.TheMEAwasassembledintoasinglePEFCunit,usingcarbonsepara-torswithserpentinegas-channels.

2.4 Fuel cell operation AllofsinglePEFCswereoperatedunderatmosphericpressure,with the setupof the experimental systemused in thisstudyshown inFig.2 .HumidifiedH2andairweresuppliedtotheanodeandcathode,respectively,as reactantgases.The flowratesofH2andairwerecontrolledat500and2000sccm(standardcubiccenti-meterperminute,20℃),respectively,usingtwomass-flowcontrollers.These flowratescorresponded toO2andH2utilizationof21 . 0and34 .8%atacurrentdensity

投稿論文 Paper

Page 4: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

85燃料電池 Vol.18 No.2 2018

of1Acm−2 .At80℃,eachreactantgaswashumidifiedbybubbling throughahumidifierprior tobeing fedtothesinglePEFC.TheRHsofreactantgasesweresettoequalvalues,controlledbychangingthehumidifiertem-perature.Fortemperaturesabove100℃,eachreactantgaswasmixedwithvaporizedwater(steam)usingava-porizerpriortobeingfedtothesinglePEFC.TheRHsofreactantgasesweresettoequalvalues,controlledbychangingtheamountsofwatersuppliedtothevaporizerbyapump.Bycontrollingthecathodewatersupplyat1.19gmin−1andtheanodewatersupplyat0.30gmin−1,theRHsofH2suppliedtotheanodeandairsuppliedtothecathodewereset to100 ,72 ,and53%at100 ,110 ,and120℃,respectively. Current−voltage(I −V)andIRdropcharacteristicsofsinglePEFCsweremeasuredusinga fuel-cellevalu-ation system(TFC-2000G,TsukasaSokkenCo.,Ltd.,Japan)understeady-stateoperationconditions.TheIRdropcharacteristicsweremeasuredbyapplying100-µs current-off pulses to singlePEFCsand recordingtheresultingpotentialresponses.TheoverallresistancepolarizationwascalculatedusingthemeasuredIR-dropcharacteristics.Thecurrentwasnormalizedbasedontheelectrodegeometricalsurfaceareaof25cm2.TheIRdropdatawas included inthe I −Vcharacteristicsre-portedherein.  I −Vcharacteristicswereanalyzed toevaluate thesourcesofpolarization15),withtheoverallactivationpo-

larizationdefinedinEq.(2):  ηa=blog(I / I 0 .90) (2)whereηa[V] is theoverallactivationpolarization,b istheTafelslope, I 0 .90[Acm−2]isthecurrentdensityat0 . 90Vand I [Acm−2]isthemeasuredcurrentdensity.TheTafel slopewasestimatedbyapplying the leastsquaresmethodto thecurrentdensitiesatIR-freecellvoltagesbetween0 . 82and0 . 92V.

3.Results and discussion

3.1 Characterization of the prepared sul-fonated carbon ionomer

 TheFTIRspectrumofthepreparedsulfonatedcarbonionomer isshown inFig.3 , thecorrespondingIECbe-

Fig. 2 Experimental setup.

Fig. 3 FTIR spectrum of prepared sulfonated-carbon ionomer.

Page 5: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

燃料電池 Vol.18 No.2 201886

canbecontrolledbychangingtheweightratioofcarbonblack/3-MPTMS/H2O2. 3.2 Application of the sulfonated carbon

ionomer in CLs I −VandIRdropcharacteristicsofsinglePEFCsweremeasuredat80℃andanRHof100%.Nafion®NRE212wasusedasthePEMandthepreparedsulfonatedcar-bonandNafion®ionomerswereusedintheCLs.TheIECof theused thesulfonatedcarbon ionommerwas0 . 98meqg−1.Figure4(a)showsthe I −VcharacteristicsofasinglePEFCwith(i)thesulfonatedcarbonionomerinbothanodeandcathodeCLs;(ii)sulfonatedcarboniono-merinthecathodeCLandtheNafion®ionomerinthean-odeCL;and(iii)theNafion®ionomerinthecathodeCLandthesulfonatedcarbonionomerintheanodeCL.Forcomparison, the I −VcharacteristicsofasinglePEFCwiththeNafion®ionomerinbothanodeandcathodeCLsarealsoshown inFig.4(a).ThePEFCwiththesulfo-natedcarbon ionomer intheanodeand/orcathodeCLsshoweddecreasedperformance,ascomparedwith thatwiththeNafion®ionomerinbothanodeandcathodeCLs.Figure4(b)showstheactivationpolarizationcharacter-isticsofthesinglePEFCsderivedfromthe I −Vcharac-teristicsshown inFig.4(a).Theactivationpolarizationof thesinglePEFCwiththesulfonatedcarbon ionomerintheanodeand/orcathodeCLsincreasedincomparisonwiththevaluedisplayedbythePEFCwiththeNafion®

ing0 . 98meqg−1.Thepresenceof sulfonicgroupsonthesulfonatedcarbon ionomerwasconfirmedbypeaksat767 ,1012 ,and1257cm−1correspondingtotheSO3Hbond.However, these peakswere not observed forAqua-Black®162 .Thisqualitative studysuggests thatthesulfonatedcarbon ionomercanbesuccessfullypre-paredbytheSHoxidationmethod. Table1showsthesyntheticconditionandtheIECofthesulfonatedcarbonionomer.TheweightratioofAqua-black®162/3-MPTMS/H2O2wascontrolled.The IECequaledto0.98meqg−1ataweightratioof1/0.5/2,2.67meqg−1ataweightratioof1/0 .5/3 ,and4 .37meqg−1ataweightratioof1/1/3 ,respectively. IncreasingtheweightratioofH2O2from2to3promotedtheoxidationofSHgroupstoSO3Hmoieties,increasingtheIECfrom0 .98to2 .67meqg−1,respectively.Increasingtheweightratioof3-MPTMSfrom0 .5to1promotedtheformationofSHgroupsonAqua-black®162 ,andtheIECincreasedfrom2 . 67 to4 . 37meqg−1,respectively.Theseresultsindicate that the IECof thesulfonatedcarbon ionomer

投稿論文 Paper

Table 1  Systhetic condition and IEC of sulufonated carbon ionomer.

SampleWeight ratio IEC

(meq g-1)Aqua-Black Ⓡ 162 3-MPTMS H2O2

A 1 0.5 2 0.98B 1 0.5 3 2.67C 1 1 3 4.37

Fig. 4  Effect of application of sulfonated carbon ionomer (SC) to anode and/or cathode CLs on I−V and activation polarization characteristics of single PEFC at 80 ℃ and RH of 100%: (a) I−V characteristics, (b) activation polarization characteristics.

Page 6: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

87燃料電池 Vol.18 No.2 2018

ionomer inbothanodeandcathodeCLs.Theresistancepolarizationof thesinglePEFCwiththesulfonatedcar-bon ionomer in theanodeand/orcathodeCLsslightlyincreasedcomparedwiththatofthePEFCwiththeNa-fion® ionomer inbothanodeandcathodeCLs. InsinglePEFCwiththesulfonatedcarbon ionomer intheanodeand/orcathodeCLs,no large increasesofresistancepo-larizationdueto the increased interfacialresistanceoc-curred,despitetheionomerdifferentfromthePEM. These results indicate that the sulfonated carbonionomercanbeusedforbothanodeandcathodeCLsofPEFCsandthattheperformanceofPEFCswiththesul-fonatedcarbonionomerintheanodeand/orcathodeCLsdecreasesduetothe increaseofactivationpolarization,as comparedwith thatof thePEFCwith theNafion®ionomerinbothcathodeandanodeCLsat80℃andanRHof100%.Thedecreaseoftheactivationpolarizationis required to improve theperformanceof thePEFCswiththesulfonatedcarbonionomer.

3.3 Effect of the IEC of the sulfonated car-bon ionomer

 I −VandIRdropcharacteristicsofsinglePEFCsweremeasuredat80℃andanRHof100%.Nafion®NRE212wasusedas thePEM,andthesulfonatedcarbon iono-merswereusedinbothanodeandcathodeCLs.TheIECsof theemployedsulfonatedcarbon ionomerswere0 . 98 ,2 .67 ,and4 .37meqg− 1.Figure5(a)showsthe I −V

characteristics of singlePEFCemploying sulfonatedcarbon ionomerswithdifferentIECs.ThePEFCperfor-manceobtained for thesulfonatedcarbon ionomerde-creasedincomparisonwiththatobtainedfortheNafion®ionomerandtheformerslightlyincreasedwithincreasingtheIECof thesulfonatedcarbon ionomer.Figure5(b)shows theactivationpolarizationcharacteristicsof thesinglePEFCusingsulfonatecarbonionomerswithdiffer-entIECs,derivedfromthe I −VcharacteristicsshowninFig.5(a).TheactivationpolarizationofthesinglePEFCwiththesulfonatedcarbon ionomer increasedcomparedwiththatofthePEFCwiththeNafion®ionomerandtheformerslightlydecreasedwith increasing the ionomerIEC.TheresistancepolarizationofthesinglePEFCwiththesulfonatedcarbon ionomerhardlydependedontheionomerIECandwassimilartothevaluesobtained fortheNafion®ionomer. Theseresultssuggest that theprotonconductionbe-tweentheSO3Hgroupsof thesulfonatedcarbon iono-merandthePtparticlesofthePt/Ccatalyst is inferiortothatbetweentheSO3HgroupsoftheNafion®ionomerandthePtparticles.Wepresumethatthisdeferenceoftheprotonconductioniscausedbythecontactbetweenthe ionomerandPtparticles.TheNafion® ionomer iscomposedof thePFSApolymeranduniformlycontactsthePtparticles.Ontheotherhand, thesulfonatedcar-bon ionomer iscomposedof thecarbonblackparticlesanddoesnotuniformlycontact thePtparticles.Thus,

Fig. 5  Effect of IEC of sulfonated carbon ionomer (SC) in both anode and cathode CLs on I−V and activation polarization characteristics of single PEFC at 80 ℃ and RH of 100%: (a) I−V characteristics, (b) activation polarization characteristics.

Page 7: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

燃料電池 Vol.18 No.2 201888

75 ,and80℃ ,respectively.Figure6(a)showsthe I −VcharacteristicsofsinglePEFCswiththesulfonatedcar-bonandNafion®ionomers.TheperformanceofthePEF-CswithbothsulfonatedcarbonandNafion® ionomersdecreasedwithdecreasingRH,however, thedecreasesfortheformerwaslargerthanthatforthelatter.Figure6(b)showstheactivationpolarizationcharacteristicsofthesinglePEFCsderivedfromthe I −Vcharacteristicsshown inFig.6(a).Theactivationpolarizationof thesinglePEFCwith the sulfonatedcarbon ionomerwaslargerthanthatofthePEFCwiththeNafion®ionomer.Thevalues forbothPEFCs increasedwithdecreasingRH,theincreasesoftheformerbeinglargerthanthatofthe latter.This indicates that theprotonconductionofthesulfonatedcarbonionomerhighlydependsontheRH

theprotonconductionbetweentheSO3Hgroupsofthesulfonatedcarbon ionomerandthePtparticles ismorepreventablethanthatbetweentheSO3HgroupsoftheNafion®ionomerandthePtparticles.TheseresultsalsosuggestthatincreasingtheIECofthesulfonatedcarbonionomerhardlyimprovesthePEFCperformance. 3.4 Effect of the RH of reactant gases I −VandIR drop characteristics of singlePEFCsweremeasuredat80℃.Nafion®NRE212wasusedasthePEMand thesulfonatedcarbonandNafion® ionomerswereused inbothcathodeandanodeCLs.TheIECoftheusedsulfonatedcarbon ionomerwas0 . 98meqg−1.TheRHofthereactantgaseswassetto40 ,60 ,80 ,and100%byadjustingthehumidifiertemperatureto59 ,68 ,

投稿論文 Paper

Fig. 6  Effect of RH of reactant gases on I−V and polarization characteristics of single PEFC with sulfonated carbon ionomer (SC) in both anode and cathode CLs at 80 ℃ : (a) I−V characteristics, (b) activation polarization characteristics, (c) resistance polarization characteristics.

Page 8: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

89燃料電池 Vol.18 No.2 2018

ofthereactantgases,andthatthewaterreservecharac-teristicsoftheNafion®ionomeraresuperiortothoseofthesulfonatedcarbonionomer. Figure6(c)showstheresistancepolarizationcharac-teristicsofthesinglePEFCs.Theresistancepolarizationof thesinglePEFCwiththesulfonatedcarbon ionomerwassimilar tothatof thePEFCwiththeNafion® iono-meratanRHof100%.Thevalues forbothPEFCs in-creasedwithdecreasingRH,theincreasesoftheformerbeinglargerthanthatofthelatter.Thelargerincreaseof thePEFCswiththesulfonatedcarbon ionomer isat-tributed to thecharacteristicsofwater transportationfromthecathodeCLto thePEM.InthesinglePEFCswiththeNafion®ionomer,anextensivewatertransporta-tionnetworkispresentinthePEMandtheaboveiono-mer,sincetheyconsistofthesamematerial.Therefore,waterproduced in thecathodeCLduring thecathodereaction iseasily transferred to thePEMthrough theNafion® ionomer,and thePEMdryingat lowRHscanbesuppressed.Conversely, inthesinglePEFCwiththesulfonated carbon ionomer, thewater transportationnetwork in thePEMandsulfonatedcarbon ionomer isnotextensive,becausethePEMandionomerintheCLsconsistofdifferentmaterials.ThewaterproducedinthecathodeCL, therefore, isnoteasily transferred to thePEMthrough the sulfonatedcarbon ionomer, and thePEMdryingatlowRHscannotbesuppressed.

3.5 Effect of PEFC operation above 100 ℃ I −VandIR drop characteristics of singlePEFCsweremeasured at 100 , 110 and 120℃.The ssPEEKmembranewasusedasthePEM,andthesulfonatedcar-bonandNafion®ionomerswereusedinbothanodeandcathodeCLs.TheIECofthesulfonatedcarbonionomerwas0 . 98meqg−1.Figure7(a)showsthe I −Vcharac-teristicsof thesinglePEFCwiththesulfonatedcarbonionomerattemperaturesof100 ,110 ,and120℃andRHsof100 ,73and52%, respectively.TheRHsat110and120℃weresettokeepthesteamamountsconstantatthesaturatedsteamamountat100℃,supposingPEFCoperationunderatmosphericpressure.ThePEFCwiththe sulfonatedcarbon ionomerperformedbetter thanthatwith theNafion® ionomerat temperaturesof100and110℃andRHsof100and73%,respectively.TheseresultsindicatethattheperformanceofPEFCswiththe

sulfonatedcarbon ionomer issuperiortothatofPEFCswiththeNafion® ionomerabove100℃.BoththesinglePEFCwiththesulfonatedcarbonionomerandthatwiththeNafion®ionomercouldnotgeneratepowerat120℃and anRHof 52%,whichwas attributed to the lowwater-reservecharacteristicsofthessPEEKmembraneusedunderthiscondition. Figure7(b)showstheactivationpolarization char-acteristicsof thesinglePEFCsderived fromthe I −Vcharacteristics shown inFig.7(a).Theactivationpo-larizationofthesinglePEFCwiththesulfonatedcarbonionomerdecreasedat100and110℃comparedwiththatof thePEFCwith theNafion® ionomer.Thus, theap-plicationofthesulfonatedcarbonionomertobothanodeandcathodeCLscanpresumablydecreasetheactivationpolarizationabove100℃.ThisindicatesthattheprotonconductivityofthesulfonatedcarbonionomerissuperiortothatoftheNafion®ionomerabove100℃. Figure7(c)showstheresistancepolarizationcharac-teristicsofthesinglePEFCs.Theresistancepolarizationof thesinglePEFCwiththesulfonatedcarbon ionomerwasnearlyequal tothatof thePEFCwiththeNafion®ionomerat100℃andanRHof100%.Ontheotherhand,theresistancepolarizationof thePEFCwith thesulfo-natedcarbon ionomerdecreasedcomparedwiththatofthePEFCwiththeNafion®ionomerat110℃andanRHof73%.Thus, theapplicationof thesulfonatedcarbonionomertobothanodeandcathodeCLspresumablysup-presseswaterdischargefromthePEMattemperaturesabove100℃andRHsbelow100%,whichcontraststheexperimentalresultsdescribedabove.At80℃,theresis-tancepolarizationofthePEFCwiththeNafion®NRE212and thesulfonatedcarbon ionomer increasedwithde-creasingRH.This indicates that thesulfonatedcarbonionomersuppresseswaterdischarge fromthePEMattemperaturesabove100℃andRHsbelow100%.Wepresumethata largeramountof formedwater ispre-servedinthesulfonatedcarbonionomercomparedtotheNafion®ionomer,preventingthePEMfromdryingundertheseconditionsandsuppressingtheincreaseofthere-sistancepolarization. Weused theSHoxidationmethod for theprepara-tionofthesulfonatedcarbonionomers.Thismethodwasused for thesulfonationof theporoussilicamembraneandahydrothermal treatmentwasconductedat170℃

Page 9: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

燃料電池 Vol.18 No.2 201890

inordertoincreasesilanolgroupsonthesilicasurface12).TheFT-IR spectra of the porous silicamembranesbeforeandafter thehydrothermal treatmentat170℃showedthatthepeakintensityofsilanolgroupswasin-creasedwithincreasingdurationforhydrothermaltreat-ment.We,therefore,presumethatthesulfonatedcarbonionomerisstableat170℃. Wehaveshowed that sulfonatedcarbon ionomer isavailable toPEFCsasprotonconductorof anodeandcathodeCLs in thispaper.Thesulfonatedcarbon iono-merincreasesPEFCperformanceover100℃comparedwiththePFSAionomer.TheperformanceofthePEFCwith the sulfonatedcarbon ionomerover100℃,how-ever,islowerthanthatwiththePESAionomerat80℃.

We suppose that the performance of the sulfonatedcarbon ionomermustbe improvedfurtherbystudyingsurfacetreatmentofcarbon,alternativecarbonmaterial,andsoon.

4.Conclusion

 Thesulfonatedcarbon ionomercanbepreparedbyusingtheSHoxidationmethod,anditsIECcanbecon-trolledbychangingtheweightratioofcarbon-black/3-MPTMS/H2O2.Thesulfonatedcarbon ionomercanbeused forbothanodeandcathodeCLsofPEFCs.TheperformanceofPEFCswiththesulfonatedcarbon iono-merdecreasesincomparisontothatofPEFCswiththe

投稿論文 Paper

Fig. 7  Effect of operation above 100 ℃ on I−V and polarization characteristics of single PEFC with sulfonated carbon ionomer (SC) in both cathode and anode CLs: (a) I−V characteristics, (b) activation polarization characteristics, (c) resistance polarization characteristics.

Page 10: 稿 論文 Paper - FCDIC · 2018. 10. 31. · 2.2 Characterization of the sulfonated ... Fig.1 Outline of surface sulfonation procedure by SH oxidation method. 84 燃料電池 Vol.18

91燃料電池 Vol.18 No.2 2018

PFSAionomerat80℃andanRHof100%,andhardlydependson the IECof thesulfonatedcarbon ionomer.Theperformanceof thePEFCswithboth sulfonatedcarbonandPFSAionomersat80℃decreasedwithde-creasingRH,however,thedecreasesfortheformerwaslarger than that for the latter.On theotherhand, theperformanceofPEFCswiththesulfonatedcarbon iono-merissuperiortothatofPEFCswiththePFSAionomerattemperaturesabove100℃andRHsbelow100%.WeconcludethatPEFCswiththesulfonatedcarbonionomercangeneratepowerandachievehigherperformancecomparedwith thatof thePFSA ionomerat tempera-turesabove100℃andRHsbelow100%.

Acknowledgement TheauthorsthankIHICorporation,Japan,forthedo-nationofthessPEEKmembraneandalsothankMs.EmiSindouofNanotechnologyResearchCenter,TokyoCityUniversityforherhelpinFTIRmeasurements.

References1) J.I.Eastcott,E.B.Easton:Sulfonatedsilica-based

fuelcellelectrodestructuresforlowhumidityap-plications,J.PowerSources ,245,487−494(2014)

2)A.B.Beleke,K.Miyatake,H.Uchida,M.Watanabe:Gasdiffusionelectrodescontainingsulfonatedpoly-ether ionomers forPEFCs,Electrochim.Acta ,53,1972−1978(2007)

3)E.B.Eastone,T.D.Astill,S.Holdcroft:Propertiesofgasdiffusionelectrodescontainingsulfonatedpoly(etheretherketone),J.Electrochem.Soc .,152,A752−A758(2005)

4) J.-S.Park,P.Krishanan,S.-H.Park,G.-G.Park,T.-H.Yang,W.-Y.Lee,C.-S.Kim:Astudyonfabrication of sulfonatedpoly(ether etherke-tone)-basedmembrane-electrodeassemblies forpolymerelectrolytemembranefuelcells,J.PowerSources ,178,642−650(2008)

5)T.Astill,Z.Xie,Z.Shi,T.Navessin,S.Holdcroft :Factorsinfluencingelectrochemicalpropertiesandperformance of hydrocarbon-based electrolytePEMFCcatalyst layers,J.Electrochem.Soc .,156,B499−B508(2009)

6)K.A.Sung,W.-K.Kim,K.-H.Oh,J.-K.Park :Thecatalystlayercontainingsulfonatedpoly(ether

etherketone)as theelectrode ionomer forpoly-merelectrolyte fuel cells,Electrochim.Acta ,54,3446−3452(2009)

7) J.Peron,D.Edwards,A.Besson,Z.Shi,S.Hold-croft :Microstructure-performancerelationshipsof sPEEK-based catalyst layer,J.Electrochem.Soc .,157,B1230−B1236(2010)

8)V.Ramani,S.Swier,M.T.Shaw,R.A.Weis,H.R.Kunz,J.M.Fenton:MembranesandMEAsbasedonsulfonatedpoly(etherketoneketone)andhet-eropolyacids forpolymerelectrolyte fuelcells,J.Electrochem.Soc .,155,B532−B537(2008)

9)T.Yoda,T.Shimura,B.Bae,K.Miyatake,M.Uchi-da,H.Uchida,M.Watanabe :Gasdiffusionelec-trodescontainingsulfonatedpoly(aryleneether)ionomerforPEFCsPart1.Effectofhumidityonthecathodeperformance,Electrochim.Acta ,54,4328−4333(2009)

10)T.Yoda,T.Shimura,B.Bae,K.Miyatake,M.Uchi-da,H.Uchida,M.Watanabe :Gasdiffusionelec-trodescontainingsulfonatedpoly(aryleneether)ionomer forPEFCs Part2. Improvementof thecathodeperformance,Electrochim.Acta ,55, 3464−3470(2010)

11)S.vonKraemer,M.Puchner,P.Jannasch,A.Lun-dblad,G.Lindbergh:Gasdiffusionelectrodesandmembraneelectrodeassembliesbasedon sulfo-natedpolysulfoneforhigh-temperaturePEMFC,J.Electrochem.Soc .,153,A2077−A2084(2006)

12)H.Munakata,H.Chiba,K.Kanamura :Enhance-mentonprotonconductivityof inorganic-organiccomposite electrolytemembranebyadditionofsulfonicacidgroup,SolidStateIonics ,176,2445−2450(2005)

13)S. Sambandam,V.Ramani : Effect of cathodebinderIEConkineticandtransport lossesinall-SPEEKMEAs,Electrochim.Acta ,53, 6328−6336(2008)

14) JapaneseUnexaminedPatentApplicationPublica-tions,No.2016−193987.

15)M.V.Williams,H.R.Kunz,J.M.Fenton :Analy-sisofpolarizationcurvestoevaluatepolarizationsourcesinhydrogen/airPEMfuelcells,J.Electro-chem.Soc .,152,A635−A644(2005)