177
" PWJBUCA nONS COMPACIUS - (LENDING SECDON) DEPARTMENT OF MINERALS - AND ENERGY BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. RECORD 1975/98 A PROGRAM TO CONTOUR USING CURVATURE by I.C. Briggs The infor mation contaI ned In th is report has been by the Depar tment of Minerals and En ergy as part of the policy of the AustralIan Government 10 assist in the explorat i on and development of 'Tlineral resources, It may not be published in any form or used in a company prospectus or statement lVithout the permiu i on in wr iti ng of the Di rector, Bureau of Mineral R urces, Geology and Geophys ics, BMR Record 1975/98 c.3

BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

Embed Size (px)

Citation preview

Page 1: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

"

~ PWJBUCA nONS COMPACIUS - (LENDING SECDON) 504'761~

DEPARTMENT OF MINERALS -AND ENERGY

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS

..

RECORD 1975/98

A PROGRAM TO CONTOUR USING ~INIMUM CURVATURE

by

I.C. Briggs

The information contaIned In th is report has been obta l n~d by the Depa r tment of Minerals and Energy as part of the policy of the AustralIan Government 10 assist in the explorat ion and development of 'Tlineral resources, It may not be published in any form or used in a company prospectus or statement lVithout the permiuion in wr i t ing of the Director, Bureau of M ineral R urces, Geology and Geophysics,

BMR Record 1975/98

c.3

Page 2: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

aq

aHn~VAHn~ WnWINIW DNISn HnO~NO~ O~ WVHDOHd V

S6/gl6! crno~aH

Page 3: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

CON'I1l:NTS

1. INTRODUCTION

2. ORIGIN

3. THEORY AND EXAMPLES

4. GENERAL DESCRIPTION OF 'FINDTHESURFACE'

5. DETAILED DESORIPTION OF 'FINDTHESURFACE'

6. GENERAL DESCRIPTION OF 'DRAWTHELINES'

7. DETAILED DESCRIPTION OF 'DRAWTHELINES'

8. HISTORY OF DEVELOPMENT

9. ROUTINE DESCRIPTION

10. FILE DESCRIPTION

11. REFERENCES

APPENDIX A: Difference equations for one dimension

Difference equations for two dimensions APPENDIX B:

Page

1

2

6

20

22

29

31

34

35

36

38

40

41

Page 4: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

~~J

SUMMARY

Contour maps are useful in the evaluation and interpretation of Geophysical data. With the rapid increase in the rate of acquisition of data, a computer becomes an attractive means of producing contour maps.

The problem of interpolation is then either: (a) to define a continuous function of the two space variables, which takes the values of the observations at the required, perhaps random, positions; or (b) to define a set of values at the points of a regular grid, so that a grid point value tends to an observational value if the position of the observation tends to the grid p~int.

Machine contou!' must not introduce information which is not present in the data. The one-dimensional spline fit has well defined smoothne~s properti~s; these are duplicated for two-dimensional inter~olation in this Record. The problems of a piecewise polyno$ical fit for randomly spaced data are avoided by solving the corresponding differential equation. Finite difference equations are deduced from a principle of minimum total curvature,and an iterative method of solution is outlined. Gravity and aeromagnetic surveys provide examples which compare favourably with the work of draftsmen.

Page 5: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

1. INTRODUCTION . ,- . ..

The automation of many tedious. manual tas.ks has now been accomplished.

,', ~ ~ -I', ..,'

The task of manually contouring geophysical data mayor may not be tedious but is certainly 'not triviaL Experience, skill, and' some aesthett.c;sense are. required to', produce satisfactory maps. ,Some mathematicaL:r1J1es of thumb are required before one can begin ,and are, also.· -required to resolve ambiguities.

Even with rules, there are usually.as;many.contour maps as there are draftsmen to contour ·the same data. Particular difficulty is encountered in the contouring of airborne and marine data, in which the data samples are obtal:ned ,at greater densi tyin one direction' than" in another and the users require that .all data be used. "in the, construction ·of the contour map. . ...

There is a continuing deb-ate on the:.use oJ anisotropic data; acceptance of anisotropY',::often ·simpli­fies the collection of geophysical data but increases the difficulty of contouring. -::

If the reader is sceptical, about;: the uSEtof· autc!Tlated methods, let him try his hand at-contouring some data. A few hours on a few lines of airborne magnetic data will provoke sympathy for a draftsman and a welcome .for the machine in this field.

The first thoughts ~hat .enter one's mind if it is given over to the problem of contouring by machine, are usually: what does the draftsman do?,; and, how can we transfer his actions step by step into . a. ma'chine; 'program? These thoughts have been fruitful, and corre~ponding~ programs have been written; However, this i's.another· example of the n'ow classical mistake of transferring a manual process to a machine in such a way that for every manual step there is an equivalent progr-am. step."

A better result is obtained if the -object 0.£ the process is eX'amined wi thoutregard to the 'manual method. The object can then be achieved by choosing the best ,from all the available computing methods. "By doing ,this , andre­garding contouring as a problem in two:.;.dimension'alinter­polation, we have come close' toequalltng, t,he.quali ty of maps

.,

Page 6: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

, .

-2-

produced:by draftsmen. Needless to say, the cost of development was not trivial; the cost of production of maps is also not trivial, but about the same as, if not less than, that of manual production.

An important fact to be considered when looking at the cost of production is that, in the experience of one particular and important group of data collectors, immedia­tely be£ore automated map production began there was a four-year lag in throughput, and this lag was increasing at

I .

the rate of one year per year.

Part of this report contains an introduction to the problem of contouring, and a summary of methods. The theory of the proposed method is given and examples of maps are desdribed.

Tbe remainder of this report contains an informal description o'f the origin of the method and a description of the techniques used to implement the method on a computer. There is also an abbreviated description of individual subroutines whiCh form one particular version of the contouring system.

The question of setting a policy of using or not using additional information, e.g. surface geological data, to draw geophysical contour maps, is here dismissed with the note that if a certain policy is set for manually drawn m~ps then it can be followed with machine contoured maps.

2. ORIGIN

In the spring of 1968 while the author was working in the observatories section, Mr J. van der Linden asked Mr R. Cl:ifton if he would devise a means whereby a computet· could be used to draw contour maps of the regional magneti~ field as observed by Mr van der Linden.

Mr R. Clifton worked for some time on the problem and bro¥ght the results to the author. Mr. Clifton's idea was bas~d on the use of an average of data within a regular area. The input to the contouring was thus on a regular grid and Mr Clifton's main preoccupation was with the drawing of contour lines. This contact with Mr van der Linden and MrR. Clifton was the stimulus for the followi~g developments. The problem of contouring was seen to be t~at of· two-dimensional interpolation; that is,

i

Page 7: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-3-

given a set w (x, y ) of observations at random (x , y ) positions, fiRd anfunStion f(x,y) such thatf(x , y ~ n = w (x, y). To interpolate in this way is tB igRore errBrs in tHe data, but at the time it seemed that errors were ignored in current contouring practice.

The state of the art was examined by reference to published 'papers. The most recent coritrfbution was by Pelto, Elkins & Boyd (1968)0

The concepts and methods presented by Pel to 'et al. were examined closely. The authors recognizecf-the problemas one of interpolation ~ The method they used is 'the old s'tand­by for interpolation in one and twodimerisions, 'exact,' po'iy­nomial fitting. This method has great drawbacks (Lariczos, 1957), but the results appeared to be satisfactory. A regional polynomial is fitted byleast-squa'res' to the original and some additional estimateci data. The'surf'ace" resulting from this procedure does not pass through the 'ohser'vation points. To achieve this, the first surface is'stret,ched smoothly to pass through the original datao In areas remote from data points, data have, to be invented to 'avoid bad behaviour.

The general problem of interpolation was then reviewed. One-dimensional methods were first examined. Amongst all avaiiable methods for' one~dimensional ' interpolation, the use of piecewise funct~on: fitt'inghad the most attractive properties. The most impOrtant property was that of smoothness. A measure of smoothness (Ahlberg, Milson & Walsh, 196'7) is ,~~ ____ '_' ____ ~__ ,,,. ,

f.d2,2 ", bf (d22) ,~ . ,

and for piecewise polynomials, or splines', this integral is a minimum, and the composite curve can be made to pass through the observations.

The question was then asked, could the desirable properties of one-dimensional splines be duplicated in/two dimensions? The immediat:e analogy was':

(a) Cut ,up the region of inte~est :i,.nto areas with linear boundaries,such that the ,observation points lie on the vertices of' the ,areas; , there mayor may not bea,uniquedecompositlon.

1.--.

Page 8: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-4-

(b) To each area assign a two-dimensional poly-nomial: -- -.- ----.----

I &.t"xiyJ ~D ~

(c) Match these ·polynomials at the boundarines of the areas by making derivatives normal to the boundaries continuous.

The final' patched surface would then hopefully be the smoothest and would pass through the observations. This analogy was not pursued far. The reasons were:

i ! (a) There was a difficulty in finding a unique

de compos i tion of the area into ·sub-areas with . observations at the vertices.

; (b) There was algebraic complexity in matching derivatives along boundaries when these were not defined by x = constant or y = constant (c) There was possible instability when the density of observations was not uniform.

r: . ., ..

Other analogies had to be found. The use of piece­wise polynomials had to be avoided while achieving their smoothness properties.

Given that there was a physical analogy in one dimension in the form of a thin metallic strip, the question was asked, why could not the equivalent differential equation be used to define interpolating values? The cubic polynomial func~t~i=o=n~ _____________________ _

2 3 ... &0 .... &·fX .... &2X + &3X

does obey -- --d4Q

.• 0 -,: . b

the differential equation describing the displacement of a thin strip, and so they are equivalent. The ends of the

'pieces of polynomials are slightly more complicated because there is a discontinuity in the third derivative, but the equivalence is there. The differential equation describing a two-dimensional thin metallic sheet could perhaps be used for interpolation in two dimensions. The equation would be

----.~.---

.40 .. t. o4u

.4 + 2~~2 • oy~ • 0

Page 9: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-5-

with special cases of the right hand side of the places where the imagined forces must act.

Immediate doubts arose as to:

(a) how to fix the surface at the observations; (b) what to do at the edges of the thin metallic sheet; (c) where the edges should be; (d) how to solve the differential equation.

Analytical solutions would have taken us back to polynomial functions of one type or another, so the solution of the differential equation had to be done by numerical means .. The solution would have to.be given by discrete values on a grid. Observed values could be assigned to grid points and thus in a sense the surface or grid surface would pass through the observations.

For a while the possihility was entertained of making the boundary of the grid surface (~.g. a thin metal sheet) a polygon, with observation points at the vertices. However, the simplest boundary was some form of ,minimum rectangle, hence this is used.

The problem of what to do at the edges was more difficult. Boundary conditions are required, two in the case of tilis,'fourth-order equation. The values at the edge could be fixed. From a mapping point of view this wou~d be useful only if data were available from adjacent: maps. The edge could be free. Points there could take up values which remotely reflected the general trend of the data within the boundary. This latter condition was adopted in principle, but the execution was not a trivial matter.

The condition ITI-~~ll~_ .1;Jl~t the force at the edge is zero (Lbve, 1926), or 2

~u.O 2 \x and that the bending moment is zeto

-~T~*'~ ii

also or ... ---- , = 0

where the normal to the edge is in the x direction.

Page 10: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-6-

The transformation of these conditions into numerlcal difference equations was not satisfactorily achieved until the Taylor's series method for finding difference equations was replaced by the total discrete curvature method.

The numerical solution of the differential equation gives a two-dimensional array of numbers. This array defines a grid :surface. This is the output from a part of the con­touring system called FINDTHESURFACE. A second part called DRAWTHELINES uses the grld surface as input, and produces instructions tor a drafting machine. Figure 1 gives a picture of thisi arrangement.

3. THEORY AND EXAMPLES

INTRODUCTION

Contour maps are useful in the evaluation and interpretation of geophysical data. With the rapid increase in the rate of acquisition of data, a computer is an attractive means oj producing eontour maps!

Although errors occur in most geophysical obser­vations, contour maps are usually drawn so that the imaginary surface on which the contours lie passes exactly through the observations. The problem of interpolation is then either: (a) to define. a continuous function of the two space variables, which takes the values of the observations at the ·required, perhaps random, positions; or (b) to define a set of values at the points of a regular grid, so that a grid point value tends to an observational value if the position of the observation tend~ to the ,rid point. A solution to (a) gives a solution to (b), but a solution to (b) may not give a solution to (a). The solution to (b) is the one most commonly used as an input to a program which draws contour lines.

, Methods for the production of contour maps have been~published by Crain & Bhattacharyya (1967), Smith (1968), Cole (1968), Pelto, Elkins & Boyd (1968), ahd McIntyre, Pollard & Smith (1968). These methods are variations of either· weighting or function fitting or both, and give a solution to problem (a) and, hence, (b). Crain (1970) has provided a review of these methods.

This article describes a method for finding a solution to problem (b) without first finding a solution to problem (a). The solution also happens to be the smoothest. This attr;ibute gives confidence in the use of the method and explains the quality of the resulting contour maps.

Page 11: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-7-

The problem of interpolation in one dimension -has led to the piecewise polynomial fit, or spline (Ahlberg, Nilson & Walsh, 1967). A continuous function is found for all values of the independent variable. This method has been extended to two dimensions (De Boor, 1962), and used by Bhattachryya (1969) to give a solution to problem (a).

However, if the observation points in two dimensions are randomly situated, the fitting of piecewise two-dimensional polynomials to polygons seems difficult, although it is possible if the set of polygons are topologically equivalent-to a rectangular grid (Hessing, Lee, Pierce & Powers,· 1972).

The optimum properties of the spline fit can be obtained in both one and two dimensions by solving the differential equation equivalent to a third-order spline. This is the equation which describes the displacement of a thin sheet in one or two dimensions under the influence of point forces. The 'boundary conditions' are not only at the ends or boundary, but within the region of interest. The solution is forced to take up the value -of the observation at the point of observation, ~n one or two dimensions. ,The equation is solved numerically, and thus gives a solution to problem (b).

The smoothness properties follow from the method of deducing the difference equations, and the quality of the resulting contour map is, thus determined. The solution of the set of difference equations is a time-consuming process, but the iteration times on the computer have been reduced and can be reduced still further.

THE METHOD

The- different ial 'equat'ion

,The thin metallic strip or sheet is bent by forces acting at points so that the displacement at these points is equal to the observation to be satisfied. Let u be the displacement, x, y the space variables, and let 'forces f act at (x , y ), n = 1, ... ,N,where the observations ar~ w , then ~Lovg, 1926)

n

c14.. --...~ .x-x ax'" D n

• 0 otherwise (1)

Page 12: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-8-

and ,It, .. a" ,'I a 'In

dimension -d,-'~. .!.Jl • ~ ~ x n 2) in one n .. , /0. D (

fts4." ~2~ flY'. 0 otharri ..

in two dimensions. The units are dimensionless. A condition o~ the. solution ~s that u(Xn ) = wn or u(x , y ) = w •. In one dlmenslon,- u,~, and ~ the curvatu~e, irecoRtlnuous

~x ~x 3 across the point where the force is acting, but ~ is discon-

ax tinuous across such a point and the value of the discontinuity is equal to the force acting at that point (Love, 1926). A solution in 0I?-_~~~-~~!ls~_~EJ:~E~~~-.~~ __ a_.third-order polynomial

••• 0 ott- &-f + &2X2 .... &3x3

for each'segment between the points where the forces are acting. The coefficiehts a , ••. , a are found by u~ing the continuity conditions above? This ~olution is a cubic spline.

In two dimensions the solution of equation (2) is to be used in place of the two-dimensional third-order piece­wise polynomial fit.

Boundary 'c'ondit ions

The most suitable condition for the ends of the strip or edge of the thin sheet is that of freedom. For a strip, the region between the end and the extreme obser­vation will have a linear form, and for a sheet, the area between the edge and the observations will tend to a plane as the .sheet becomes larger.

For one and two dimensions, at the ends or edge, the force is zero and the bending moment about a tangential line is zero. For one dimension, these conditions give

~3u = 0' ()x"'

(3)

----2-----

~ : = 0 respect ively , -and

(4)

For two dimensions, they give

• [~+ ~!]. 0 (5)

iK

Page 13: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

!'

,;~

~y

f··

!.

-9-

where the normal to the edge is in the x direction, and give (4) also. The condition that

or

u(x) ...... n n

-(Xn ' Yn) = ~

is also a 'boundary' condition.

(6)

Equation (1) with boundary conditions (3)~ (4), and (6) or equation (2) with boundary conditions (5), (4), and (6) are solved numerically.

Finite difference equations

- ,

Equation (2) can be derived from the principle of mlnlmum curvature. Difference equations can be formed from equation (2) using Taylor's theorem (Young, 1962) or directly from the principle of minimum curvature. The boundary equations are more easily deduced by the latter means. Equations to be used when an observation does not lie on a grid point are more easily deduced by the former.

Consider the total squared curvature

[~ ~ J2 o( u) 1& II ax'J: + .~ I dxdy (7)

It must be shown that if a function u(x,y) makes C an extremum, then it obeys equation (2) and also that if a function u obeys equation (2) the~ it minimizes C. Let u(x,Y) bea function on a region in R with boundary B. Let u make C an extremum. Let z (x,y) be a function of u(x,y) and an arbitrary function g, with

g :: 0 and !& ;: 0 on B, an

where }.. denotes a derivative along the no-mal to' B, ~n

z(x,y) ;: u(x,y) + sg(x,y), where e :lis a real naber.

Page 14: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-10-

Then

-.w k

= 0

eaO

and this mu~thold for all functions g (x, y). Wri ting ~ for

~-2 ·2 L+L ~x2· ~2

) ( 2 )2 2 2 2 2 c( z = I I '9 11 dxdy" 2e I I Y 11 .. g dxdy .. e I I • g dxdy

----.-.~.---- .. ---... -

.. 2' 2 • 2U Y 11 Y g dxdy £.0

and

Using Green's theorem (Courant & Hilbert, 1953), the right hand side gives

- .. ... .. 2

211· 2( 2 ) . S. 2: k r )( .. u) . gy .. u dxdy + ... u 'iii d1 - "'6 g.... dlI.

The last two integrals vanish and leave -~---------~-- - -------.-------- --------

22) II gv ( ... u dxdy = 0

Since this must hqld for al! g,

2 2 ... ( ... ) = 0

Conversely, i2 u obeys equation (2) a~d ifi is any other function on R , with z = u, and !!. = ~ on B,

ba bn

we can ahGW that C(u) , c(.).

Consider

e(z) - c(u) = II ( .. 2.)2 _ ( ... 2.)2 dxdy

The right hand side gives - -.---~- - --- - - - - ._~---.-

( 2 2 2 2 2 2 ) II .,. - .., u) am,. + 211 .. u(y • - .. u dxdy

The last term gives upon the use of Green's theorem ----. . - ..... .. 2

( ) 2( 2 ) 2 'W z - u) r ( ) ~$ T u) 2 I I II; -u 'Y .. u dxdy +.(. .. u"" dll -"6 z - u . n dl

Page 15: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-11-

The integrals are zero; C(u) is then always less than or equal to C(z).

The principle of minimum curvature is used to deduce the normal difference equations. The total squared curvature (7) is constructed directly in terms of elements of the set of grid point values

uij if v.(Zi.Y~)

X:Ii • (i - 1 ) h , Y j = ( j - 1) h , i. 1, ••••• , I , j. = 1 , ••••• , J ,

where h is the grid spacing. The discrete total squared curvature is

I J 2 C III I I (oij)

:1.1 j=1 (8)

where C. . is the curvature at (x., y.). C. . is a function of u .. 1atld some neighbouring gria vaiues; 1tile exact set depe~d~ on the accuracy with which the curvature is to be represented.

To minimize the sum C, the functions

~ , i III 1, ••••• ,I , j = 1, ••••• ,J, ~i . ,J (9)

are set equal to zero (Stiefel, 1963). The resulting equations determine a set of relations between neighbouring grid point values, one relation for each grid point.

In one.dimension the simplest approxi~ation to the curvature at x. 1S (U. 1 + Ui 1 - 2 U.) / h , and in two dim~nsions1at (x., y.), it is 1

1 1

--------- - - ----------_. --

'jjJ = (Ui +1,.t ott Ui-1,J + Ui •1+1 + Ui ,.fJ- 1 - 4Ui ,j) I h2

(10)

Along edges and rows one from the edge, and near corners, different expressions for the curvature are used. For example, at an edge j = 1,

Page 16: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-12-

Ct,.j :: (U1+1,j ott Ui - 1,J - 2Ui~j) / h2

(11)

These special cases are also included in the total for C. Away from the edges, (10) shows t.hat a grid point value u i ' occurs in the expressions for ' J

C1,j , Ci +1,j , Ci ,J+1 ' and Ci ,J-1.

Therefore only these need to be considered when equation (10) is used. Using (8), (9), and (10) the common difference equation for the biharmonic equation results:

Ui +2,j + Ui ,j+2 • Ui _2,j + Ui ,j_2

• 2(Ui +1,j+1 + ui - 1,J+1 + ui +1,j_1+ ui - 1,J-1)

- 8(Ui +1,J • Ui _1,j +. ui ,J+1 • Ui ,j_1) + 20Ui ,j = 0 (12 )

For the edge j = 1, the difference equation is

U +.U. +u +u +u i-2,j i+2,j i,j+2 i-1,j+1 i+1,j+1

- 4(ui _1,j + Ui ,j+1 + ui • 1,j) + 7Ui,j = O. (13)

A complete set is' given in Appendix B., and four remaining types of equations are similarly derived.

The point boundary conditions (6) are used by setting U. ,= ~ wherever U .. occurs in the set of linear equations;,and by removing ih~se equations which correspond to these fixed grid points.

Observation notona grid point

If an observation does not coincide with a grid point, another difference equation is required for grid points which are the vertices of the grid square in which the observation falls. The observation point becomes part of the grid.

Page 17: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-13-

The equation used is a special case of a general method for using a random grid for the numerical solution of differential equations. The general method is used by letting one grid point, the observation, be on an irregular grid, and the remaining neighbours be on the regular grid, in the difference equation relating a grid point value to its neighbours.

Equation (2) is equivalent to

~2 ~2 ~ ~ (~ oft - ) (.2..!! .. .!Ul) • 0 'b'l. ~2 .2 ~2

",2 2 If Cij • ~ + ~ u at (xi'Yi)'

?Jx2 ?Jy2

(14)

equation (14) gives the difference equation (Young, 1962):

--c. 1-- ,-+Ci--'

1-j

+ Ci

j 1 +-Ci

-, 1- 4Ci

,' = 0 ~+ ,J - , , + ,J- ,J (15)

If equation (10) is used in equation (15), equation (12) results. However, we need an expression for C, ,which uses values of u at discrete points not lying on a r~gular grid.

Let u be ~ continuous function on t2e real two­dimensional space R and let (x , y ) be in R. If the set of points D - Q

(x + ~ .Y +7k) • k =1, •••• 5 ~ ~ 0 .

are also in R2, then for sufficiently small ~ k' '7k and if u has sufficiently many derivatives,

Uk ; u(xo; + \ ,'1' G oft 17k ) • k = 1, ••• ,5

is approximated by

-_.

~ hi ~I 1. ~2 ~I ~ ... 'b2u I 1",2 b

2u

lL ... 5k 'iii .. tr k ~ + 2 1c 2 .. 5)[ . (k 'bay + 2' . (k ~.2 0. '" ., 0 a OJ UJ ( 16 ) o

To find an expression for 2 --2

o u .... 0 U at ox2 c>y2

(xo,'1'o)

Page 18: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-14-

both sides of equations (U3) are multiplied by a real number b

k and a sum is made over K, so that

tbk~=~~! bk+el ibk\+~1 Ibk"k ~t - 0 C

If the bk are chosen_such !ha!. ______ ~__

I bk ~k = 0 , ~bk" k = 0 , ~ bk ~ = 1

~ bk ~! = 1 '(18) tneii-- --- -- - -- -

2 2 ~ ~ ... ~ ~ at (xo'Yo) ~x ~y

i8 app~oximated by j- -2.-~ bk '1c - uo~ bk (19)

lc=1 k=1

The matrix r}.--~- ~ ~ g . 51 ~ 3 4 5 "1 72 - -~-;- --17~ "5 g2 ~ ~ g2 ~2 I (20)

1 2 3 4 ~5

g171 g2~2. ~373~4o~4o g575 t72 t-l '12 .,.,2 '72

1 2 345

must be nonsingular, for the bk to exist.

For the present purpose, where one uk lies off the regular grid and the remaining four lie on tne regular grid, with

~-, ~ = h , 0 •. -h

a suitable set is

(h , -h) , (0 , -h) , (-h , 0) , (-h ., h) , (~5 ' 75

) ,

with ~5> 0 and 75 > o.

Page 19: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-15-

use Thus, for an expression for the curvature at (x.

1 , y .) we can

J

C1 j = i bk ~ - u1 j t bk + b 5 ..".. - lc=t ' k-1 n

(21)

where uk is

u u u U 1+1,j-1 - 1,j-1' 1-1,j' 1-1,j+1

wi th "W" is the nearby observation value. EquatiBn (21) can be used in (15) to give a linear equation relating a grid point to neighbouring grid points and an observation. This is used in place of" equation (12).

Iterati"on matrix

The set of linear algebraic equations (12), (13), and others are best solved iteratively (Young, 1962). Given an approximate set of u

i ., a new set is obtained by making

u .. the subject of equatfons (12) and (13) and others. 1,J "

For example, (13) gives

p+ 1 ~-[ (--;-- ~---" - ,,--- - - ~-

Ut _j = 4 ui _ 1• j " +"~i.j+1 .... ~i+1.j)

D P ] (22) - (~i-2,.1 .... uPW • .1 .. ~.j+2 .... Ui-1,j .. 1 .. ~+1,j+1) / 7

where the index p indicates the pth iteration. Starting values must be given, and one suitable method is to use the value "of the nearest observation or a weighted sum of neighbouring observations.

Iteration matrices which give faster rates of con­vergence than that defined by (22) are known (Young~1962; Parter, 1959), but are not described here. The proof of the existence of a solution of the linear equations is omitted (Stiefel, 1963).

Smoothness properties

~ 2" The measure of smoothness, C =~ (c .. ) . 1,J lS a

function of h and the precision of the approximation for C ... 1,J

Page 20: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

· -16-

Because the linear equations are deduced from the principle of minimum C, for a given h and for a given definition of curvature, the resulting grid point surface is smoother than, or as smooth as, any other grid point surface. Two contour maps produced by different means, but using the same data, can be compared for smoothness by digitizing the map, if necessary, and calculating the total curvature C. The map with the lower value of C is usually the more acceptable, and delineates trends more clearly.

Nothing will be said here about the convergence of the grid point values or of C, as the grid spacing tends to zero. However, for a given grid spacing, the method gives the smoothest possible contour map, and it can be used with some confidence as a representation of the given d~ta.

Drawing lines

There are many different methods of drawing the contours once the grid (Crain, 1970) surface has been found. The method used in the examples involves a four-point cubic interpolation between grid points to find contour cuts, and then a cubic spline to join the cuts. The observations are not used. This is the weak link in the present scheme. Improvements can be made by using the observations or by using two-dimensional cubic interpolation over a grid square. The overall success of the application of minimum total curvature warrants the undertaking of further work in the improvement of details.

EXAMPLES

For each map the time for one iteration for one grid point was approximately 0.4 ms using a CDC 3600 computer. Up to 260 000 grid points have been used to contour 60 000 observations at one time. To provide edge matching when an entire survey cannot be contoured at once, data beyond the area to be contoured are used.

The iterations were discontinued when all significant relocation of contours lines had taken place.

Testc·ases

Two simple test examples are: (1) a one-dimensional set of data taken to lie on a straight line; and (2) a set of data points (at least four are necessary) taken to lie on a plane. In case (1) the free grid points tend to values lying on the same straight line, and in case (2) the free grid points tend to~ values lying in the same plane.

Page 21: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-17-

Table 1 gives the values of a one-dimensional set of grid points which minimize the total curvature. Grid points at i = 3, 5, 8 are fixed and the imaginary forces required to bend the spline act at these points. The difference equations used are given in Appendix A.

TABLE 1

Table 1: The smoothest set ·of discre·te· values fixed at

·i =3", 5", 8.

i Vi 1 -5.62

2 1.69

3 9.00

4 16.31

5 25.00

6 36.46

7 49.77

8 64.00

9 78.23

10 92.46

Table 2 gives the values of a two-dimensional set of grid points fixed at (7,3), (8,5), (5,5), (8,8), (4,8). This set of grid points minimizes the sum of the point cur­vatures defined by equation (10).

Table 3 gives the values of a two-dimensional set of grid points fixed at infinity and at x = 0.2, y = 0.3 where the observation is

(0.2)2 + (0.3)2 = 0.13

The condition at infinity is simulated by setting grid values at.(x,y) to

x2 + y2

Page 22: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

---------

T'able' '2: 'The stnoothe'st' set of' 'g'rid valves' 'f'ix'ed' at

(7 3)( 8 5) ~ 5 5) "'( 8 '8)' , (48) , ' , , , , , J J '. •

i/j 1 2 3 4 5 6 7 8 9 10

10 -99.34 -89.96 -80.30 -70.10 -59.19 -47.48 -35.01 -21.93 -8.44 5.25

9 -84.07 -75.42 -66.30 -56.53 -45.95 -34.46 -22.12 - 9.12 4.35 18.14

8 -69.07 -61. 31 -52.89 -43.67 -33.48 -22.17 - 9.86 3.21 16.80 30.84

7 -54.66 -47.83 -40.14 -31. 56 -21.83 -10.64 1.74 15.00 28.79 43.14

6 -41.19 -35.18 -28.14 -20.19 -11.00 .13 12.61 26.05 40.14 54.87 I ~

5 -29.03 -23.59 -16.97 - 9.,55 .68 10.25 22.80 36.46 50.85 65.94 ex> I

4 -18.57 -13.42 - 7.00 .14 8.40 19.37 , 32.15 46.16 60.85 76.25

3 - 9.89 - 5.04 .86 7.61 16.00 27.31 40.50 55.00 70.01 85.74

2 -' 2.59 2.03 7.55 14.29 22.95 34.23 47.63 62.51 78.20 94.48

1 4.00 8.15 13.01 19.37 28.03' 39.44 53.34 69.00 85.67 102.78

Page 23: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-19-

beyond a limit, and by not using the boundary difference equations. This table shows the results of using equat~on (21) for the case where an observation does not fallon a grid point. The grid points used are

(-1, 1), (-1, 0), (0, -1), (1, -1),

and the observation at (0.2, 0.3).

The matrix (20) is

-1 -.;1 0 1 0.2

1 0 -1 -1 0.3

1 1 0 1 0.04

-1 0 0 -1 0.06

1 0 1 1 0.09"

and the resulting coefficients bk , k = 1, .... , 5 are

(-0.04, 1. 47, 1. 20, 0.36, 5.33)

These are used in equations (21) and (15) to give a value for the grid point at x = 0, y = O.

Table 3

Table 3: The smoothest set of grid valves fixed at

infinity and x=0.2, y = 0.3, with x = 0, y = 0 at (3,3).

i/j 1 2 3 4 5

1 8.00 5.00 4.00 5.00 8.00

2 5.00 2.00 1. 00 2.00 5.00

3 4.00 1.00 0.00 1.00 4.00

4 5.00 2.00 1.00 2.00 5.00

5 8.00 5.00 4.00 5.00 8.00

Page 24: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-20-

These and other higher-order surfaces test the method in general and the difference equations in particular. The illustrated examples use real data.

Almost uniform data

Figure 2 is the resulting contour map for gravimetric data sampled in-milligals on a nominal ll-km network. The grid spacing was 1.85 km and the number of iterations was 90. The rtumber of grid points was 1500. The smootbness of the inter­polating grid surface is apparent. The shapes of contours for data of this type generally agree with those of draftsmen. Differences occur when the interpolating grid surface lies outside the range of a closed group of observations.

The deficiency in the line-drawing routine shows itself when the 50-mGa1 contour does not pass exactly through a 50 mGa1 observation.

Line data

A more difficult set of data to contour is one whose density of sampling is not isotropic. The data for the total-intensity aeromagnetic maps of Figure 3 and Figure 4 were taken at O.S-km intervals along flight-lines nominally 3.2 km apart and at a height of 650 m above ground. The grid spacing used in the contouring was 0.5 km and the number of iterations was 60. The number of grid points is 6000 in Figure 3 arid 16 500 in Figure 4.

The general smoothness is satisfactory although a relatively rough profile along a line has an effect on the contours close to the flight-line, and thi~ may not be desirable. The interpolation is not a product of one­dimensional splines. A section across the flight-lines is not the result of a one-dimensiorial spline. This may be a drawback in some cases, but enables trends not lying at right-angles to the flight path to be displayed.

4. GENERAL DESCRIPTION OF -'FINDTHESURFACE

Input

The input consists of N number triples (x ,y ,z ), n = 1, .... ,N. An observation Z£ has been made at (x~, ~ )~ There is no other obs~rvation a (xn'Yn). n

Page 25: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-21-

The set of pOints{x , y ·}dO not have to lie on 1 . d n n a regu ar gr1n .

Output

The output is a set M of numbers which form a regular two-dimensional array. The values· defin.e the grid point surface which is the solution to the two-dimensional differential equation

~4-u ~4-u . -.4-u ~ .... 2 2; 2 +. 4- = 0 -- ~~ Gi

Operation

Setting up. An imaginary regular network of points is cast over the data to be contoured. These points are called grid points. Each observation is then examined in turn, and the grid point which is nearest to an observation point is set equal to the observation value. This process is modified slightly to increase the accuracy, but the principle is the same. This grid value is never subsequently altered.

Finding a solution. A value has to be found for every grid point which has not been previously set. The restriction on each grid point value is that it satisfy an approximation to the differential equation above.

An equivalent restriction is that the sum of the squares of the discrete curvature at grid points is a minimum. The method used to find the grid point values is iterative. An approximate solution is the subject of some automatic guessing process. This is subsequently improved by one iteration in which every grid pOint value not previously set is recalculated. Each iteration improves the nearness of the solution to its final value. Acceptable contour maps can be made from a grid surface which is not near its final shape.

Complications

1. Volume of data. The amount of data to be con­toured which is proffered by user groups can vary from 100 to four million, the largest number of observations for regular production to be contoured at one time being of the order of 50 000. The programming complexity is increased by the need to accommodate a large amount of data in one map. Secondary storage must be used for holding the large arrays which are required.

Page 26: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-22-

2. Observations not on a grid point. The procedure of shifting an observation to the nearest grid point, although not disastrous, is unacceptable if the surface must pass exactly through each observation.

Addi~ional algorithms must be used for each grid point which lies near an observation, if the shift is not to be made. The mathematical details are given in chapter 5 of this report. The consequence of requiring that no shifts be made is that the program is larger and more complicated, more time is required for the execution of the program, and more primary and secondary storage is required to store the coefficients required.

A suggestion by A.S. Murray of the gravity section, that observations be shifted to points on a smaller-spaced grid to allow the use of a standard collection of coefficients while maintaining accuracy, is being implemented.

3. Logical flags are required to indicate to the surface-finding part of the system whether or not a grid value is to be left ttnaltered.

4. To speed the convergence of the successive solutions, or to reduce the number of iterations required to achieve the same degree of nearness to the final values, starting values can be given. For a small number of grid points other contouring methods can be used, for example weighting or function fitting, but for a large number of grid points these methods may be more time-consuming than an equivalent number of iterations.

5. DETAILED DESCRIPTION OF 'FINDTHESURFACE

LAYING OUT THE GRID

A regular grid of points has to be cast over the random data. The variables to be set in this process are the spacing of the grid lines in each direction, and the total number of grid points in each direction.

If the grid spacings are supplied by the user, and the extremes in distance of the area to be contoured are also supplied by the user, the number of grid points in each direction is determined. But to make an integral number of grid spaces in each direction the user supplied spacing may have to be modified slightly.

Page 27: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-23-

To avoid excessive complication in the boundary region, three rows of grid points can be added to the original grid. This ensures that no observation falls in the boundary area, and hence·no special equations are required in this area.

Normally, the grid spacing is approximately equal in each direction, but abnormal distributions of data sampling can be treated by. letting the grid spacings become unequal.

If the grid array does not fit into the primary memory of a machine, the array must be cut into pieces which do fit. This is a non-trivial step because each row of grid points requires two rows on either side, and additional rows must be made available to the edges of the pieces. Also, additional integer parameters are required to define the multiplicity of primary memory subarrays.

The subroutine which performs the operation of laying out t~e grid is named USCET.

SETTING UP THE FLAGS, CALCULATION OF COEFFICIENTS, AND ASSIGNING STARTING VALUES

Flags and coefficients

Consider one piece of the grid array. This is either the whole array which fits into primary computer memory, or a piece which fits into primary memory. For each observation (x , y , z ) which is located in the piece of the array* the p~s~tioR, mBdulo the grid spacing, is found for both nand n. The residue is used to test the proximity to the grid points which are the vertices of the square in which the observation falls. The vertices are indexed by L = 1,2,3,4, in a counter-clockwise direction. There are two circles defined around each grid point with radii RS and RL. If r 1s the distance to a vertex from the observation point then Figure 5 indicates the action takeno

If the observation falls sufficiently close to the grid point, the grid point valve is set at the value of the observation. If the observation falls outside the larger circle, that observation is not used at the grid point which is at the centre of the circle. Normal equations are used at that grid point.

Page 28: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-24-

If the observation falls within the annulus, the observed value is used to give a set of coefficients, which when applied in ITERATE, have the effect of forcing the grid surface through the observation, as iridicated in Figure 6.

The radii of the circles can be adjusted to vary the accuracy of the interpolation about the observation point. No analytic form for the error .is given, but an approximate value of the error is given, but an approximate value of the error is given by the displacement times the gradient of the interpolated surface.

\

The arrays FL and GL a~e two-valued flags attached to each grid point. They are used in ITERATE. They are set to zero initially for every grid point.

The alg6rithm fo~ the caiculation of the'co­efficients will be deduced here. From chapter 3 equation (21) is taken;

Ct:JS fbk ~- ~i.J! bit + b5 ~

This equation, together with (10)

C.a~ J' = ( u:t. 1 J * Ui 1 . * Ui j 1 + u i . 1 - 4u. j) / h 2

.aJ, .... , - , J , + ,J- 1.,

defines the use of the coefficients b , k = 1, ... ,5, in finding a new value of U .. in ter~s of its neighbours and the observation w . 1,J

n

The coefficients b are defined by equations (18), a set of linear conditions whfch they must satify. These are .. .

i bk ~= 0 1

~ bk "k= 0 't

f. bk (~k)2 = 2 t

~ bk

(~k)2_~ 2 1

~ bk '\ \rk = 0 1

wh~re Y-and ~ -are-~tiie' algebraic differences, in t he x and y directions, between the observation point and the grid point for which the coefficients are to be found.

Page 29: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-25-

The matrix equation to be solved is

~1 ~ .

~3 ~4 ~5-~' ,...

b 1 . ; 0

2 I '7 1 ?2 ~3 "4 ~5 b2

' 0 I g2 g2 ~~ .. g2 ~I 1 b 3 I I 2

= 1 2 4

~1~ 1 g2?2 ~3~3 g4V4 ~5751 I b4 I I 0

,,2 1 \72

2 '72 3

~2 4 7~ I I b~ I I 2

i_

The possible values of ~k ' qk ' k = 1, ••••• ,4 are

-h , 0 , -tth and tor ~5 > 0 , 75 > 0 a suitable set is

(h J -h) , (0 • -h) , (-h. 0) , (-h , h) •

For the values of g5 J '75 given, the following set of

gk' '7k ' k = 1, ••••• ,4 are required, with h :& 1:

~5 > 0 , '75 > 0 ,

(1 , -1) , (0 , -1) , (-1 • 0) , (-1 , 1) ;

~5 < 0 , 'T; > 0 ,

(-1 , -1) , (0 • -1) , (1 • 0) , (1 • 1) ;

~5 <. 0 , '75 < 0 ,

(-1 , 1) , (0 , 1) , (1 , 0) , (1 , -1)

~5 > 0 , f7 5 < 0 ,

(1 , 1) , (0 , 1) , (-1 ,. 0) t (-1 , -1) •

Page 30: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-26-

~e 7"Iatri.x equat ion for \ 5 :> 0 5 .., 5 > 0 is

1" 0 -1 -1 ~5 -1 -1 0 1 ~5

1 o 1 1

-1 o o -1

1 1 0 1

v2 5

~5~5 2

~5

r J

b 1

b2

h3

b4

h5

o

o

2 • o

2

A solution of this matrix equation is for the case ~ 5> 0, '75::> 0, .

-~ _ (~2 + g) / D 'I (~2 .. h g _ 72

) / D I'

(72 ... ~ * ~ - r) / D I

1 - (~2 oft 7) / D J'. 2/ D .

where D :: i (~2 .... '72 oft g it- ~ of+- 2~~)

~en ~s < 0 and·~5 < 0

b 1 :: 1 - (,2 - .1) / D b 2 = (72 - ~- \or - ~) / D

b3

• (~2 _ ~ -17 _ "t2) / Db4

= 1 - (~ - g) / D

1 ~2 2 ~ h..... where D = 2' (5 +- '" - 5 - '7 .... 2'Y/;

~hen ~s > 0, and '5 < 0,

2 . b 1 :: 1 - (~ "'~) / J)

. ,~.

b 3 :: (7' - ~ oft· g - ~ ) I D

where D :: ; (g<- *'72 - , -It g - 2g,)

b2

:: (~ +-~ - '7. - V2) / D

b4

=1 .... (~2 -1,1) / D

bS :: 2 / D

hS :: 2 / D

Page 31: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-27-

For the purpose of programming, there a~e five which take the appropriate values when 5 5 ~nd signed quantities. These expressions are

~ - ~ 1 = ~ - (~ :~-) /-~

8 2 = 2 .

(~ -tI ~ .. ~. - '72 ) / p

e = 3 (,2 • ., ¥ g _ ~2) / D

2 -114 • 1 - (~ -tI-~) / D

and D = i (~2 • '72 -tI- ~ oft- ~ ... 2~~)

expressions 75 are

~hen b 1 and b4 are e 1 or e 4 , b 2 and b 3 are e 2 or e 3 and b 5 1S always 2 /D. Figure 7 gives the selection rules. Note that 'f) and '7 f) are never both small together. Figure 7 has been con~erted into the GO TO statement in SCIZZY in the statement before that labelled 15. The index bf the grid for which the coefficients are being calculated is saved and later used to place the set of coefficients in the order in which they are subsequently used in ITERATE.

Starting values

When all the observations which fall in a primary memory array have been treated in the above manner, starting values are given to all grid points which~ave not been previously set. They can be previously set if they happen to be grid points at the vertices of a square in which an observation has fallen. The value used to set these points is the value of the observation.

Values are assigned to grid points in one-row shells around the previously set grid points at the vertices of squares in which an observation has fallen. The value used is that previously given to the innermost shell.

One shell is set around each observation in turn. When shells from neighbouring observations meet, no change is made to a grid point value that is already set.

Page 32: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-28-

There are many better sets of possible starting values, and the reader is asked to try to find a better set. However, there is a compromise between quality of starting values and the time required to assign them. Time spent on starting values could be spent on iterations to achieve the same results.

The starting values presently used are horizontal planes, set at the height of each observation, with the point of obser­vation roughly at the centre of the planar area. There are discontinuities between planes centred on different observat-ions. Figure 8 gives an idea of the result of using this method.

PERFORMING THE ITERATIONS

Regarding the arpay of grid points as a column vector aP , with elements a 0' i = 1, 0 •• , n, where p denotes the pth approximation to the solution of the linear algebraic equations (12), and others given in Appendix Bo

aP+1 = R aP

where R is the iteration matrix. R connects a new grid point value with old values of its neighbours in the two-dimensional array. Thus R contains non-zero elements in diagonal bands. Each new element of "a" is found serially and replaces the old value in the array immediately it is calculated. At the· time of writing, the array is traversed in a continuous manner, row by row, and element by element within a row. When the array is cut into small pieces, the order is unchanged. However, it is quite possible that some areas will be slower in converging than others, and in future the program should be constructed so that these areas would be worked upon more often than others.

The routine ITERATE is devoted to the calculation of new values.

For each element of a, the corresponding pair of flags is examined to see which of the following actions is to be taken:

1. No new value is to be calculated, the grid value is to be left as it is, that is, its starting value.

2. A normal replacement value is to be calculated and used.

Page 33: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-29-

3. The previously calculated coefficients are to be used; the coefficients 'contain' the observation which fell near the grid point.

Figure 9 gives the dependence of these actions on the values of the flags, FL and GL.

The two rows of grid points at the edges must be treated separately, because the corresponding diffel;'ence equations are not the same as those holding away from the boundary. At each corner of the array there are four grid values which cannot be included in any loop. A complete set of difference equations which can be used to form the matrix R can be found in Appendix B.

For each grid point for each iteration, the change in value is found. The maximum change over the whole array is used to estimate the rate of approach to the exact solution of the difference equations.

After a number of i terat ions the whole array should be saved on a device which is immune to program and operating system breakdown. The saved array can be used for restarting the program or as the final output of FINDTHESURFACE.

6. GENERAL DESCRIPTION OF 'DRAWTHELINESi

The object of this part of the contouring system is the same as that of many routines which are available, for example LIN of J. Palmer of CSIRO (Palmer, 1970). However, the method should be matched to the use of the output, and different methods give a different visual impression of 'quality' at a different cost.

In DRAWTHELINES, the aim is to try to equal the quality of the work of the manual draftsman, assuming that a drafting machine of sufficient accuracy can be used.

Input

The input is: (a) a two-dimensional array of numbers, and (b) a number in the same unit as that of the array numbers, called the contour height.

Page 34: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-30-

Output

This is a series of co-ordinates in the plane, (x" y,), (X2 ' Y2)' .......... (x , y). When the points th~y r~preseHt are joined by stra~ghtnlines between sequential pairs, as can be done by a drafting machine, the result has the appearance of a smooth curve. .

Operation

The two-dimensional array of ordinates is assumed to define a continuous two-dimensional surface S. The locus of the intersection I of this hypothetical surface with a horizontal plane at the contour height, projects onto a continuous curve C on a horizontal plane. Series of points on this projected curve constitute the output.

In the method chosen for DRAWTHELINES there are two distinct tasks. The first is to locate the points on I which project onto grid lines. These points are c~lled cuts. Figure 10 gives a picture of this procedure.

The second task is to interpolate between the projections of cuts and find discrete points on the inter­polating curve. In the execution of both these tasks, approximations are involved. To find a cut point only grid poin ts in a grid line are used and only four at that. A one-dimensional spline curve would give better results here, but even this cannot reproduce the section of a continuous two-dimensional surface defined by

04r ~4r ~4r 4+ 2 22+4=0

ox ~x ~y oy

which is the surface S.

The approximation in the second task is that there is no restriction oft the interpolating curve between cuts that would force this curve to lie on the projection of I, even if the cuts did lie on the surface~

The accuracy of the contour curves could be increased by reducing the grid spacing while still using the methods of DRAWTHELINES, or by using the definition of S to 10cally find the position of the contour line.

Page 35: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-31-

DETAILED DESCRIPTION OF ., DRAWTHELINES '

Area and contour levels

Usually, not all the grid points in the array produced by FINDTHESURFACE are used at the one time. For example, the extra rows added to the array to avoid having observations near the border might have to be removed. The user must be able to specify the area to be contoured, and the limits must be turned into integral numbers of grid rows.

Instead of providing a contour height or set of contour heights, the user might expect to be able to request all possible contour lines to be drawn, even if only a contour interval is supplied. This can be achieved by having a routine to search the array to find the extremes in grid values. Actual contour levels can then be set up using the given interval.

Finding the cuts

The operations and loops involved are first given in a pseudo-language.

GET A LEVEL . SET UP FLAGS FOR THIS LEVEL WHILE : THERE ARE FLAGS LEFT IN THE ARRAY

DO: START A LINE SEARCH FOR. A STARTING FLAG WHILE A LOOP LINE HAS NOT BEEN DETECTED OR TWO

EDGES HAVE NOT BEEN DETECTED DO:

WHILE

DO:

THERE ARE FLAGS IN THE NEXT SQUARE AND ONE EDGE HAS NOT BEEN DETECTED

SEARCH THREE SIDES FOR FLAGS INTERPOLATE TO FIND CUT POSITION SAVE .THE CUT POSITION CANCEL FLAG MOVE TO. NEXT SQUARE

REVERSE THE CUT STRING END THE LINE

END THE LEVEL

Subroutine PUSH performs these tasks.

Page 36: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-32-

Setting up the flags. Each side of a grid square is assigned a logical flag which is initially set if the contour level lies between the grid point values at the ends of the side.

Searching three sides. It is known from the previous passage through this inner loop that the projection of curve r enters a grid square. The flags corresponding to the three remaining sides are examined to find the next side which contains a cut.

Inte:rpolating to find. the cut position. ,When the next side is determined, four contiguous grid values are obtained from the array. .The two inner values are from the grid points'at the end of the side.

A. cu~ve'is, fitted through th~ fout p6ints~ The position of the inter~ection of this intetpolating curve with the constant curve at the height of the contour level is found. The interpolating curve is a cubic curve, and the process involves the solution of a cubic equation. The method used is a variation of Newton's method.

The rest ~f the inner loop. The .cut position mtist be placed in the string of cut positions and the flag cancelled. By referring to a.preset table, the next.square is found and the loop· is repeated~

The'outer ·loops.There are two types of lines. There are those that close on themselves and are called loop lines, and those that run off the edge of the array at both ends .. The first type may be entered only at one type of point, and running out of flags means that 'the 'loop should be closed.

:Thesecond type of line has two types of entry points. A line may be entered at one end, which is on the edge, or between the ends. In the latter case, when a line end is reached, the set of cut positions must be reversed and the line followed ·in the opposite direction until the other end is reached. In the former case there is no need for the reversal.

The ending of a line involves saving the line properties.

When all flags have been reset, there are no more lines to be drawn, and the next level can be used in the same process.

Page 37: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

,'j

,,:.t

• -33-

When all levels have been processed an attempt can be made to optimize the movement of a drafting machine. The sum of the distance between pairs of ends of distinct lines is made a pseudo-minimum. The first line to be drawn is always specified and thus no true minimum results.

Joining the cuts

The input for this part of the system is a series of points {(x, y )}in the plane x,y. These could be the input to a dra¥tin~ machine with the average distance between each point greater than that which could deceive the eye into believing that the series of straight lines joining consec­utive points is smooth. This is not n~cessarily a fault, as each improvement in smoothness must be paid for in additional computing time. But there is no point in using an accurate cut-finding procedure which is-followed by an inaccurate line-drawing procedure.

The accuracy must be matched throughout the system in order to minimize the cost for a given quality.

There are two tasks involved. The first is that of fi tting two continl;lous functions t~roug~ the give~ {x } and

{y }. The second 1S that of choos1ng d1screte p01nts Sn the rgsulting curve. The routine which performs both tasks is· named DRAWLINE.

Fitting a curve through a set of points. It is not possible to fit a function y{x) with y(x ) = y because y must then be multivalued. A parametric ¥it xci ), y(~) with x(Q ) = x , y(9 ) = y is required. The natural choice is n n n n

1

'6' 2 [ bx 2 ~ 2-1 2" {} = J (, .• Q, ) of! (~,)

9' 1 'IV

de'

However, x and yare not initially known asa function of ~. An interative procedure must be used to find x and y as a function of G , and the distance along the curve defined by x and y.

A starting curve is the curve consisting of straight lines between consecutive points. A cumulative arc length is then known.

ERRATUM.

Record 1975/98

Page ~3 2nd paragraph line 4 should read

. each point no grea ~er than that which could decei.ve the eye into

Page 38: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-34-

1 ;, n . • 2 2 '2

en :: t2 «(Yi - Yi-1) ,.. (~i ~, Xi_~) )

Functions x(e) , Y(~) oa.n then be found suoh that

x, ('9 ) :: X ,y' (-0 ) :: y n n n n

New values of e can be found by integration. Numerical experiments haven shown that the iterative procedure converges quickly. In use, it has been found that the first estimate's of x( Q ), y( Q) are adequate for contour maps formed from a set of grid values. The functions x( Q ), y( Q ) are cubic splines, with the coefficients calculated by-standard methods (Greville, 1966).

Finding discrete points. Between each knot of the splines which define x(G ), y(& ), the corresponding coefficients are used to give discrete points (ex., y.)} at un~form intervals of e. These points (x. ,y.) ar~ th~ output, and can be used to drive a drafting machihe. 1

-

1968

1969

1970

8. HISTORY OF DEVELOPMENT

September - a request was received for a computer program to draw contour maps; November - the basic algorithm was invented; December - the first interpolating grid surface was found.

June~- first gravity contour map was produced; no secondary storage used but coefficients were applied; the 'line drawing was done by a separate subroutine LIN, acquired elsewhere (J. Palmer, CSI&O) ; November - larger arrays were handled by using the secondary storage (drum); several gravity maps were drawn and compared with the work of the drawing office; the suitability of the algorithm for this purpose was thus confirmed;

April - the first piece of airborne data was contoured; a disc was used to.hold the large array required; the results showed that th~ algorithm might be used for this type of data also; May-November - a smooth line-drawing routine was designed, written, and tested;

'r':.:

;'

N ~f

I

It I

Page 39: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

1971

1972

1973

-35-

December - the first marine gravity data were contoured; the smooth line-drawing routine was used; the .first production use for airborne magnetic data.

January-March - a routine to draw spline curves for contour lines was designed and written with· the help of a student, G. Cardillo; first pro­duction use for marine gravity data (ahout fifty 1: 250 000 maps); the available machine appeared too slow for airborne magnetic map production, so conversion to a faster machine begun; April-July - conversion of program to CDC 6600, most work was done by R. Mather of CDC; December - airborne magnetic data map production caught up with data acqtiisition.

continued production of airborne magnetic maps, land gravity maps.

conversion to Cyber 76 by David Hsu; restructuring begun; paper entitled 'Machine Contouring using minimum curvature' accepted for publication in Geophysics.

9. ROUTINE DESCRIPTION

The sample program is from a typical application, the contouring system of the airborne magnetic section of the Bureau of Mineral Resources.

There follows a brief d~scription of the routines which make up the system. Figure 11 shows the way in which the routines are linked together.

In this version of the system, there is a starting program AIRAIN, which accepts data and produces a grid surface, and a restarting program MTAIRAIN, Wllich can pe~form further iterations and does the contour line drawing. The output from both is a magnetic tape which can form the input to MTAIRAIN.

~.

Page 40: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

I'

-36-

" The input to AIRAIN is not a set of number triples, but strings of indexed observations, and a set of position pairs which are used to locate the observations by linear interpolation. The formation of (x, y, z) triples takes place in LEAPSET, and thereafter there is no distinction made for the type of data.

The system as exhibited can only be considered as an experimental version to test the "basic algorithms. Now that the production maps are found to be accepted, the system must be reconsidered. The important properties of a pro­duction system, especially one which might involve the expen­di ture of hundreds of thousands of dollars per year, are:.

a)

b)

c)

low cost;

ease of operation by any user; and

an easy adaptation to requirements of the user.

The redesign and rewriting of the contouring programs is being un,dertaken. The aim of the redesign is to optimize the properties a, b, c.

10. FILE DESCRIPTION

There are two sets of data internal to the system but not contained in the 4igh-speed memory. The first, a random-access mass storage file logical unit 30, is used to hold the data to be contoured, the coefficients and flags, and the grid values as they are being progressively refined.

The second ~s a serial file which holds the coefficients, starting values, and the grid values after a specified number of iterations. This file is used as the output of FINDTHESURFACE and as the input to DRAWTHELINES. If, owing to a system failure, the specified number of total iterations are not completed, the results of the computation up to the time of the failure are saved on this file, and can sometimes be used to restart the computation.'

The random access mass storage file

Each record in this file may be read or written at random without logically affecting the remaining file contents. Since a dictionary word is required for each record, a structure consisting of records with few words in them, is in­efficient. The structure is governed by the FORTRAN library subroutines READMS, WRITMS as defined by Control Data Corporation (1974).

Page 41: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

\

-37-

The data to be contoured, in the form of number triplei,are transferred to this file in records NUMSEC CNZ) = NECK ~ords long. NZ indexes these data blocks. There are NDB data records.

The array of grid values that will interpolate the data is usually too l~rge to fit into the high-speed memory. Subroutine USCET 6uts, in the y-direction onlY,the large array in to NAP core blocks,· as shown in Figure 12.' . NLAp rows are shared between two contiguous core blocks. The overlap is necessary be calIse two rows on each side are required to improve a row. The relativ'e addresses and dimensions of the pie6es of the blocks are given in. Figure 13. These variables are set in subroutine SCIZZY.

In SCIZZY the core.blocks are. set ~Lth starting values and the blocks ot coefficients and flags. are created. Figure 14 gives a picture of the transfer of the core blocks to the random access file. Each record ~s indexed· by, a value of IR. .

Figure 15 is a decision table' showing precisely the action taken for each'core block. NQ indexes the core blocks.

The 60efficients and flags are used in subroutine DIN, and Figures 16 and 17 give theaddre~ses and lengths of the transf~rs. These transfers are agaih ind~x~d by N~ and IR. The short records, NLAP long in the J direction, are shared between contiguous blocks. The lowerpar:t of these blocks is modified when it is located at the top of ·a core block, and the upper part is modified when the short block is modified when it has been copied to the lower part of a core block. The v~lues of IRgiven in Fiiures 15·to 17 are relative to

NDB + (NQ - 1) * 3, where NQ = 1, 2, .... , NAP.

The serial file, logical Unit numO'er 48,

This file can be used to restart the iteration process. It i~ also used to transfer a set of grid values to the part of the system which draws contour lines (DRAWTHELINES).

Throughout the program, action on .this file depends on the vaiue ·of KEEPER. If it is equal to 8HPRESERVE, the file is created.

Page 42: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-38-

Figure 18 gives the subroutines in which the transfers take place, and the first and last address of the transfer.

After every NBB iterations, the core blocks are transferred to file 48, an end-of-file record is written, and the file 1s repositioned on the first end of the file record (A). The core blocks on this file do not have the structure given in Figure 13. To be us~d, the grid values on the file must be . restructed in the form given in Figure 13, by recreating the random access file. Subroutine MTLASC performs this task.

REFERENCES

AHLBERG, J.H., NILSON, E.N., & WALSH, J.L., 1967 - The theory of splines and their applications. New York, Academic Press .

. BHATTACHARYYA, B.K.,1969 - Bicubic spline interpolation as a method for treatment of potential field data. Geophysics, 34, 402-423.

COLE, A.J., 1968 -Algorithm for the production of contour maps from scattered data. Nature, 220, 92-94.

COURANT, R., & HILBERT, D., 1953 - Methods of mathematical physics. New York, Interscience Publishers, Inc.

CRAIN, I.K., & BHATTACHARYYA, B.K., 1967 - Treatment of non­equispaced two-dimensional data with a digital computer. Geoexploration, 5, 173-194.

CRAIN, I.K., 1970 - Computer interpolation and contouring of two-dimensional data: A review. Geoexpl'oration, 8, 71-86"

DE BOOR, 1962 - Bicubic spline interpolation. J. Math. and Phys. , 41, 212-218.

GREVILLE, T.N.E" 1960 - In RALSTON, A. & WILF, H.S. (eds.), Mathematical Methods for Digital Computers. (2 vols). New York, Wiley.

HESSING, R.C., LEE, H.K, PIERCE, A., & POWERS, E.N., 1972 -Automatic contouring using bicubic functions. Geophysics, 37, 669-674. .

LANCZOS, C., 1957- Applied Analysis. London, Pitman & Sons, Ltd.

Page 43: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-39-

LOVE, A.E.H., 1926 - The mathematical theory of elasticity. Cambridge, University Press.

McINTYRE, D.B., POLLARD, D.D.,& SMITH, R., 1968 - Computer programs for automatic contouring. Kansas Geol. Surv., Compt. Contr. no. 28.

PALMER, J.A.B., 1970 - Automated Mapping, 1969. Proc. Fourth Austral. Comput. Conf., Adelaide, S.A., 1, 463.

PARTER, S.V., 1959 - On two-line interative methods for the Laplace and biharmonic difference equations. Num. Math., 1, 240-252.

PELTO, C.R., ELKIMS, T.A., & BOYD, H.A., 1968 - Automatic contouring of irregularly spaced data: Geophysics, 33, 424-430.

SMITH, F.G., 1968 - Three computer programs for contouring map data. Can. J. Earth Sci., 5, 324-327.

STIEFEL, E.L., 1963 - An introduction to numerical mathematics. New York, Academic Press.

YOUNG, D., 1962 - The numerical solution of elliptic and parabolic partial differential equations. In Survey of numerical analysis, ed. Todd, J. New York, '"McGraw-Hill.

Page 44: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-40-

APPENDIX A

DIFFERENCE EQUATIONS FOR ONE DIMENSION

A set of difference equations for one-dimensional interpolation is given. The curvature used is

-

Ci :: (ui +1 oft ui _ 1 - 2ui ) / b2

Normal

Away from the ends; use:

ui _2 + u i -t2 - 4(ui_1 .... u

ioft1) + 6u

i= 0

End

At the end i = 1, use:

ui +. ui +2 - 2ui +1 :: 0

. Next to end

At the point next to the end, i = 2, use:

Ui +2 - 2ui _1 .. 4-ui + 1 + 5ui :: 0 •

Page 45: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-41-

APPENDIX B

DIFFERENCE EQUATIONS FOR TWO DIMENSIONS

A complete set of d!fferenc.e ,equations for two­dimensional interpolation is given. The curvature used is that given by equation (10).

Normal

Away from edges and observations, the difference equat~o~ is:

·i~.3 ., ui.~ + ui-2.~ ... ui.j_~

+ 2(~ .. 1.J+1 + -:ii-1.jofj.1 + \1.i+1 • .1_1 +. ui _ 1• j _ 1)

. - 8(lIi +1,J, ... u:L-1.~ .. u:il,.1_1 ... U~j+1) + 2o..i •J: = 0 . Edge

For the edge j = 1 and away from corners:

u +U. +u +u +u 1-2,.1 i+2,j 1,.1+2 i-1,.1+1. i+1,.1+1

- 4(ui • 1,j ... Ui ,j+1 + u1+1,j) + 7Ui,j • 0

Onerdw from edge

For the row j = 2, and away from corners, use:

u~2,J, ... U~:J-:; U~-,.1+2 ... 2(Ui _1,j+1 + Ui +1,j+1)

... Ui _1,j_1 ... ui +1,j_1 - 8(Ui _1,J' + Ui ,j+1 + .u:i+1,.1)

- 4Ui ,.1_1 ... 19ui,j = 0

The corners

For the corner i = 1, j = 1, use:

2u. j + U. o.'l'" U. 2 j - 2(ui ° 1 +ui 1 0) = 0 1., 1.,J'W" - 1.+ , ,J+ + ,J

Next to corner

For the grid point next to the corner and lying on a diagonal i = 2, j = 2, use:

Ui ,.1.+2 + ui +2,.1 ... Ui - 1,j+1 ... ui +1,j_1 ... 2ui +1,j+1

- 8(u. . 1 + ui 1 j) - 4(Ui j 1 ... ui 1 j) + 18ui . = 0 1.,,l+ + , , - - , ,J

Page 46: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-42-

Edges n~xt to corner

For the grid point next to the corner point, which lies on the edge, i = 2, j = 1, use:

u + u· ... u . + u - 2u· . 1,j+2 1+1,J+1 1-1,J+1 1+2,j .i~1,J

- ~(Ui+1,j + U1,J+1) ~. 6Ui ,j • 0

'f

Page 47: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

':<:l ~

'"l Cl .... c:t

< Cl

',Q -. '" " \.;)

:0 WI t XI W2 t X2

• -. Wn , Xn

, YI Y2

Yn

,

FINDTH ESURFACE

two-dimensional

array of

numbers

[ array - I ~f . DR~~~~~~ES J .. [~on~-:~~sJ •

THE TWO MAIN PARTS OF THE CONTOURING SYSTEM --r: C)

C ::IJ r'1

____ .i

Page 48: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

:);) <b .... ~

~

~ ...... \Q

~

~ Cb

o (.J\ (.)j ........ m f\J

N v.. !>

l

GRAVITY DATA CONTOURED AT I MILLIGAL INTERVALS USING

A GRID SPACING OF 1-85 KILOMETRES

"T1

C)

'c :::0 fTl

N

Page 49: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

~ ... -

o 10 20 I I I

AEROMAGNETl·: DATA CONTOURED AT 10 NANOTESLA INTERVALS

USING A GRID SPACING OF 0-5 KILOMETRES

, -n G> C ::u fTl

OJ

Page 50: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

~ 'II <) >:)

" t::l

~ ~

~ ~ Q)

"Ti U1 -I> ........ CD

~

~

1>

~~~ 9 'p 2,0 km , AEROMAGNETIC DATA CONTOURED AT 10 NANOTESLA INTERVALS

US I N GAG RID SPA C I N G 0 F 0·5 KILO MET RES

"T]

C) c ::u r1

~

Page 51: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

r ~ RS

I-~ ~ RL --"---

I

t Iv I

j --

I ,.

N N

I I y N

/----._-

I

I ----------.-- -----------! .. --~---- r --t----- -... ~ .. -I--

I I 1

: I I .' ! I

! . t·! J -- ,-- ~ - ! I I

FL =

FIGURE 5

I

I Ii. : ,j : ../ I. i : i I

--t---- ;--- -:------, ~----1--r-'---: -1-- - --

GL = I --.-l-../-~-- t- .! -'--~----T--{--~g~~wg,~ent~nd store_ . .! ./ I-ll-l-t _ i

FL = 0 ' I ~ I I I I 1--------.--_ .. _----- -- - .. )- - f--- t-- -- -r- t -

!../ ,j: '. --- -- -- -----r-------1---+----+--~-+-_t_- -+-_ .. --

GL = 0

I ,

~--. -'--'---' --t--·--+

:. --i --I--t

, 1

. - ---I ---+ -I

I I I I

j 1

I

I

-+1

I

, 1

- --l I I t-I i

l_~

DECISION TABLE FOR FLAGS IN SCIZZY

Record No. 1975/98

--t

1 I

1

j

G465- 5A

Page 52: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

Record No. 1975/98

--1 .... ---- ---- -.... --""",."" -... , ...... ",,"" ......, .... ",. ... I ....

",. ... I

__ ~~ .... i ",. ___ .... ...l

" ...... r, , ... ~ ... . ... -T-,~ "" ... ..... ",. , ....

;' . I', -- I " , ,,' i I ... .... .... , ,: . ...

lr---, ... I ,/T , ! II

' l I,' I' I I

I"' i' I

I

\. '" / I

\ ., I \ I I ,"

I ,', , I I ' \

I \

i I

I I I I

i

REPRESENTING A CONTINUOUS SURFACE BY DISCRETE VALUES

FIGURE 6

G465-6A

Page 53: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FIGURE 7

L = \---_.- ---------------- .

e > 0

'F1>0 ~--

1-----_ ... ----- -------- ----- .----- .-- -.-.

f------------- -----

I------ -. --.. - ---

b = I e, b - e 4 - 4

bl = e4 b4 =e l

b2 = e2 b3 =e3

2 - t--- --

I

I I ,

1 I 1-- --~ ----+- -----

I· 1 t I I : y : YIN 1 N

I I 1 I

i

: lj i

1- -J .-- I I

- 1 I

I

I --

i

t­I

-- i - f- --f 1 I ,

i I I t I -1 ! , I I

l - -~ - .1-- - , . -, ---t - - -I ----t-----~----~ I I

I 1 I ; t-t ./ I ./ 1·-r ·_··1-[:" +.-+-- --~~l~ --1---I i I . I

; v' vi: ~+-- -- ~- ---I - --t--~---

,; ,; I· I ". i

b2

= e3

b3

= e2

' ,; : I ,; 1 l---~-~.-- ------ -'--- t---~ --l --1- - 1 r -r --

---.~--~.- -- -

I I ! I \--------.-- --.- -'-- - -- -+ -J I i I I ,I I I

- -- ------ - L. __ -- --- i - ~ -- I I _.1_ 1----_._-.. ------ --- - -

1----- -- ... --. -- ---- -- ---------- .~-.-----

I I

J i I

I

1 1

I

I I

1

DECISION TABLE FOR COEFFICIENTS IN SCIZZY

I

i -I

Record No. 1975/98 G465-7A

Page 54: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

--l

I rn

(f)

--l

P

::0

.~

Z

G)

G)

::0

o (f)

C

:::0,

11

P

' 01

rn"

tl

\ \ \ \ I x-

I' \ \ \ \

/ ):

----

~ , \ \ \ \

I y-I' \ \ \ \

I A-

I \ \ \ \ \

I .{

/

\ \ \ \ ,

~- ,

86

/[lL

6!

oN

p

.Jo

:;a

y

Page 55: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FL = 0 ~

GL II 0 r-------- .-. ---.----.--

iV I ---

IY

y

N

N

Y ,

I -! ! , '

N

N

FIGURE 9

T­I i I i I

! : i i

~ ----------------1 --1--1 I ~ I ·--+----t----· -

e--------_~ ___ -·j--l.-- i .- ---1- ! -~-i . ----r-----L---- --t----j ~, I

l-Ir-1 1 I - I ---r ------ -----1--·--L_I ,I I! !

:::~eQI u::::::ent r{ I~ -l~/ ~1-1 ~l-~-~

Use coefficients : -! ./ j I + -r--·-··---~------i I ' --- . ---

I' I , -t--+---I . -> ------~-.----.-

1---------_._----------- -- ------~---.-.--- .. --'--' -

f-------.--------- -.- -- .... +-.. - -~- -.

1--------------_._- ,--.

CI c

.:Je. C 0 .0

~

0 -"0 CI) f/) ::J

CI) .0

0 ....

i I

I 1

I I

I

- --

t I ! --+--'-r- -I

DECISION TABLE FOR FI,..AGS FL, GL, IN ITERATE

Record No. 1975/98 G465-9A

Page 56: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

~

~ ~

~

~ "'­~

G')

~ (J) ()'l

I

o l>

----.-

/ /

/

/ / I

/ I // I

• / I /:' I

/ I // I

/ I

~

FINDING THE LOCATION OF A CONTOUR LINE

5

I

Is the continuous surface represented by discrete values

Is the intersection of S and a horizontal plane

'1 G') C ::0 rT'1

Page 57: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

I

AIRAIN (O,O)

MTfURAIN (0,0)

LEA PST (I, 0) - SA L ( I, I )

USCET (2,1)

LASC (2,0) f-SCIZZY (2,2)

DIN (2,3) \

ITERATE

FINDTHESURFACE

LEAPST ( 1,0)

MTLASC (2,0)- DIN (2,1)" .

" ITERATE

LINES (3,1) FITPLT (3,0) ~CANTER (3,2) "

FIGURE II l

" PUSH "-

DRAWTHELINES

THE OVERLAY STRUCTURE, ALSO SHOWING

IMPORTANT SUBROUTINES

Record No. 1975/98

"- DRAWLINE

G465 -IIA

Page 58: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

~ I I _

Core block 5

L-I ,-

~I 1-

Core block :3.

L-'---___ ----'1 -

r-

I

Core block I

L...-

~,

1 FIGURE I· I

Core block 6

Core block 4

Core block 2

THE STRUCTURE OF THE GRID ARRAY Record No. /975/98 G465-12A

Page 59: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FIGURE" .0, \ ~---------------------~

A core block

FIRST

NQ = I

(NFF)

LAST

NAD2

I,JAR

MVAD= NAD2

NADII

I,NLP

III

( NF3)

(NFF)

(NF3 )

(NF2)

( NAVE) (NF3)

(NF4)

LNUMPS

[lAx

NQ = NAP I NADI ~~----~--------~

(NF3) .

THE STRUCTURE OF CORE BLOCKS

(NFF)

(number of words)

Record No. 1975/98 G465 ~ 131'.

Page 60: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

(f)

--I

::::0

C

()

--I

C

::::0 rn

--I

I rn

::0 l>

Z o o :s:: ., r rn

f--------

....... -.J

....,.,.,=

.,.,.

f---

----

--..

....

J

z 0 ID

a..

0 -+

0 0"

0 (")

'7\

(/)

,"""",'

"',

.,"""

""""'"

"',

',""

"""""

"""""

"',

',"'"

""""'"

""""'"

~~~~~t~~~~~

()

0 (l) - -(") (l)

:::J

-+

en

0 :::J a.. - 0 1

0

en

Page 61: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FIGURE 15

NQ = YIN I N .--f---+----+---+----f-- -+ .~- ~i--~-~- .... ----

~: :Q :A~P .-.• ~. J;i :+~. r·· r-l-l I I

f-------~--.----~---------- .---- - -/ I

--+- -i--­I

--~-.- ---.----.------- -~---- - _--___ + ____ -+ ___ --+-_+ ___ .1 ____ --~--- --l-- ---1-·- ---

·::I:'·b:::f:~~:--~~~~~-·· j ;T j ~ j - - ·r-t-e-~~~~~.:t~ _______ -r(_:;- ;--+--lr-~ I--write F (NAO.'l, NF2 -----l--·.··-!-f. -- __ oj' - - -1--------1- -.- -i--

I'; , ! :

--------.----- --- -----~- ----.0- T' ---------+--- - - - ----r -IR = base +:3 ~ it! . I

-f ---

write F(NA02), NF3 ,JI,J

write F(NAOIl, NF4 /----- 1- -----~--

I-- --~ -~-- ----._---,J

I I

-------- r----i- - I

1 [ I

I - - .'.--- --- ------ --- ----_._._~----------------"

I

I I I I I . i

Note: IR starts at NOB; IR=(n-I)3+NDB 1 ,-

1 .1 1

- DECISION TABLE FOR RANDOM ACCESS FILE IN SCIZZY

Record No. 1975/98 G465 --15A

Page 62: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FIGURE 16

, -~~-=----I--- ____________ I Y N ___ N ___ I_ I i ~~-~-I---¢-~A~! N Y N ...-1

NQ = NAP r N I NY' 1------------------------- - - + ------- 1-

~~-------- -- ----- - ---- - - - -- I IR = base + I 1../ ../ ,; i

f--------- -t _ ----t-- -'---- - - i read coefficients ______ : __ ../,../ ';1 II

I-I_R_=_ba_s_e _+_2_-_~-_F_2-_---- ~ I~ ~ -- f- +-read F(J), NFF ,! ~+-Iuu nj __ ~ ___ I_~ ,I

IR = base + 3 .j ! ,; J I,.! I - --- ________ 1-_ - ------r---- ---- -- --t-----r ---l------+-- -----1-------1

swap F( i + NFF) .... F (i)! !,;,; ; ,: i ~~(NAD2-):-NF3 -- T~j.i ., I - . '.' ii' I

- ------- ------ - --- --- -----r- I

___ re_~~_F_(~A~~_~_~_~4 ___ ----t-+- ,; j I jl -- i----

~-~-~~~~t-atba~e + 2_ ----l-{-i .4J 1 l. _ J --1---r : I

do ITERATEI~ ~ ~ 11-1

I I

Note I IR base =' N DB + (NQ - I) 3 I

!

I

I I I

DECISION TABLE FOR READING THE RANDOM ACCESS

FILE IN DIN Record No_ 1975/98 G465-16A

Page 63: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FIGURE Ii

NQ = I Y N N ---- ---- ----- J..---- ---- ---1------ - - - 1---- -- - ...j

NQ ¢ I ¢ NAP N Y N I

- \--- --~--- ---- -1

NQ = NAP N N Y i

1--- ---1---1------ - -- -"-- - - -- --- ---- -- -- -I I

-- --I

i 1-------'

I

--1---- ------ -- ------ -- .. - ~--t---l IR = base + 2 ~ ~ ./ I

--- ------- f--------- ----- --- -- -- -- --- - - - -- ----- ---- --I write F (NADI) , NF2 ,j

write F{ I) , N FF ../ write F{NADt) ,NF4 ,j

--1----- f--- --

IR = base ~ -- --

write F (I ) , NFl ,j .j - ----------- --- ---

.----~------- e--- - >----- ------

--

- ---- ~-----

__ 0- - ... ---- _0--- --1---- - --

IR left at base + 3 ,j ../ ~-1·· --- - --- - -- - - - --

I I

I I I

I

I I I I I

I

!

- L-..._-------1......._

DEC ISION TABLE FOR WRITING ONTO THE RANDOM ACCESS FILE IN DIN

Record No_ 1975/98 G465 -11I~

Page 64: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

i ! t FIGURE 18 !

Subroutine

LEAPST

LASC

SCIZZY

DIN

I?ecord No 1975/98

Starting Address Terminating Address

LAREA ( I)

NUMF

LA REA (I)

lAX

KOEB (I)

F{I)

TDX

AD(NAD)

TDX

RAD

KOEB(NUMBUF)

NQ

KOEB{I)

F(I)

KOEB (NUMBUF) l NAP times

• • •

NQ .

• • •

NSHELL(I) KA(NAP)

end of file record (A)

F{ I) NQ

F (J) NQ·

• • • • • •

end of file record (B)

l NAP times

J

reposItIon at end of file record (A )

DATA TRANSFERS TO THE SERIAL FILE. LOGICAL UNIT NUMBER 48

~ NIP -NIPST times

... 1'-"-· Q

L --_._.--

Page 65: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

I NDEXlOC CONTENT lOC CONTENT LOC COt!TENT LOC CONTENT lOC CONTENT

BOl PROGRA" "TARAIN K04 SUBROUTI NE PUSHCOl SUBROUTINE SKIFllE L04 SUBROUTINE PUSH001 FUNCTION KOZLOl H04 SUBROUTINE CUTSTEPEOl PROGRAH LEAPST N04 SUBROUTINE LOSTPRFOl PROGRA" LEAPST 004 SUBROUTINE KOZSTLGOl PROGRAH HTLAS C P04 SUBROUTINE ORAWLINHOl PROGRA" HTLASC B05 SUBROUTINE ORAWLIN101 PROGRA" HTLAS C C05 SUBROUTINE ORAWLINJOl PROGRAH HTLAS C 005 SUBROUTINE DRAWLINKOl PROGRA" HTLAS C E05 SUBROUTINE ORAWLINLOl SUBROUTINE PRINTC F05 SUBROUTINE ORAWLIN"01 PROGRA" DIN G05 00 SCOPE 2.1.3-205 "OD 06NOl PROGRA" DIN001 PROGRA" DINPOl SUBROUTINE ITERATEB02 SUBROUTINE ITERATECO2 SUBROUli~E ITERATE002 SUBROUTINE ITERATEE02 SUBROUTINE ITERATEF02 SUBROUTINE ITERATEG02 SUBROUTINE ITERATE

1.102 dUBROUTINE ITERATE102 SUBROUTINE ITERATEJ02 SUBROUTINE ITERATEK02 SUBROUTINE ITERATEL02 SUBROUTINE ITERATE"02 PROGRAH FITPLTN02 PROGRA" FITPLT002 PROGRA" ~i"L'"P02 PROGRA" FITPLTB03 PROGRAH FITPLTC03 SUBROUTINE CORNERS003 SUBROUTINE CORNERSE03 SUBROUTINE HINAHAXF03 PROGRA" CANTERG03 D'lOGRA" CANTER IH03

,.PROGRAH CANTER ,

103 PROGRA" CANTERJ03 PROGRA" CANTERK03 SUBROUTINE KATEROL03 SUBROUTINE KATERDH03 SUBROUTJ NE PUSHN03 SUBROUTlilE PUSH

IOC3 SUBROUTI NE PUSHP03 SUBROUTI NE PUSHB04 SUBROUTI NE PUSHC04 SUBROUTINE ·:PUSf;004 SUBROUTLE PUSHE04 SUBROUTI NE PUSHF04 SUBROUTI NE PUSHG04 SUBROUTINE PUSHH04 SUBROUTI NE PUSH104 SUBROUTI NE PUSHJ04 SUBROUTINE PUSH

I

Page 66: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM MTARAIN 76/76 OPT=l nN 4.4+R401 12/08/76 09.27.04 PAGE

OVERLAY(OVRLAYO.O,O) CTR 2PROGRAM MTARAIN(INPUT=151B,OUTPUT.TAPE13,TAPE23=151B.TAPE24=151B, CTR 3

1TAPE30=151B,TAPE48) CTR 4C ------MAIN OVERLAY WHI CH CALLS JTHl:P, :;~·:RLAY:' CTR 5

5 COMMONII.DILD. INDEX CTR 6COMMON/ADIT/ADIT1,ADIT2.NADIT CTR 7COMMON/AIRCB/LAREA.TDY.KEEPER,NBB.SCAX,SCAY,L1,M1,L2.M2,L3,M3 CTR 8

1 ,INTB,MUL,NATABZ.NDB.LCMD.NADAST.NUMBF,NBUFNT,NUMBGP,JEP,TDX CTR 9COMMON/XYSE/X1.Y1,X2,Y2 CTR 10

10 COMMON/CAT/KOOL,NABOB CTR 11COMMON/LASCB/IAX.JAR.NIGP.NAP,JAXLST.MAZE,AH.NUMPS,JAM,NAX.NIT. CTR 12

1 NIP,NLP,KP,KG.LE,LON,INDIV,KFDIM,NAL.RAD.NIPST CTR 13COMMON/KATERD/NB1,NBREM CTR 14DIMENSION LAREA(1Z).INDEX(500) CTR 15

15 LD=30 CTR 16CALL OPENMS(LD,INDEX.500.0) CTR 17CALL OVERLAY(7HOVRLAY1,l.0) CTR 18CALL OVERLAY(7HDVRLAY2.2.0) CTR 19CALL OVERLAY(7HOVRLAY3.3.0) CTR 20

20 END CTR 21

801

Page 67: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE SkIFILE 76/76 OPT:1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

5

SUBROUTINE SkIFILECLU) CTRC ------SkIP THE CURRENT LOGICAL ~lLE AND POSITION TAPE AT THE START CTRC OF NElCT FILE CTR

DIMENSION A(2) CTRBUFFER IN CLU.1) CA(1),ACZ» CTRIFCUNITCLU»1,Z,1 CTR

2 RETURN CTREND CTR

C01

2223242526272829

Page 68: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FUNCTION KOZLDL 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

. i

5

10

CC

FUNCTION KOZLDL(NVAR) CTR------FUNCTION FOR UNPACKING 1-BIT rLAG(O OR 1) RETURN VALUE THROU CTR

KOZLDL CTRDIMENSION NVAR(1) CTRCOMMDN/KOZCOM/K02SBX.KOZBLL CTRDATA (KOZBLL=32) CTRIX=KOZSaX/KQZBLL CTRIS=1+KOZSBX-IX*KOZBLL CTRKCZLDL=SHIFT(NVAR(IX+1),IS).AND.1 CTRRETURN CTR~ND CTR

001

3031323334353637383940

Page 69: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM LEAPST 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

5

10

15

20

25

30

35

40

45

50

55

OVERLAY(OVRLAY1.1.0) CTRPROGRAM LEAPST CTR

C LEAPST tt_ttttttttttt****************************************ttttt eTRC -~----THE PROGRAM FOR BUr.FERING IN SOME COMMON BLJCKS AND READING CTRC IN RESTARTING PARAMETERS CTR

COMMON/AIRCB/LAREA. TOY .KEEPER.NBB.SCAX.SCAY. L1,.M1. L2.M2. L3.i'13 CTR1 .INTB.HUL.NATABZ.NOB.LCMD.NADAST.NUMBF.NBUFNT.NUMBGP.JEP.TDX CTR

COMMON/LcAPCB/NUHF.DAX.DAY.X1.X2.Y1.Y2.M.EDGE.XIN.XAX.YIN.YAX CTR1 .BORDER.SHIFT.XYRATIO CTR

COHHDN/ADIT/ADIT1.ADIT2.NADIT CTRCOHHDN/CAT/KOOL.NABOB CTRCOHHDN/XYSE/XP.YP.XW.YW CTRDIMENSION LAREA(12) CTR

C ------B!JFFER IN COMMON BLOCK-AIRCB CTRBUFFER IN (13.1) (LAREA(1).TDX) CTRIF(UNIT(13»650.640.642 CTR

640 PRINT 641 CTR641 FOR~lI\T(*0*.9X.*EOF IN LAREA*) CTR

STOP 11 CTR642 PRI~T ~43 CTR643 FORMAT(*0*.9X.*PAR IN LAREA*) CTR650 LAREA(11)=TIHE(KOOL) CTR

LAREA(12)=DATE(NABOB) CTRPRINT 651.(L~~EA(HH).HM=1.12) CTR

651 FORHAT(*1*.10A8.A10.2X.A10) CTRC ------RESTARTING PARAMETERS CTR

READ 652.KEEPER.NBB CTRC ------READ IN KEEPER AND NBB LEAVE BLANK IF NO RESTART CTR

652 FORHAT(A8.I10) CTRKOOL=KEEPER CTRNABOB=NBB CTR

C ------SAVE COMHON/AIRCB IF REOUIRED I.E.KEEPER=PRESERVE CTRIF(I<EEPER.NE.8HPRESERVE)GO TO 653 CTRBUFFER OUT (48.1) (LAREA(1).TDX) CTRIF(UNIT(48»653.653.653 CTR

C BUFFER IN COHHON BLOCK LEAP CB CTR653 BUf·FER IN (13.1) (NUHF.XYRATIO) CTR

IF(UNIT(13»660.654.656 CTR654 PRINT 655 CTR655 FOI.~HAT<*0*.9X.*EOF IN NUMF*) CTR

STOP 22 eTR656 PRINT 657 CTR657 FCRHAT(*0*.9X.*PAR IN NUHF*) CTR

STOP 33 CTRC -··----SAVE COMMON/LEAPCB IF REQUIRED CTR

660 IH KOOL. NE •8HPRESERVE) GO TO 661 CTRBUFFER OUT (48.1) (NUMF.XYRATIO) CTRIF(UNIT(48;)661.661.661 CTR

C ------ASSIGN ~OME PARAMETERS TO OTHER V/IRIABLES TO AVOID SOME VARI CTRC APPEARING IN TWO COMMON BLOCKS. CTR

661 >P=X1 CTR\,P=Y1 CTRlCW=X2 CTR"w,:Y2 CTRAOj'11=SHIFT CTRADIT2=XYRATIO CTRNAD1T=NUMF CTR

E01

41424344454647484950515253~4555657585960616263646566(,7686970717273747576777879808182838485868788899091929394959697

Page 70: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM LEAPST 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2

60

65

PRINT 295 CTR295 FORHAT<tO*,5X,*DAX*,5X,*DAY*,6X,*X1*,6X,*X2 2 ,6X,*Y1*,6X,tY2*,£X, ~~Q

1*EDGE*.5X.-XIN-.5X.*XAX*,5X.*YIN*.5X,*YAX*,2X.*SDRDER-,3X.-SHIFT-, erR2- XYRATIO-) CTR

PRINT 294 .DAX.DAY,X1.X2.Y1,Y2.EDGE.XIN.XAX.YIN.YAX,BORDER.SHIFT CTR1 .XYRATIO CTR

294 FDRMAT(1X.14F8.2) CTRCTR

END CTR

9899

100101102103104105106

CARu NR. SEVERITY DETAILS

113435 653374748 661

DIAGNOSIS OF PROBLEM

FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.

FOl

Page 71: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM MTLASC 76/76 o!'T-:l FTN 4.4+R401 12/08/76 09.27.04 PAGE

OVERLAY (OVRLAY2. 2. 0) CTR 107PROGRAM MTLASC CTR 108C HTLASC********tttttttttttttt***t*t***ttt******t*ttt***ttttt**tt*** CTR 109C ------THIS ROUTINE HANDLES CONTROLS AND MONITORS RESTART OF CTR 1105 C GRID SURFACE DEVELOPMENT AND ALSO GENERATES PRINTOUT OF CTR 111C GRID VALUES ETC. FOR INDIVIDUAL SUB-BLOCKS IF REOUIRED. CTR 112COMMON/LD/LD.INDEX C1R 113COMMON/AIRCB/LAREA.TDY.KEEPER.NBB,SCAX,SCAY.Ll.H1,L2.M2.L3,M3 CTR 1141 .INTB.MUL.NATABZ,NDB.LCMD.NADAST.NUMBF.NBUFNT.NUMBGP,JEP,TDX CTR 11510 COMMDN/SHELLS/NSHELL.KA CTR 116COMMON/LASCB/[AX.JAR.NIGP,NAP.JAXLST.MAZE,AH.NUMPS,JA~,NAX,NIT CTR 117

1.N[P.NLP.KP.KG.LE.LDN.INDIV,KFDIM.N~l.RAD,NIPST CTR 118COMMON/FAR/F,NN,NO CTR 119COMMON/KOEBLER/FL.GL.INA,H eTR 12015 COMMON/rAT/KOOL.NABOB CTR 121COHMON/KATERO/NB1.NBREM CTR lZZCOHMON/MSNEC/NAVE.HVAD,NF1.NAD1.NAD2,NF2.NF3,NFF.NF4 CTR 123COHMON/KOZCOH/KOZSBX CTR 124DIMENSION FL(200).GL(200).INA(2000).H(6.2000),KOEB(14400) CTR 12520 DIMENSION F(6400) CTR 126DIMENSION LAREA(12).MAGAR(130).NSHELL(300).KA(300),NOCOF(300) CTR 127INTEGER FL,GL.H CTR 128EOUIVALENCE (FL.KOEB) CTR 129C ------BUFFER I~ COMMON BLOCK-AIRCS CTR 13il25 BUFFER IN (13.i; (LAREA(l).TDX) CTR 131IF(UNIT(13»8112.8113,8114 CTR 1328113 PRINT 8115 r.TR 1338115 FORMAT(*OEOF IN LASC AIRCB*) CTR 134STOP 40 CTR 13530 8114 PRINT 8116 CTR 136.8116 FORMAT(*OPAR IN LASC AIRCB*) CTR 137STOP 41 CTR 1388112 NDB=O CTR 139KEEPER=KOOL S NBB=NABOB CTR 14035 C ------SAVE COMMON/AIRCB IF ~~OUIRED CTR 141IF(KEEPER.NE.8HPRESERVE) GO TU 6551 CTR 142LAREA(ll)=TIME(KOOL) CTR 143LAREA(l~)=DATE(NABOB) CTR 144BUFFER OUT (48.1) (LAREA(l).TDX) CTR 14540 IF(UNIT(48»6561.6561,6561 CTR 1466561 PRINT 290,TDY.SCAX,SCAY CTR 147

290 FORMAT(*O*.9X.*TDY*.8X.*SCAX*.8X.*SCAY*/1X.3F12.5/) CTR 148PRINT 292 CTR 149292 FORMAT (2X.*KEEPER*8X,*NBS*,8X,*L,*.8X.*M1*.8X.*L2*.8X,*M2*,8X, eTR 15045 ~ *1.3* .!lX. +M3* .6X. *INTB* ,7X. *JEP*. 6X. *LCMD*, 5X, *NUMBF*, 4X. *NUMBGP*) rTR 151

PRINT 291.KEEPER.NBS. L1.M1. LZ.M2, L3, M3,INTB, ,0', L~~D.NUMBF,NUMBGP CTR 152291 FORMAT(1X.A8,12I10/) CTR 153HORAE=SECONDCStiN) CTR 154PRINT 9.HORAE CTR 15550 C ------BUFFER IN COMMON BLOCK-LASCS crR 156BUFFER IN (13,1) (IAX,RAD) CTR 157IF(UNIT(13»6145.6146,6147 CTR 1586146 PRINT 6148 CTR 1596148 FORMAT(30X.*EOF. IN LASC*) CTR 16055 STOP 42 CrR 1616147 PRINT 6149 eTR 1626149 FORMAT(30X,*PARITY IN LASC*) eTR 163

G01

Page 72: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM MTLASC 76/76 OH=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2

60

65

70

75

80

85

90

95

100

105

110

STOP 43C ------COMPUTE PARAMETERS DEFINING SUB-BLOCKS6145 NAVE = lAX * NLP

MVAD = NUMPS - NAVE + 1NAD1 = NAVE + 1NAD2 " MVADNF1 = NAVENF2 = NAD2 - NAD1NF3 = NAVENFF = NAD2 - 1NF4 = JAXLST * lAX - NAVENB1 = JAR - NLPNBREM = NB1 - NLP

C ------SAVE COMMON/LASBC IF REQUIREDIF(KEEPER.NE.8HPRESERVE) GO TO 615BUFFER OUT (48,1) (IAX,RAD)IF(UNIT(48»615,615,615

615 PRINT 296296 FORMAT(4X,*IAX JAR NIGPT NAP JAXLST MAZE AH NUMPS JAM

1X NIT NIP NLP KP KG LE LON INDIV KFDIM NAL2 NADAST*)

PRINT 297,IAX,JAR,NIGP,NAP,JAXLST,MAZE,AH,NUMPS,JAM,NAX,NIT1,NIP,NLP,KP,KG,LE,i..ON,INDIV,KFDIM,NAL,RPD,NADAST

297 FORMAT(1X,3I6,I5,I7,I6,F5.2,1316,F5.2,I9JHORAE=SECOND(SUN)PRI~T 9,HORAE

9 FORMAT(*0*,19X,*THE TIME IN SECONDS BY THE SUNDIAL IS*,F12.3/)PRINT 117

117 FORMAT<1H1>C ------RESTARTING PAHAMETERS

READ 944,NAL,NEWIT,NOOPS,NOOPFC ------READ IN NAL,NEWIT,NOOPS,NOOPFC LEAVE BLANK IF NO RESTART

944 FORMAT(4110)C READ AND PRINT THE LOGICAL FLAGS AND THE COEFFICIENTS

JAX=JARIR=NDB

C ------SUB-BLoeK NQCOFDO 12 NQCOF=1,NAPIF(NOCOF.EQ.NAP) JAX = JAXLST

C BUFFER IN COEFFICIENTS ETC.BUFFER IN (13,1) (KOEB(1),KOEB(14400»IF(UNIT(13»5072,5073,5074

5073 PRINT 50755075 FORMAT(40X,*EOF IN KOEB*)

STOP 445074 PRINT 50765076 FORMAT(*0*,19X,*PAR IN KOEB*)5072 NUMBUF = LENGTH(13)

rlELL = NUMBUFKMAX=(NUMBUF-MAZE)/6NoeOF<NQCOF) = KMAX

C ------SAVE COEFFICIENTS ETC. IF REQUIREDI~(KEEPER.NE.8HPRESERVE) GO TO 515BUFFER OUT(48,1)(KOEB,KOEB(NUHBUF»IF(UNIT(48»515,515,515

515 IR = IR + 1

H01

CTRCTRCTRCTRCTRCTRCTRCTRCTRCTRCTRCTRCTRCTReTRCTRC1ReTR

NA CTRRAD cm

CTRCTReTReTRCTRCTReTReTReTRCTRCTRCTReTReTReTReTReTReTRCTReTRCTReTReTReTRCTReTReTReTReTRCTRCTReTReTReTReTRtTRCTR

164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220

Page 73: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM MTLASC 76/76 OPT=1 FTN 4.4+R401 12/(:8/76 09.27.04 PAGE 3

115 CALL HRITMS(LO,KOEB,NELL,IR) CTR 221PRINT 8118,KH~,NOCOF CTR 2228118 FORMAT(*0*,29X,*KMAX FROM TAPE IS*,110,- FOR BLoeK*,15) CTR 223IF(NOCOF.LT.NOOPS.OR.NOCOF.GT.NOOPF)GO TO 9123 CTR 224IF(KMAX.EO.O)GO TO 9123 CTR 225120 PRINT 15,NOCOF CTR 22615 FORMAT(*0*,29X,*COEFFS FOR BLoeK*,15/) eTR 227C ------PRINT COEFFICIENTS rOR SUB-BLOCK NUCGF CTR 228DO 126 K=1,KMAX CTR 229LA:oINA(K) CTR 230125 PRiNT ;Z5,(H(L,K),L=1,6),K,LA CTR 231125 FORMAT (20":.6115,215) CTR 232126 CONTI NUE CTR 233PRINT 117 CTR 234C ------PRINT FLAGS FOR SUB-BLICK NoeOF CTR 235130 DO 30 1=1,IAX CTR 236DO 28 J=1,JAX$ M=I+(J-1)*IAX CTR 237K02SBX = M-1 CTR 238KFL = KOZLOL<FU CTR 239IF(KFL.NE.1)GO TO 24 CTR 240"i35 KFL = KOZLOL(GL) CTR 241IF(KFL.EO.1) GO TO 2t CTR 242GO TO 25 eTR 24324 MAG=1H. $ GOTO 27 CTR 24425 MAG=1HF $ GOTO 27 C'i'R 245140 26 MAG=1HG CTR 24627 HAGAR(J)=MAG CTR 24728 CONTINUE CTR 248PRINT 29,(MAGAR(J),J=1,JAX) CTR 24929 FORMAT(1X,130A1) CTR 250145 30 CONTHiUE CTR 2519123 CmlTINUE CTR 252NAIR=2 CTR 253!F(NO.EO.NAP) NAIR=1 eTR 254IR=IR+NAIR CTR 255150 12 CONTINUE eTR 256C ------BUFFER IN SUB BLOCK PARAMETERS eTR 257BUFFER IN (13,1) (NSHELL(1),KA(NAP» eTR 258IF(UNIT(13»5202,5203,5204 L:TR 2595203 PRINT 5205 CTR 260155 5205 FORHAT(50X,*EOF IN NSHELL*) CTR 261STOP 46 eTR 2625204 PRINT 5206 eTR 2635206 FORMAT<*O*, ..-:;:, ,OAR IN NSHELL-) CTR 264e ------SAVE l~: RE~UIREO CTR 265160 5202 IF<KEEPEiLNE.~,HPf:ESERVE) GO TO 814 CTR 266BUFFER OUT (48,1) (NSHELU 1) ,KA(NAP» eTR 267IF(UNIT(48»814,814,814 eTR 268e ------SKIP OVER EOF eTR 269814 BUFFER IN (13,1) (F(1),F(2» eTR 270165 IF(UNIT(13»5302,5303,5304 eTR 2715304 PRINT 5306 CTR 2725306 FORMAT(50X,*PAR IN EOF BUF*) eTR 273STOP 47 eTR 274530Z PRINT 5307 eTR 275170 5307 FORMAT(50X,*EOF IS MISSING*) eTR 276STOP 50 eTR 277

101

Page 74: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

175

180

185

190

195

200

205

~15

220

PROGRAM HTLASC 76/76 OPT:1

JOl

FTN 4.4+R401 12/08/76 09.27.04 PAGE 4

Page 75: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM MTLASC 76/76 OPT=1 FTN 4.4+R4Q1 12/08/76 09.27.04 FAGE 5

IF(NAL.EQ.O)GD TO 999 CTR 335230 NIPST=NN+1 CTR 336

NIP=NN·-NEWIT CTR 337HORAE=SECOND(SUN) CTR 338PRINT 9.HORAE CTR 339CALL OVERLAY(7HOVRLA21.2.1) CTR 340

235 HORAE=SECOND(SUN) C1R 341PRINT 9,HORAE CTR 3~2

C ------READ AND PRINT FINAL GRID VALUES FOR FIRST SUB-BLOCK CTR 343CALL READMS(LD.F(1).NFF.2) CTR 344CALL PRINTCCIA><.NB1.F.INDIV) CTR 345

240 CALL READMS(LD.F(NAD2),NF3.3) CTR 346CALL PRINTC(IAX.NLP,F(NAD2).INDIV) CTR 347CALL REAOMS(LD,F(NAD1),NF2.5) CTR 348CALL PRINTC(IAX.NBREM.F(NAD1).INDIV) CTR 349

999 CONTI NUE CTR 350245 END CTR 351

814

6561

615KOEB515

CARD NR. SEV~E:TY DETAILS

25 I39 140 I51 I73 I74 I

112 I113 I152 I1611162 I194 I

DIAGNOSIS OF PROBI.EM

FWA AND LHA NOT IN SAME ARRAY OR EQUIVALENCE CLASS.FWA AND LWA NOT IN SAME ARRAY OR EQUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE ,RANSFER TO THE LABEL INDICATED.FWA AND LWA NOT IN SN',E ARRAY OR EQUIVALENCE CLASS.FWA AND LWA NOT l~ SAMr ARRAY OR EQUIVALENCE CLASS.THIS IF DEGENE~3cS INTC A SIMPLE TRANSFER TO THE LABEL INDICATED.ARRAY NAME OP~HAND NOT SUBSCRIPTED. FIRST ELEMENT WILL BE USED.THIS IF D'::it::NERATES INTO A SIMF-LE TRANSFER TO THE LABEL INDICATED.FWA ANC LWA NOT IN SAME ARRAY OR EQUIVALENCE CLASS.FWA AND LWA NOT IN SAME ARRAY OR EQUIVALENCE CLASS.THiS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.FWA AND LWA NOT IN SAME ARRAY OR EQUIVALEMCE CLASS.

K01

Page 76: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

sueROUTINE PRINTC 76/76 OPT=1 FTN 4.4+R401 12108/76 09.27.04 PAGE

SUBROUTINE PRINTC(IAX,JAX,F,INDIV) CTR 352C PRINTC ttt*ttt*t**t**t***t*i********t**t~*****}******t******* ttt't CTR 353C ------THIS ROUTINE DOES THE ACTUAL LINE PRINTING OF GRID VALUES CTR 354

DIMENSION F(1),KRINT(20) CTR 3555 NUMB=(JAX-1 )f20 CTR 356

NUHBPW=NUHB+1 CTR 357JUH=JAX-NUHB*20 CTR 358PRINT 141,NUHBPW,JUH,JAX CTR 359

141 FORMAT("1 NUHB",14,6~,"JUH",15,6X,"JAX",15/) CTR 36010 C ------CUT UP THE GRID VALUE INTO 20 COLUHNS AND PRINT THEM CTR 361

KJH=20 CTR 362DO 17 NOO=1,NUHBPW CTR 363KJH = (NOO-D"ZO CTR 364IF(NOO.EO.NUMBPW) KJH=JUH CTR 365

15 IF(NOO.NE.1)PRINT 117 CTR 366117 FORMAT< 1H1 f) CTR 367

DO 1131 KI=1,IAX CTR 368DO 1130 KJ=1, KJH CTR 369H = KI + (KJ +KJM -1)"IAX CTR 370

20 KRINT(KJ)=F(M)/INDIV CTR 3711130 CONTINUE CTR 372

PRINT 118,(KRINT(J),J=1,KJH) CTR 373118 FORHAT(8X,2016) CTR 374

1131 CONTINUE CTR 37525 17 CONTINUE CTR 376

END CTR 377

LOl

Page 77: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM DIN 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE

OVERLAY(OVRLAZ1,2,') eTRPROGRAM DIN eTR

e DIN •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• eTRe ------THIS ROUTINE CONTROLS AND HONITORS THE ITERATION PROCESS AND eTRe SAVES GRID VALUES ON MASS STORAGE FILE AND TAPES IF REOUIRED eTR

eOHHON/HSNEC/NAVE,HVAD,NF1,NAD1,NAD2.NF2,NF3,NFF,NF4 eTRCOHHON/KOZCOH/KOZSBX, DJJHHA, DUHMB CTRCOHHON/LD/LD eTRCOHHON/LASCB/IAX,JAq,NIGP.NAP,JAXLST,HAZE,AH,NUHPS,JAH,NAX,NIT eTR

l,NIP,NLP.KP,KG,LE,LON,INDIV,KFDIH,NAL,RAD,NIPST eTRCOHHON/AIRCB/LAREA,TDY.KEEPER.NBB,SCAX.SCAY,Ll,Hl,L2.H2.L3,H3 eTR

1 ,iNTB,HUL,NAiABZ.NDB.LCMD,NADAST,NUHBF,NBUFNT,NUHBGP,JEP,TDX eTRCOHMON/FAR/F,NN,NO eTRCOHHON/KOEBLER/Fl.GL,INA,H eTRCOHHON/SHELLS/NSHELL.KA eTRCOHHONfLEUN/LEUN eTRDIHENSION LAREA(12).N3HELL(300).KA(300) eTRDIHENSION FL(200),GL(200),INA(2000).H(6,2000),KOEB(14400) CTRDIHENSION F(6400) eTRINTEGER H,FL,GL CTREOUIVALENCE (FL,KOEB) eTRDIHENSION IB(4,4),JB(4,4) eTRDATA (IB(J),J=1,16)/-l,-l,1,1.-1,O.1,O,O,1,O,-1.1,l,-l,-1/ eTRDATA (JB(J),J=1.16)/1.-1.-1.1.0.-1.0.1.-1.0.1.0.-1.1.1.-1I eTRNBUFNT=l eTRNRECB=NAP+3 eTRLH=LE CTRLEUN=NiP-NAL eTRKXX=IAX CTREGA=KGI1 00. CTR

C ------SiAHT OF iTERATIONS CTRDO 100 NN=NIPST.NiP CTRCALL DISPLA(6H NN = .NN) eTRIR=NDB eTRJAX=JAR eTRJITTER=O CTR

C ---'---CALL INSUB-BLOCK NO. eTRDO 99 NO=l.NAP eTRIF(NQ.LT.NAP)GO TO 126 CTRJAX=JAXLST eTR

126 NELL=NSHELL(NO) eTRIR=IR+l CTRCALL READHS(LD.KOEB.NELL.IR) CTR

C ------READ iN GRID POINT VALUES FOR SUB-BLOCK NO. CTRIFCNO.EO.i)GO TO 722 CTRDO 721 HV=1.NAVE CTRF(HV)=F(HV+NFF) eTR

721 CONTINUE eTRIF(NO.EO.NAP) GO TO 703 eTR

722 IR=IR+2 CTRCALL READHSCLD,FCNAD2).NF3.IR) CTRIF(NO.GT.l) GO TO 701 CTRIR=IR-l CTRCALL READHS(LD.FC1).NFF,IR) eTRGO TO 702 CTR

701 IR=IR-l CTReALL RF.ADHSCLD.F(NAD1).NF2. IR) CTR

5

10

50

30

20

25

40

45

55

3783793803813823833114385386387388389390391392393394;;;'~

3°6J(/7398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433

'" ~'--------:-::-:-HO'-----

Page 78: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM DIN 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2 "lGO TO 702 CTR -~.. .JJ703 IR=IR+1 CTR 43660 CALL REAOMS(LO,F(NA01),NF4,IR) CTR 437 .

702 JIT=O CTR 438KYY=JAX CTR 439C ------CALL ITERATE CTR 440CALL ITERATE(KXX,KYY,NAP,EGA,NIT,JIT) CTR 44165 C ------JITTER-CONVERGENCY INDICATOR CTR 44290 IF(JIT.GT.JITTER)JITTER=JIT CTR 443C ------SAVE ITERATED GRID DATA FOR SUB-BLOCK NO ON MASS STORAGE AND CTR 444C TAPE48. CTR 445IF(NO.GT.1) GO TO 704 CTR· 446.70 CALL WRITMS(LD,F(1),NFF,IR, 1) CTR 447IR=IR+1 CTR 448GO TO 705 CTR 449704 IF(NO.EO.NAP)GO TO 706 CTR 450CALL WRITMS(LD,FCNAD1),NF2, IR, n CTR 45175 IR=IR-2 CTR 452CALL WRITMS(LD,F(1).NF1,1~, 1) CTR 453m=IR+3 CTR 454GO TO 705 CTR 455706 Cf"~L WRITMS(LD,F(NAD1),NF4,IR, 1) CTR 45680 IR=IR-2 CTR 457CALL WRITMS(LD,F(1),NF1,IR. 1) C1R 458705 IF(KEcPER.NE.8HPRESERVE)GO TO 99 CTR 459IF(NBUFNT.LT.NBB)GO TO 99 CTR 460BUFFER OUT (48,1) (F(1),NO) CTR 46185 IF(UNIT(48» 99,99,99 CTR 46299 CONTINUE CTR 463C -------PRINT JITIER CTR 464PRINT 91,NN,JITTER CTR 46591 FORHAT(*0*,9X,*JITTER *,13,* = *,110) CTR 46690 IF(KEEPER.NE.8HPRESERVE)GO TO 517 CTR 467IF(NBUFNT.LT.NBB)GO TO 517 CTR 463C ------REWIND TAPE48 TO THE START OF FILE 2 READY FOR DUMPING OF CTR 469C NEXT ITERATED GRID DATA. CTR 470PRINT 599,NN CTR 47195 ~99 FORHAT(tO*,39X,*SAVE GPT VALS*,110) CTR 472C ENDFILE 48 CTR 47300205 LJT=1,NRECB CTR 474BACKSPACE 48 CTR 475205 CONTINUE CTR 476100 CALL SKIF1LE(48) CTR 477tmUFNT=O CTR 478517 NBUFNT=NBUFNT+1 CTR 479100 CONTUi:.JE CTR 430IF(KEEPER.EO.3HPRESERVE)CALL SKIFILE(48) CTR 481105 END CTR 482

CARD NR. SEV£RITY DETAILS DIAGNOSIS O~ PROBLEM

32 CONTROL VARIABLE IN COMMON OR EOUIVALENCED, OPTIMIZATION MAY BE INHIBITED.38 CONTROL VARIABLE IN COMMON OR EOUIVALENCED, OPTIMIZATION MAY BE INHIBITED.84 FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.

N01

Page 79: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM DIN 76/76 OPT=1 FTN 4.4~R401 12/08/76 09.27.04

CARD NR. SEVERITY DETAILS DIAGNnSIS OF PROBLEM85 I 99 THIS IF CEGENERATES IN70 h SIMPLE TRANSFER TO THE LABEL INDICATED.

001

PAGE 3

Page 80: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBRourIN~ ITERATE 76/76 OPT=1 FTN 4.4+R401 ~2/0"'76 09.27.04 PAGE

SUBROUTINE ITERATE(KXX,KYY,NAPP,EGA,NITf,JIT> eTR 483e ITERATE ••••••• i ••••••••••••••••••••••••••••• ,., ••••••••••••••••••• eTR 484c ------THE ACTUAL ITERATION PROCESS IS CARRIED OUT WITHIN THIS eTR 485e ROUTINE. eTR 4865 COHHON/LEUN/LEUN CTR 487COHHON/FAR/F,NN,NO eTR 488COHHON/KOEBLER/FL,GL,INA,H eTR 489COHHON/KOZCOH/KOZSBX,DUHMA,DUHHB eTR 490DIHENSION F(6400> eTR 49110 DIHENSION FL(200),GL(200>,INA(2000>,H(6,2000>,KOEB(14400> eTR ·492DIHENSION IB(4,4>,JB(4,4> eTR 493 ,EQUIVALENCE (FL,KOEB> . eTR (·94EQUIVALENCE (LG6, LAb> , (LG7 ,1.A7> , (LG8, LA8> , (LG9, LA9> eTR 495EQUIVAL~NCE (LA1,LG1>,(LA2,LG2>,(LG3,LA3>,(LG4,LA4i,(LG5,LA5> eTR 49615 EQUIVALENCE (LG10,LA1G),(LG11,LA11>,(LG12,LA12>,(LG13,LA13> eTR 497INTEGER FL,GL,H CTR 498LOGICAL FL,GL eTR 499DATA (P1=1.> eTR 500DATA(« IB( I, J>, J=1 ,4; , 1=1 ,4> =-1 , -1 ,0,1 , -1 ,0,1 ,1 ,1 , 1,0, -1 ,1 ,0, -1, eTR 50120 1-1) eTR 502DATA«(JB(I,J>,J=1,4i,I=1,4>=1,u,-1,-1.-1,-1,O,1,-1,O,1,1,1,1,0, eTR 503'1-1 > eTR 504DATA ~PD25=0.25),(PD05=.05>,(P01=.1>,{PD4=0.4> eTR 505DATA 'K1=1>,(K2=2>.(K3=3>,(K4=4>,(P8=8.>,(P4=4.>.(P2=2.> em 50625 OHEGA=EGA eTR 507014 = 1.1.14. eTR 50803=1./3. eTR 509019=1.119. eTR 51006=1./6. eTR 51130 02=1. :2. eTR 51207=1.17. eTR 513018=1./18. eTR 514C eTR 515KX=!<XX eTR 51635 KY=KYY eTR 517NAP=NAPP eTR 518NIT=NITT eTR 519KXBY=KX'KY eTR 520C eTR 52140 KXM1 KX-1 CTR 522KXM2 KX-2 CTR 523KYH1 KY-1 eTR 524KYH2 KY-2 eTR 525C ::TR 52645 KXBYl = KX-KY-KZ*KXtK2 eTR 527C CTR 528C eTR 529KV1 KZ'KX eTR 530KV2 KX-K1 eTR 53150 KV3 KX CTR 532KV4 KX+K1 eTR 533KV, -K2 eTR 534KV6 -K1 CTR 5:;:KV7 0 CTR 53/;55 KV8 K1 eTR 537KV9 K2 eTR 538KV10 -KX-~1 eTR 539

P~l

Page 81: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2

KVll = -KX CTR 540KYi2 = -KX+l CTR 54160 KV13 = -1C2*KX CTR 542C CTR 543C CTR 544LCl = K2 CTR 545LC2 = KX+Kl CTR 54665 LC'I = KX+K2 CTR 547LC4 = KX+K3 CTR 548LC5 = K2*KX+K2 CTR 549LC6 = KX-Kl CTR 550LC7 = K2*KX-K2 CTR 55170 LC8 = K2*KX-Kl CTR 552LC9 = K2*KX CTR 553LC10 = K3*KX-Kl CTR 554LC11 = KXBY-K3*KX+K2 CTR 555LC12 = KXBY-K2*KX+l CTR 55675 LC13 = KXBY-K2*KX+K2 CTR 557LC14 = KXBY-K2*KX+K3 CTR 558LC15 = KXBY-KX+K2 CTR 559LC16 = KXBY-K2*KX-Kl CTR" 560LC17=KXBY-KX-K2 CTR 56180 LC18 = KXBY-KX-Kl CTR 562LC19 = KXBY-KX r.TR 563LC20 = KXBY-K1 CTR 564C CTR 565C CTR 56685 C CTR 567LV1 = K1 CTR 568LV2 = LV1+K1+KX CTR 569LV3 = LV2+K1+KX CTR 570LV4 =KX CTR 57190 LV5 = LV4+KX-K1 CTR 572LV6 = LV5+KX-K1 CTR 573LV7 = KXBY-KX+K1 CTR 574LV8 = LV7-KX+K1 CTR 575LV9 = LV8-KX+K1 CTR 57095 LV10 = KXBY CTR 577LV11 = LV10-KX-~1 CTR 578L/12 = LV11-KX-Kl CTR 579C CTR 580C CTR 581100 C CTR 582LA=K2 CTR 583LU1=LA+KV1 CTR 584LU2=LA+KV2 CTR 585LU3=LA+KV3 CTR 586105 LU4=LA+KV4 CTR 587LU5=LA+KV5 CTR 588LU6=LA+KV6 CTR 589LU7=LA+KV7 CTR 590LU8=LA+KV8 CTR 591110 LU9=LA+KV9 CTR 592C CTR 593C CTR 594C CTR 'i95LA=KXBY-KX+KZ CTR j~6

B02

Page 82: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 17.'08/76 09.27.04 PAGE 3

115 LUR1=LA+Y.V13 CTR 597LUB2=LA+KV10 CTR 598LUB3=LA+KV11 CTR 599LUB4=LA+KV12 CTR 600LUB5=LA+KV5 CTR 601120 LUB6=LA+KV6 CTR 602LUB7=LA+KV7 CTR 603LUB8=LA+KV8 CTR 604LUB9=LA+KV9 CTR 605C CTR 606125 C CTR 607C CTR 608C CTR 609LA=KX+K1 CTR 610LZ1=LA+KV9 CTR 611130 LZ2=LA+KV4 ~TR 612C CTR 613LZ3=LA+KV8 CTR 614LZ4=LA+KV12 CTR 615LZ5=LA+KV1 CTR 616135 LZ6=LA+KV3 CTR 617LZ7=LA+KV7 CTR 618LZ3=LA+KV11 CTR .619LZ9=LA+KV13 CTR 620C CTR 621140 C CTR 6Z2C CTR c23LA=KX+KX CTR 624LB21=LA+KV5 CTR 625LBZ2=LA+KV2 CTR 626145 LBZ3=LA+KV6 CTR 627LBZ4=LA+KV10 CTR 628LBZ5=LA+KV1 CTR 6Z9LBZ6=LA+KV3 CrR 630LBZ7=LA+KV7 CTR 631150 LBZ8=LA+KV11 CTR 632LBZ9=LA+KV13 CTR 633C CTR 634C CTR 635C CTR 636155 C CTR 637C CTR 638LE1=K1+K2 CTR 639LE2=K1+KZ*KX CTR 640LE3=KX-K2 CTR 641160 LE4=KX+KZ*KX CTR 642LE5=I.C1Z-KX CTR 643LE6=LC15+K1 CTR 644LE7=LC20-K1 CTR 645LE8=LC19-KX CTR 646165 C CTR 647CL01=LE1+K1 CTR 648

CTR 649L02=L01+KX CTR 650L03=LE2+KX CTR 651170 L04=L03+K1 CTR 652L05=LE3-K1 CTR 653

C02

Page 83: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUEiROUTlNE ITERo\TE 76/76 OPT=1 FTN 4. 4+R401 12/08,.76 09.27.04 PAGE 4

LQ6=L05+I<X CTR 654LQ7=LC10+I<X CTR 655LQ8=L07+1<1 CTR 656175 LQ9~Lr:5-I<X CTR 657LQ10=L09+1<1 CTR 658LQ11=LC14+1<1 CTR 659LQ12=L011+I<X CTR 660LQ13=LC16-I<X CTR 661180 LQ14=L013+1<1 CTR 662LQ15=LC17-1<1 CTR 663LQ16-=L015+I<X CTR 664DO 92 LIT=1.NIT $ N=O CTR 665L=I<XM2+KX CTR 666185 C CTR 667e CTR 668DO 93 J=K3.KYM2 eTR 669e CTR 670L=L+4 CTR 671190 e eTR 672e eTR 673LG1 = L+KV1 CTR 674LG2 = L+KV2 CTR 675LG3 = L+KV3 eTR 676195 LG4 =L+I<V4 eTr 677LG5 = L+KV5 eTR 67&LG6 = L+KV6 eTR 679LG7 = L+KV7 CTR 680LG8 = L+KV8 CTR 681200 LG9 = L+KV9 eTR 682LG10 = L+KV10 CTR 683LG11 = L+KV11 CTR 684LG12 = L+KV12 CTR 685LG13 = L+KV13 CTR 686205 e CTR 687e CTR 688DO 93 I=K3.KXM2 CTR 689e CTR 690L=L+1 CTR 691210 e CTR 692e eTR 693e eTR 694LG1 = LG1 +K1 CTR 695LG2 = LG2 i·1<1 CTR 696215 LG3 = LG3 +K1 CTR 697LG4 = LG4 +K1 CTR 698LG5 = LG5 +K1 CTR 699LG6 = LG6 +K1 eT~ 700LG7 = LG7 +K1 eTR 701220 LG8 = LG8 +K1 CTR 702LG9 = LG9 +K1 CTR 703LG10 = LG10+K1 CTR 704LG11 = LG11+K1 CTR 705LG12 = LG1Z+K1 CTR 706225 LG13 = LG13+K1 CTR 707e CTR 708e eTR 709KQZSBX=LG7-1 eTR 710

002

Page 84: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R40' 12/08/76 09.27.04 PAGE 5

I<FL=KOZLOL(FL) CTR 711230 IF<I<FL> 82.81 CTR 71Z81 CONTINUE CTR 713C CTR 714FS = F(LG3) + F(LG8) + F(LG11) + F(LG6) CTR 7i5C CTR 716Z35 FUF = F(LG~) + F(LG9) + F(LG13) + F(LG5) CTR 717C CTR 718FUC = F(LG2) + F(LG4) + F(LG12) + F(LG10) CTR 719C CTR 720TT=PD4*FS-PD05*FUF-PD1*FUC CTR 721Z40 F(LG7)=F(LG7)+(TT-F(LG7»*OMEGA CTR 722JIF=TT-F (LG7> CTR 723JAB=IABS(JIF) CTR 724IF(JAB.GT.JIT> JIT=JAB CTR 725C CTR 726245 GO TO 85 CTR 72782 CONTINUE CTR 728IF(NN.LT.LEUN) 93.51 CTR 72951 CONTINUE CTR 730KFL=KOZLDL(GL) CTR 731250 IF(KFL> 93.83 CTR 73283 CONTINUE CTR 733FHS=O. S N=N+1 CTR 734LB3=(INA(N)-1)*4 CTR 735DO 125 LB1=1.4 CTR 736255 LB3=LB3+1 CTR 737LB2=LG7+IB(LB3)+JB(LB3)*KX CTR 738FHS=FHS+H(L81.N)*F(LB2) CTR 739125 CONTINUE CTR 740FHS=FHS+H(5.N) CTR 741260 FS = F(LG3) + F(LG8) + F(LG11) + F(LG6) CTR 742FUF = F(LG1) + F(LG9) + F(LG13) + F(LG5) CTR 743FUe = F(LG2) + F(LG4) + F(LG12) • FCLG10) CTR 744FUZ = P4 * FS - FUF -P2 * FUC CTR 745FUD = P~ * C P1 + H C 6 • N » CTR 746265 F(LG7) = CFUZ + P4 * FHS ) / FUD CTR 74784 CONTINUE CTR 74885 CONTINUE CTR 74993 CONTINUE CTR 750r. eTR 751270 C CTR 752C CTR 753e CTR 754IFCNO.EO.1) 31.32 CTR 75531 CONTINUE CTR 756275 LA = KX + K2 CTR 757e CTR 758LG1 LA + KV1 CTR 759LG2 LA + KV2 eTR 760LG3 LA + KV3 CTR 761280 LG4 LA + KV4 CTR 767t LG5 LA + KV5 CTR 763LG6 LA + KV6 CTR 764LG7 LA + KV7 eTR 765LG8 LA + KV8 eTR 766285 LG9 LA + KV9 CTR 767

E02

Page 85: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 6

LG10 LA + I<V10 CTR 768LG11 LA + I<V11 CTR 769LG12 LA + I<V12 CTR 770LGB LA + I<VB CTR 771290 C CTR 772C CTR 77300 94 1=1<3.I<XM2 CTR 774C CTR 775LG1 = LG1 + 1<1 CTR 776295 LG2 = LG2 + 1<1 CTR 777LG3 = LG3 + 1<1 CTR 778LG4 = LG4 + 1<1 cm 77'1LG5 = LG5 +1<1 CTR 780LG6 = LG6 + 1<1 LT!l 781300 LG7 = LG7 +1<1 CTR 782LG8 = LG8 + 1<1 CTR 783LG9 = LG9 +1<1 CTR 784LG10 = LG10 + 1<1 CTR 785LG11 = LG11 + 1<1 CTR 786305 LG12 = LG12 + 1<1 CTR 787LGB = LG13 + 1<1 CTR 788C CTR 789C CTR 790C CTR 791310 FS=P8*(F(LG6)+F(LG3)+F(LG8»+P4*F(LG11) CTR 792C CTR 793FUF=P2*(F(LG2)+F(LG4» CTR 794C CTR 795FUC=F(LG5)+F(LG9)+F(LG1)+F(LG10)+F(LG12) CTR 796'".2 •

315 C CTR 797F(LG7)=(FS-FUF-FUC)*019 CTR 798''"t••• C CTR 79994 CONTINUE CTR 800... :.

C CTR 8013£9- FS=P8*(F(LC4)+F~LC5»+P4*(F(LC1)+F(LC2» CTR 802C CTR 803FUF=F(L04)+F(L02)+F(LE1)+F(LE2)+P2*F(LV3) CTR 804C CTR 805F(LC3)=(FS-FUF)*018 CTR 806325 C CTR 807C CTR 808C CTR 809C CTR 810C CTR 8113~0 FS=P8*(F(LC7)+F(LC10»+P4*(F(LC6)+F(LC9» CTR 812C CTR liBFUF=F(L06)+F(L07)+F(LE3)+F(LE4)+P2*F(LV6) CTR 814C CTR 815F(LC8)=(FS-FUF)*018 CTR 816335 C CTR 817C CTR 818C CTR 819C CTR 820C CTR 821340 C CTR 822C CTR 823LA1=LU1 CTR 824

FOZ

Page 86: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE 7

LA2=LUZ CTR 825LA3=LU3 CTR 826345 LA4=LU4 CTR 827LA5=LU5 CTR 828LA6=LU6 CTR 829LA7=LU7 CTR 830LA8=LU8 CTR 831350 LA9=LU9 CTR 832C CTR 833C CTR 834C CTR 835C CTR 836355 C CTR 837DO 96 I=K3. KY':12 CTR 838C CTR 839C CTR 840LA1=LA1+K1 CTR 841360 LA2=LA2+KI CTR 842LA3=LA3+Kl CTR 843LA4=LA4+K1 CTR 844LA5=LA5+kl CTR 845LA6=LA6+Kl CTR 846365 LA7=LA7+K1 CTR 047LA8=LA8+K1 CTR 848LA9·:LA9+K1 CTR 849C CTR 850C CTR 851370 C CTR 852C CTR 853FS=P4*(F(LAb)+F<LA3).1 (LA8» CTR 854F(LA7}=(FS-F(LA1)-F(lA5)-F(LA9)-F(LA2)-F(LA4»*07 CTR 855C CTR 856375 -% CONTINUE cm 857C CTR 858C CTR 859C CTR 8')0F5=P4*(F(LE1)+F(LC3»+F2*F(LV1) CTR 8';1380 C CTR 862F(LC1)=(FS-F(LC5)-F(LC4)-F(LC2)-F(LG1»*06 CTR 8~3C CTR 864FS=P4*(F(LE2)+F(LC3»+P2*F(LVi) CTR 865r CTR 866385 F(LC2)=(FS-F(LC4)-F(LC5)-F(LC1)-F(L03»'06 CTR 867C CTR 868C CTR 869FS=P4*(F(LE3)+F(LC8»+P2*F(LV4) CTR 870C CTR 871390 F(LC6)=(FS-F(LC10)-F(LC7)-F(LC9)-FCL05»*06 CTR 872C CTR 873C CTR 874FS=P4;(F(LC8)+F(LE4»+P2*F(LV4) CTR 875C CTR 876395 F(LC9)=(FS-F(LC7)-F(LC10)-F(~C6)-F(L08»*06 CTR 877C CTR 878C CT~ 379F(LV1)=(P2*(F(LC1)+F(LC~;'-F(LE1)-F(LE2»*02 CTR 880C CTR 881

(;02

Page 87: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 (jPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 8

400 FCLV4)=CP2*CFCLe6)+FCLe9»-FCLE3)-FCLE4»)*D2 eTR 88232 CONTINUE eTR 883e eTR 884e eTR 885e eTR 886405 e eTR 887LA = KX + K2 CT~ 888e eTR 889LB = K2 * KX - K1 eTR 890e eTR 1i91410 e CTR 892LA1=LA+KV1 eTR 893LA2=LA+KVZ eTR 894LA3=LA+KV3 CTR 895I.A4=LA+KV4 eTR 896415 LA5=LA+KV5 eTR 897LA5=LA+KV6 eTR 898LAi=LA+KV7 eTR &99LA8::Lf',+KVll eTR 900LA9=LA+KV9 eTR 901420 LA10=LA+KV10 CTR 902LA11 =LA+KV11 eTR 9Cl3LA12=LA+KV12 eTR 904LA13=LA+!<V13 eTR 905e CTR 9(l~425 e CTR 907LB1=LB+KV1 eTR 908LB2=LB+KV2 eTR 909LB3~·LB+KV3 eTR 910LB4=LB+KV4 eTR 911430 LB5=LB+KV5 eTR 912LB6=LB+KV6 eTR 913LB7=LB+KV7 eTR 914LB8=LB+KV8 eTR 915LB9=LB+KV9 eTR 9164:15 LB10=LB+KV10 eTR 917LB11=LB+KV11 eTR 918LB12=LB+KV12 eTR 919LB13=LB+KV13 CTR 920e eTR 921440 e eTR 922DO 95 J=K3.KYM2 eTR 923e eTR 924e eTR 925LA1=LA1+KX eTR 926445 LA2=LA2+KX eTR 927LA3=LA3+KX eTR 928LA4=LA4+KX eTR 929LA5=LA5+KX eTR 930LA6=LA6+KX eTR 931450 LA7=LA7+KX eTR 932LA8=LA8+KX eTR 933LA9=LA9+KX eTR 934LA10=LA10+KX eTR 935LA11=LA11+KX eTR 936455 LA12=LA12+KX eTR 937LA13=LA13+KX eTR 938

H02

Page 88: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE l.J

C eTR 939C CTR 940LB1=L.B1+I<X eTR 941460 LB2=LB2+I<X eTR 942LB3=LB3+I<X eTR 943LB4=L84+I<X eTR 944L85=LB5+I<X eTR 945LB6=LB6+I<X eTR 946465 LB7=LB7+I<X eTR 947LB8=LB8+I<X eTR 948LB9=lB9+I<X eTR 949lB1 0=LB1 0+1<)(. eTR 950lB11=LB11+I<X eTR 951470 LB12=LB12+KX eTR 952LB13=lB13+KX eTR 953e eTR 954e CTR 955FS=P8*(F(LA3)+F(LA8)+F(lA11»+P4tF(lA6) eTR 956475 C eTR 957FUF=P2*(F(LA4)+F(lA12» eTR 958e eTR 959FUC=F(LA1)+F(lA13)+F(LA9)+F(LA2)+F(lA10) eTR 960C CTR 961480 F(LA7)=(FS-FUF-FUe)*019 eTR 962C CTR 963e eTR 964FS=P8*(F(LB3)+F(LB6)+F(lB11»+P4tF(lB8) eTR 965C eTR 966485 FUF=P2*(F(LB2)+F(LB10» eTR 967e eTR 968FUC=F(LB1)+F(LB13)+F(LB5)+F(LB4)+F(lB12) eTR 969e eTR 970F(LB7)=(FS-FUF-FUe)*019 eTR 971490 e en 972e cm 97395 eONTI";~E eTR 974e eTR 975e eTR 9n495 LA1=L21 eTR 977LA2=L22 CTR 978LA3=LZ3 eTR 979lA4=LZ4 eTR 980LA5=LZ5 eTR 981500 LA6=LZ6 eTR 982LA7=LZ7 eTR 983lA8=lZ8 eTR 984LA9=lZ9 eTR 985e eTR 986505 LB1=LBZ1 eTR 987LB2=LBZ2 eTR 988LB3=LBZ3 eTR 989LB4=LBZ4 eTR 990LB5=LBZ5 eTR 991510 LB6=LBZ6 eTR 992LB7=LBZ7 eTR 993lB8=LBZ8 eTR 994LB9=LBZ9 eTR 995

102

Page 89: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 10

e CTR 996515 '. eTR 997e eTR 998e eTR 999e eTR 1000DO 97 J=K3,KYM2 eTR 1001520 e eTR 1002e eTR 1003LA1=LA1+KX eTR 1004LA2=LA2+KX eTR 1005LA3=LA3+KX eTR 1006525 LA4=LA4+KX eTR 1007LA5=LA5+KX CTR 1008LA6=LA6+KX eTR 1009LA7=LA7+KX eTR 1010e eTR 1011530 LA8=LA8+KX eTR 1012LA9=LA9+KX eTR 1013e eTR 1014e eTR 1015LB1=LB1+KX eTR 1016535 LB2=LB2+KX eTR 1017LB3=LB3+KX eTR 1018LB4=LB4+KX eTR 1019LB5=LB5+KX eTR 1020LB6=LB6+KX eTR 1021540 LB7=LB7+KX eTR 1022LB8=LB8+KX eTR 1023LB9=LB9+KX eTR 1024e eTR 1025e eTR 1026545 e eTR 1027FS=P4*(F(LA6)+F(LA3)+F(LA8» eTR 1028F(LA7)=(FS-F(LA1)-F(LA5)-F(LA9)-F(LA2)-F(LA4»*D7 CTR 1029e eTR 1030e eTR 1031550 FS=P4*(F(LB6)+F(LB3)+F(LB8» eTR 1032F(LB7)=(FS-F(LB1)-F(LB5)-F(LB9)-F(LB2)-F(LB4»*D7 eTR 1033e eTR 1034e eTR 1035e eTR 1036555 97 eONTHJUE eTR 1037e eTR 1038IF(NO.EO.NAP) 33,34 eTR 103933 ~ONTlNUE CTR 1040e eTR 1041~60 LB = I<X8Y1 eTR 1042c eTR 1043e eTR 1044LB1 LB + KV1 eTR 1045LB2 LB + KV2 eTR 1046565 LB3 LB + KV3 eTR 1047LB4 LB + KV4 eTR 1048LB5 LB + KV5 eTR 1049LB6 LB + KV6 eTR 1050LB7 LB + KV7 eTR 1051570 LB8 LB + KV8 eTR 1052

J02

Page 90: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 11

LB9 LB + KV9 eTR 1053LB10 LB • KV10 eTR 1054LB11 LB + KV11 eTR 1055LB12 LB + KV12 eTR 1056575 LB13 LB + KV13 CTR 1057e eTR 10580098 I=K3.KXM2 eTR 1059e eTR 1060LB1 = LB1 + K1 eTR 1061580 LB2 = LB2 + }(~ eTR 1062LB3 = LB3 + K1 eTR 1063LB4 = LB4 + K1 eTR 1064LB5 = LB5 + K1 eTR 1065LB6 = LB6 + K1 eTR 1066585 LB7 = LB7 + K1 eTR 1067LB8 = LB8 + K1 eTR 1068LB9 = LB9 + K1 eTR 1069LB10 =LB10 + K1 eTR 1070LB11 = LB11 + K1 eTR 1071590 LB12 = LB12 + K1 eTR 1072LB13 = LB13 + K1 eTR 1073e eTR 1074e eTR 1075FS=P8 t (F(LB6)+F(LB11)+F(LB8»+P4*F(LB3) eTR 1076595 e eTR 1077FUF=P2 t (F(LB10)+F(LB12» eTR 1078e eTR 1079Fue=F(LB5)+F(LB9)+F(LB13)+F(LB2)+F(LB4) eTR 1080e eTR 1081600 e eTR 1082e eTR 1083e eTR 1084F(LB7)=(FS-FUF-FUe)t019 eTR 108598 eONTlNUE eTR 1086605 e eTR 1087FS=P8 t (F(Le11)+F(Le14»+P4*(F(Le12)+F(Le15) eTR 1088e eTR 1089FUF=F(L011)+F(L010)+F(LE5)+F(LE6)+P2tF(LV9) eTR 1090e eTR 1091610 F(Le13)=(FS-FUF)*018 eTR 1092e eTR 1093e eTR 1094e eTR 1095FS=P8*(F(Le17)+F(Le16»+P4*(F(Le19)+F(Le20» eTR 1096615 e eTR 1097FUF=F(L013)+F(L015)+F(LE8)+F(LE7)+P2*F(LV12) eTR 1098e eTR 1099F(Le18)=(FS-FUF)*018 eTR 1100e eTR 1101620 e CTR 1102LB1=LUB1 eTR 1103LB2=LUB2 eTR 1104LB3=LUB3 eTR 1105LB4=LUBI, eTR 1106625 LB5=LUB5 eTR 1107LB6=LUB6 "TR 1108LB7=LUB7 UR 1109

1(02

Page 91: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROU1.IlE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 12

LBS=LUBd eTR 1110LB9=LUB9 eTR 1111630 C eTR 1112DO 199 I=K3,KXM2 eTR 1113LB1=LB1+K1 eTR 1114LB2=LB2+K1 CTR 1115LB3=LB3+K1 eTR 1116635 LB4=LB4+K1 CTR 1117LB5=LB5+K1 eTR 1118LB6=LB6+K1 eTR 1119LB7=LB7+K1 CTR 1120LB8=LBS+K1 CTR 1121640 LB9=LB9+K1 CTR 1122C CTR 1123C CTR 1124FS=P4t (F(LB6)+F(LB3)+F(LBS» CTR 1125F(LB7)~(FS-F(LB1)-F(LB5)-F(LB9)-F(LB2)-F(LB4»tD7 cm 1126645 C CTR 1127199 Cor~TINUE CTR 1128C CTR 1129FS=P4t(F(LC13)+F(LE5»+P2t~(LV7) CTR 1130C eTR 1131650 F(LC12)=(FS-F(Le14)-F(LC11)-F(LC15)-F(LG9»tD6 eTR 1132C CTR 1133C CTR 1134FS=P4 t (F(LC13)+F(LE6»+P2tF(LV7) CTR 1135C eTR 1136655 F(LC15)=(FS-F(LC14)-F(LC11)-F(LC12)-F(L012»tD6 CTR 1137C CTR 1138C CTR 1139FS=P4 t (F(LE8)+F(LC1S»+P2tF(LV10) CTR 114(\C CTR 1141660 F(LC19)=(FS-F(LC17)-F(LC16)-F(LC20)-F(L014»tD6 eTR 11'.2C CTR 1143C CTR 1144FS=P4 t (F(LC18)+F(LE7»+P2tF(LV10) CTR 1145F(LC20)=(FS-F(LC16)-F(LC17)-F(LC19)-F(L016»tD6 eTR 1146665 C CTR 1147F(LV7)=(P2 t (F(LC12)+F(LC15»-F(LE5)-F(LE6»tD2 eTR 114/lC CTR 1149F(LV10)=(P2 t (F(LC20)+F(Le19»-F(LE7)-F(LES»tD2 CTR 1150C CTR 1151670 C eTR 115234 CONTINUE CTR 115392 CONTINUE CTR 1154END CTR 1155

CARD NR. SEVERITY DETAILS DIAGNOSIS OF PROBLEM17 I FL A TYPE WAS DECLARED PREVIOUSLY FOR THIS VARIABLE OR FUNCTION. THIS DECLARATION IGNORED.17 I GL A TYPE WAS DECLAF..D PREVIOUSLY FOR THiS VARIA9LE OR FUNCTiON. THIS DECLARATION IGNORED.

L02

Page 92: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM FITPLT 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

OVERLAY(OVRLAY3,3,O) CTR 1156PROGRAM FITPlT CTR 1157C FITPlT ****~*t***t******t******t*tt*****tt*tt*******ttttt*t** ttttt eTR 1158C ------FUNCTIONS OF THIS ROUTINE ARE CTR 11595 C (1)READ IN CONTOUR/WINDOW PAP~ETERS AND HAP CORNERS AND NAM CTR 1160C (2)SCALE THE CONTOUR PLOT AND INITIATE PLOTTING CTR 1161C (3)SUBDIVIDE THE PLOT INTO SMALLER PLOTS TO FIT THE PLOTTING CTR 1162C TABLE IF NECESSARY CTR 1163C (4)CALL CONTOURING OVERLAY ANO OTHER PERIPHERAL SUBROUTINES CTR 116410 COHHON/AIRCB/LAREA,TDY,KEEPER,NBB,SCAX,SCAY,L1,H1,L2,M2,L3,M3 CTR 11651 ,INTB,MUL,NATABZ,NDB,LCMD,NADAST,NUHBF,NBUFNT,NUMBGP,JEP,TDX CTR 1166COMHONIINTORN/IL,IU, JI., JU CTR 1167COMHON/CORNER/><A,YA,Xb,YB CTR 1168COMHON/XYSE/X1,Y1,X2,Y2 CTR 116915 COMHON/INTERV/KONVL,SINHIB,NDERX,YALECP,HINHAX CTR 1170COMHON/EXTREM/KP, LENT CTR 1171COHHON/HEIT/HEIT,HEIG,XINC;YINC CTR 1172COHHON/KNTBLKS/KNTBLKS CTR 1173COHMON/NOFFS/NOFFSET,THICK,KNTR,NTOLD,NTWO,NTIN,FINC eTR 117420 COHHO~/REFr.OR/)(R(20),YR(20),LTD(20),LND(ZO),LAB(20),NAHE(3),NR CTR 1175COHHON/XYCiXYS CTR 1176DII'iENSION LAREt.(12),KONVL<4),IBUF(1024) CrR 1177REAL KONVL CTR 1178KNTBLKS=1 CTR 117925 CALL PLOTS(IBUF,1024,1) CTR 1.180LENT = 0 CTR 1181C SIZEX SIZEY ARE PLOTTER DIMENSIONS IN INCHES CTR 1182C ------AND L1IIEAR-TO-NON LINEAR RPJIO AND MINIHAX-ONLY PAR/,METERS CTR 1183READ 10, SIZEX,SIZEY,NDERX,MINMAX JA2076 130 10 FORMAT(2F10.0,2110) JAZ076 2IF(NDERX.EO.0)NDERX=1000 CTR 1186C ------READ IN INUMBER OF CONTOUR MAp WINDOWS CTR 1187READ 303,NWIN CTR 1188303 FORMAHI2) CTR 118935 NW=1 CTR 119015 CALL DISPLA(ZOH SHIFT ORIGIN BLOCK ,KNTBLKS) CTR 1191333 FORMAT(1H ,* SHIFT ORIGIN BLOCK -,110,//) CTR 1192PRINT 333, KNTBLKS CTR 1193KNTBLKS=KNTBLKS+1 CTR 119440 C ------ORIGIN :iHIFl' CTR 1195CALL PLOT(3.0,3.0,-3) eTR 1196C ------READ IN WINDOW SPECIFICATIONS (REFER TO GRID SURFACE PRINT CTR 1197C OUT) AND ADD ORIGIN SHIFT NORMALLY X8=Y8=O. CTR 1198READ 1304, XW1,XW2,YW1,YW2,XS,YS CTR 119945 1304 FORMAT(6F10.2) CTR 1200XW1=XW1+0.001 SXW2=XW2-0.001 JAZ376 1YW1=YW1+0.001 SYW2=YWZ-0.001 JA2376 2304 FORHAT(4F10.3) CTR 1205C ------READ IN GRID SCALE,MAP SCALE,COr,PRESSION FACTOR.PLOT STEP CTR 120650 C INCREMENT CTR 1207C NSIGN-NOT USED CTR 1208

READ 5513, SCALMAP,SCALGRD,XCOMPR,FINC,NSIGN CTR 12095513 FORMAT(4Fl0,O,110) CTR 1210YALE=SCALMAP/SCALGRD CTR 121155 ><ALE=YALE*XCOHPR CTR 1Z12PRINT 5515,SCALMAP,SCALGRD,XCGHPR CTR 12135515 FORHAT(5X,*MAP SCALE 1 -Flv.O*GRID SCALE 1 -F10.0- X-COMPRESS10N-, CTR ~214

H02

Page 93: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM FITPLT 76176 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2

60

65

70

75

80

85

90

95

100

105

110

1F10.2/) eTRC ------SET THICKNESS OFFSET CTR

THICK=0.3*YALE eTRC ------SET NOFFSET AND NTWD=1,THIS MEANS MULTIPLE LINES TO BE DRAWN eTRC WITH OFFSET. CTR

NOFFSET=1 $ NTWO=l eTRIFCFINC.LE.O.) FINC=0.05 eTRFINC=l./FINC eTPPRINT 5514, THICK,NOFFSET,NTWO,FINC eTR

5514 FORMAT(1H ,* THICKNESS = *,Fl0.3,* NOFFSET = *,15,* NTWO = *,15, eTR1 * FINC = *,F10.0,/) eTR

C ------INITIALI2E MULTIPLE-LINES PARAMETERS IN SUB-ROUTINE DRAWL IN. eTRNlIN=O eTRNTOLD=1 CTR

5503 FORMAT(2F10.5) CTRC ------READ IN CONTOUR INTERVAl. AND INTERVALS FOR MULTIPLE LINES CTRC AND SUPPRESSION FACTOR eTR

READ 300,KONVL(1),KONVL(2),KONVL(3),KONVL(4),SI~HIB eTR300 FOR~~T(5F10.2) eTR

PRINT 301,NW,KONVL(1),KONVL(2),KONVL(3),KONVL(4),SINHIB.NDER>< CTR301 FORHAT(*1WINDOW NUMBER *,12/ t OINTERVALS*.4F10.2/*0INHIBITING FACTO CTR

1R IS*.F10.2/*ONDER>< IS*.110) eTRC ------READ IN HA? NAME rTR

READ 351, NAME eTR351 FORMAT(3A10) CTR

C ------READ IN HUMBER OF MAP CORNER CARDS CTRREAD 35.NR eTR

C ------READ IN MAP CORNER CAqDS eTRREAD 350, O(R(N). YR(N). LTD(N). LND(N) •LAB(N) •N=1 •NR) eTR

35 FORMAT(15) eTR350 FORHAT(2F1G.0.A6.4X,A6,4X.I5) eTR

PRINT 309,XW1,XW2.YW1.YW2 eTR309 FORMAT(*ONEWX1*.F10.3.* NEWXZ*,F10.3,* NEWY1*.F11.3.* NEWY2* eTR

1,F11.3) eTRC ------eHECK I~ WINDOW EXiREMETIES.STDP FURTHER PROCESSING eTRC IF lNCC~r.::CT eTR

H(XW1.L' J:;:Z.AND.YW1.Ll.YW2)GO TO 312 eTRPRINT 310 eTR

310 FORMAT< *0 ~'A1 GE XW2 OR YW1 GE YW2 PLEAS~ CHECK VAIIIES*; CTR1*0 PLOT TAPE CLOSED NORMALLY*) eTR

C ------APPLY EXPANSION FACTOR TO APPROPRIATE GRID-SIDE SIZE CTRCALL PLOT<1 .• 0.•3) eTRGO TO 18 eTR

312 SCAX =1./TDX * XALE eTRSC~Y =1./TQV * YALE eTRSOX=TOX $ SDY~TDY CTRXYS=XI~LE/YALE eTRIF(XYS.LT.1.0) TDY=TDY/XYS CTRlFeXYS.GT."l.O) TDX=TDX*XYS eTRYALEC = 1/YALE eTRYALECP = YALEC eTRdEIG=.1 CTR

'XINC=.1 eTR~JF;T=.()7/YALEC eTR·'!":".5/YAlEC CTRYcAC=O.O CTR

311 '~ALL FACTOR(YAl.EC) CTR

N02

12151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270:271

Page 94: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAH FITPLT 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE 3

127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328

eTRseAX=*,El1.3,* SCAY=*, erR

erRerReTRcrRerRerReTR

NEWX=*, eTRerRerRerReTR

NEWY=*, eTRerReTReTReTRerReTReTRcrRcrRerRerRerRerRerRerRerRerRerRerRCTRerRerRcrRCTReTRerRl:rRerRc.rR

SI2EX=*,Fl0.2,* SI2EY erRcrRerRerRcrRcrRerRCTRerRcrRCTRcrRerR

ee

ee

PRINT 3011.TDX.TDY,SeAX.seAYSOll FORMATC*OTDX=*.E11.3.* TDY=*.E11.3,*

lEl1.3)------eHEeK MAP WINDQri AGAINST GRID WINDOW.IF MAP WINDOW EXTRUDES

GRID WiNDOW. STOP.OWl = ~1 -Xl $ DW2 = X2 -XW2DW3 = YW1 -Yl $ nW4 = Y~ -YW2IFCDW1.GE.0 ..AND.DW2.GE.0.) GO TO 306PRINT 305.Xl.XW1.X2.XW2

305 FORMATC/.1X.*NEW XCOORD OUTSIDE DATA LIMITS Xl=*.F9.3.*1 F9.3.* X2=*.F9.3.* Nc'X=*,F9.3,* RUN STOPPED*)

STOP306 IFCDW3 .. GE.0 ..AND.DW4.GE.lU GO TO 308

PRINT 307.Yl.YW1,Y2.YW2307 FORMATC/.1X.*NEW YCOORD OU-"IDE DATA LIMITS Yl=*,F9.3.*

1 F9.3,* Y2=*.F9.3,* NEWY=-,F9.3.* RUN STOPPED*)STOP

308 eDNTI NUEc·-----cALeULATE MAP WINDOW IN TERMS OF GRID UNITS

L1N=Ll+DW1!SDX+0.OlLDW=DW2/SDXL2N=L2-LDWH1N=Ml+DW3/SDY+0.OlLDW=DW4/SDYM2N=M2-LDWIHG = L2N-L1N+lJHG = M2N-M1N+l------eOMPUTE MAP SIZE.IF LARGER THAN PLOTTER SIZE. SUBDIVIDE IT

INTO SMALLER SECTIONS TO FIT THE PLOTTER.NTPX = SIZEX * seAX +1NTPY = SIZEY * SCAY +'lNXBKS = CIHG -1 )/CNTPX -1 ) +1NYBKS = (JHG -1 )/(NTPY -1) +1NRX , = IHG - CNXBKS -1 ) * CNTPX·l)NRY = JHG - (NYBKS -1) * CNTPY -1 )IFCNRX.NE.l)GO TO 12NX~KS = NXBKS - 1NRX ='NTPX

12 IFCKRY.NE.l)GO TO 1~NYBKS = NYBkS - 1

. NRY = NTPY13 NEX = ~JTPX

NEY = NTPYPRINT 3012.XALE,YALE.SIZEX.£IZEY.IHG JHG

3012 FORMAT(*OXALE=*.Fl0.5.* YALE=*,Fl0, J.*1=*.Fl0.Z.* IHG=*,Il0.* JHG=*,Il0)

PRINT 11 ,NXBKS,NYBKS,NRX.NRY,NEX,NEY11 FORMAH*ONXBKS=* ,19, * NYBKf·a, 19, t r.RX=* ,112. * NRY=*. 112,

1* NEX=*,Il0,* NEY=*,Il0/*n*)JAF = !/TPY------HAP SEeTION(JP,IP)DO 17 JP = 1, NYBKSIF(JP.EO.NYBKS> JAF=NRYIAF = NTPXDO 16 IP = 1. NXBKS------eOMPUTE POSITION OF MAP SECTION IN TERMS OF GRID UNIT.IF(IP.EO.NXBKS) IAF=NRX

e

e

115

130

120

125

140

135

145

150

155

170

160

165

002

Page 95: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAH FITPLT 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE 4

IL=L1N+(IP-l)*(NTPX-l) eTR 1329JL=M1N+(JP-1)*(NTPV-l) eTR 1330IU = IL + IAF -1 eTR 1331.75 .JU = JL + JAF -1 eTR 1332e ----·--COMPUTE POSITION OF MAP SECTION ~M TERMS OF X,V (INCHES) eTR 1333XA~:IL-Ll)*SOX+Xl eTR 1334XB=(IU-Ll)*SDX+Xl eTR 1335YA=(JL-Hl)*SDV+Vl eTR 1336180 YB=(JU-Ml)*SDV+Vl eTR 1337PRINT 3013,IL,JL,IU,JU,XA,YA,XB,YB eTR 13383013 FORHAT(lX,*IL=*,iY,* JL=*,I9,* IU=*,19,* JU=*,19,/, eTR 13391*OXA=*,F9.3,* YA=*,F9.3,* XB=*,F9.3,* YB=*,F9.3/) eTR 1340C ------SHIFT PEN TO NEW POSITION TO CLEAR PREVIOUS MAP SECT!O~ eTR 1341185 . IF(IP.EO. 1.AND.JP.EO.l)GO TO 601 eTR 1342CALL PLOT(O.,O.,S) eTR 1343CALL PLOT(0.,O.,2) eTR 1344CALL PLOT(0.,YFAe,-3) eTR 1345KNTBLKS=KNTBLKS+l eTR 1346190 601 CONTINUE JA2076 3602 KP=LENT eTR 1349CALL ~ISPLA(20H CORNERS PLOT BLOCK ,KNTBLKS) eTR 1350e ------t\LL MAP CORNER PLOT eTR 1351CALL eORNERS(XA,YA) eTR 1352195 CALL PLOT(0.,O.,-3) eTR 1353KNTBLKS=KNTBLKS+l eTR 1354e ------ADDITIONAL ORIGIN SHIFT IF REOUIRED.NORMALLY XS=YS"O. eTR 1355CALL PLOT(XS,YS,-3) eTR 1356CALL DISPLA(20H SECOND ORIGIN SHIFT,KNTBLKS) eTR 135720\) KNTBLKS=KNTBLKS+l eTR 1358c ------eALL CONTOURING OVERLAY eTR 1359CALL OVERLAY(7HOVRLA31,3,l) eTR 1360IF(KP.EO.LENT)GO TO 16 eTR 1361CALL PLOT(O.,O.,3) eTR 1363205 CALL PLOT(O.,O.,2) eTR 1364CALL PLOT(0.,O.,-3) eTR 1365KNTBLKS=KNTBLKS+l eTR 1366CALL DISPLA(20H CORNERS PLOT BLOCK ,KNTBLKS) eTR 1367c ------eALL MAP CORNER PLOT AGAIN eTR 1368210 CALL eORNER&(XA,YA) eTR 1369rALL PLOT(O.,O.,-3) eTR 1370K~TBLKS=KNTBLKS+l eTR 137114 PRINT 314.~~TBLKS CTR 1372314 FOfltlAH*orjlAMAX ?LOT BLuL:K*, 14). eTR 1373215 CALL DISPLA(20H HINf-~AX PLOT BLOCK ,KNTBLKS) eTR 1374C ------CALL MINIHAX CTR 1375CALL HINAHAX CTR 137616 CONTINUE eTR 137717 CONTINUE CTR 1378220 CALL PLOT(0.,O.,3) CTR 1379CALL PLOHO.,O.,2) CTR 1380C ------INCREHENT MAP WINOOW NO BY 1. CHECK IF MORE MAP WINDOWS TO CTR 1381C BE CONTOURED. IF YES,RE=SET GRID SIZE I.ND GO TO 15 CTR 1382C IF NO ,STOP PROCESSING CTR 1383225 NW=NW+l CTR 1384IF(NW.GT.NWIN)GO TO 18 eTR 1385CALL PLOT(0.,YFAe,-3) eTR 1386KNTBLKS=KNTBLKS+l eTR 1387

P02

Page 96: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM FITPLT 76t76 OPT=1 FTN 4.4+R401 1{ ;08 '76 09.27.04 PAGE 5

TDX=SDX $ TDY=SDY CTR 1388230 GO TO 15 CTR 1389

C ------CLOSE PLOT FILE. CTR 139018 CALL PLOTeO .• 0.• 999) CTR 1391

PRINT 315,KNTBLKS CTR 1392315 FORMATe-O-t-ONO OF PLOT BLOCKS =-,14) CTR 1393

235 END CTR 1394

'-------------------------:8:":0-=3----------------- -- _..__.....J

Page 97: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE CORNERS 16/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTI~E eORNERS(XA,YA) eTR 1395C CORNERS tttttttttttt****ttt***tt***ttt*****ttttt*ttt**********tttt eTR 1396C ------THIS SUBROUTINE ANNOTATES CORNERS ANO MAP NAME eTR 1397eOMMON/REFCOR/XR(20),YR(20),LTD(20),LND(20),LAB(20).NAME(3),NR CTR 13985 eOMMON/Xye/XYS eTR 1399C ------APPLY COMPRESSION TO SHIFT CTR 1400IF(XYS.GT.1.0) XA=XA*XYS eTR 1401IF(XYS.LT.1.0) YA=YA/XYS eTR 1402HEIG=0.1 eTR 140310 e ------APPLY SHIFT TO CORNERS IN RELATIONSHIP TO MAP SUBDIVISION eTR 1404DO 360 NN=1.NR eTR 1405~.,N~)=XR(NNj-XA eTR 1406360 YR(NN)=YR(NN)-YA eTR 1407DO 60 N=1,NR eTR 140815 C ----~-CHEeK CO-ORDS OF EACH eONRER WITHIN RANGE OF +OR- 500. eTR 1409IF(XR( N).GT.500.) GO TO 59 CTR 1410IF(XR( N).LT.-500.)GO TO 59 eTR 1411IF(YR( N).GT.500.) GO TO 59 eTR 1412IF(YR( N).LT.-500.)GO TO 59 CTR 141320 C ------ASSIGN POSITION OF CORNER eTR 1414X,lG=XR(N) eTR 1415YPG=YR(N) eTR 1416e ------PLOT CORNER AS + eTR 1417CALL SYMBOL(XPG,YPG.0.5,3,O .• -1) eTR 141825 C ------ASSIGN LABEL OF CORNER eTR 1419LON=LND(N) eTR 1420LAT=LTD(N) CTR 1421e ------eHEeK TYPE OF CORNER CTR 1422IF(LAB(N).EO.O) GO TO 52 eTR 142330 IF(LAB(N).EO.1) GO TO 51 eTR 1424IF(LAB(N).EO.2) GO TO 60 eTR 1425IF(LAB(N).EO.3) GO TO 53 eTR 1426r ------NW CORNER eTR 1427

~j XPL=XPG eTR 14283S YPL=VPG-1.0 eTR 1429CALL SYMBOUXP'_. YPL tlEIG,LAT, 90. ,6) eTR 1430XPL=XPG-1.0 eTR 1431VPL=YPG eTR 1432CALL SYMBOLG:PL, YPL.HEIG.LON, O. ,6) CTR 143340 GO TO 60 eTR 1434e ------SE COR'~ER eTR 143551 XPL=XPG eTR 1436YPL=YPG+0.4 CTR 1437CALL SYMBOL(XPL,YPL.HEIG.LAT,90 .• 6) CTR 143845 XPL=XPG+0.4 eTR 1439YPL=YPG eTR 1440CALL SYMBOL(XPL,YPL,HEIG,LON. 0.,6) eTR 1441GO TO 60 eTR 1442C ------SW eORNER.LABLE MAP TITLE CTR 144350 52 XPL=XPG+3.0 eTR 1444YPL=VPG+2.0 eTR 1445CALL SYMBOL(XPL,Y?L,O.4,NAME,90.,30) eTR 1446GO TO 60 eTR 14~759 PRINT 100 eTR 144~55 100 FORMAT(1H .* CORNER OUT OF RANGE -------------------------*.lli; eTR 144;;60 CONTINUE eTR 1450e ------REMOVE SHIFT APPLIED TO CORNERS. RESTORE SHIFT TO ORIGINAL CTR 1451

C03

Page 98: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE CORNERS 76/76 OPT=1 FTN 4.4+R401 12/08176 09.27.04 PAGE 2

C VALUES CTR 1't52DO 61 NN=1.NR CTR 1453

60 XR(NN)=Xq(NN)+XA CTR 145461 YR(NN)=YR(NN)+YA CTR 1455

IF(XYS.LT.1.0) YA=YA*XYS CTR 1456IF(XYS.GT.1.0) XA=XA/XYS CTR 1457RCTURN CTR 1458

65 END CTR 1459

CARD NR. SEVERITY DETAILS

32 53

DIAGNOSIS OF PROBLEM

THIS l~ DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.

003

Page 99: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE MINAHAX 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTINE MINAHAX CTR 1460C HINlHAX *****t***t**tt**t***~~*t***ttt**tt***t**ttt*t*tt*t**t* tttt CTR 1461C ------THIS ROUTINE PLOTS THE LOCAL MINIMUM AND MAXIMUM AND THE CTR 1462C ACTUAL VALUE CTR 1463

5 COMHON/EXTREH/KP,LENT CTR 1464COHHON/HEIT/HEIT,HEIG,XINC,YINC CTR 1465COHHON/KNTBLKS/KNTBLKS CTR 1466NDCL=l $ HINlMA=l CTR 1467REWIND 24 CTR 1468

10 DO 1 KZ =1,KP CTR 1469C ------READ IN MIN OR MAX VALUE ETC. CTR 1471)

READ(Z4) X,Y,Z,INDIC,NOCK,NOLAB CTR 1471J=IFIX(Z) CTR 14/2ENCODE(5,2,LABEL)J CTR 1(73

15 2 FORMATe 15) CTR 1474C ------SEPARATE MINlMAX PLOTTING INTO DIFFERENT PLOTTING BLOCKS CTR 147~

C EACH CONTAINS MINIMA AND MAXIMA WITHIN A COLUMN OF CONTOUR CTR 147(:C BLOCKS CTR 14""

IF(NOCK.EO.NOCL) GO TO 3 CTR 14f820 KNTBLKS=KNTBI.i<S+l $ MINIMA=MINIMA+l CTR 1479

CALL OISPLA(ZOH MINIMAX PLOT BLOCK ,KNTBLKS) eTR 1480CALL OISPLA(ZOH COLUMN ,MINIMA) CTR 1481CALL PLOT(0.,O.,-3) CTR 1482

3 CONTINUE CTR 148325 CALL PLOTO(, Y, 3) CTR 1484

IF(INDIC.EO.1) GO TO 10 CTR 1485C ------ANNOTATE LOCAL MINIMUM CTR 1486

CALL SYMBOL(X,Y,HEIG,5,O.,-1) CTR 1487GO TO 11 CTR . 1488

30 C ------ANNOTATE LOCAL MAXIMUM CTR 148910 CALL SYMBOL(X,Y,HEiG,4,O.,-1) CTR 149011 IF(NOLAB.EO.O) GO TO 4 CTR 1491

CALL PLOTeX,Y,3) CTR 1492XPL = X + XINC CTR 1493

35 C ------ANNOTATE VALUE OF MINIMUM OR MAXIMUM CTR 1494CALL SYMBOL(XPL,Y,HEIT,LABEL,O.,5) CTR 1495

4 NOCL=NOCK CTR 14961 CONTINUE CTR 1497

REWIND Z4 CTR 149840 END CTR 1499

E03

Page 100: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

..~nGRAM CANTEP 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

OVERLAYCOVRLA31 ,3,1) CTR 1500PROGRAM CANTER CTR 1501C CANTER **~*t~*****t*t*t****ttt*t*tt*t*ttt*t***t***ttt*t*tt*t* tt ••• CTR 1502C ------THIS PROGRAM HANDLES AND CONTROLS THE CONTOURING CTR 15035 C (1)IT FURTH~R SUB-DIVIDLJ EACH PLOT INTO SHALLER BLOCKS AND CTR 1504C BRIUGS IN RELEVANT GRID DATA. CTR 1505C (2)CH"Cf<S lOCAL HINiHUH AND HAXIHUM VALUES AND SAVES THEH ON CTR 1506C TAPE24 CTR 1507C (3)SETS UP VARIOUS CONTOUR LEVELS BEFORE CALLING THE ROUTINE CTR 150810 C WHICH GENERATES CUTS CTR 1509C GENERATES CUTS CTR 1510COHMON/INTERV/KONVL,SINHIB,NDEP~,YALEC,HINHAX CTR 1511COHHON/INTORN/ILF,IRT,JLF,JRT CTR 1512COHHON/AIRCB/LAREA,TDY,KEEPER,NBB,SCAX,SCAY,L1,H1,L2,M2,L3,M3 CTR 15B15 1 ,INTB,HUL,NATAB2,NDB,LCMD,NADAST,NUHBF,NBUFNT,NUMBGP,JEP,TDX CTR 1514COHHON/KNTBLKS/KNTBLKS CTR 1515COHHON/SQUARK/A,LA,CP,KAF,IFK,IFKU,JL,JU,DINT CTR 1516COHMON/E>CTREH/KP.LENT CTR 1517COHHON/NOFFS/NOFFSET, TH ICK, KNTR, NTOLO, NTWO, NTIN, FI/Jr CTR 151820 DIHENSION LAREA(12) CTR 1519DIHENSION A(2200),KVALC2200),LAC9000),CPC20),KAFC40C),MULPC20) CTR 1520DIHENSION KONVL(4),NULN<4).NUCNC4),LAL(4),NUCSC4),LG(4),LLC4) CTR 1521REAL KONVL,KVAL CTR 1522EQUIVALENCE <KVAL,A) CTR 152325 KNTR=KIHBLKS-1 CTR 1524IFCHINHAX.EQ.1)KNTR=0 CTR 1525LIZP=4 CTR 15Z6SUPPS=KONVL(1)/10. CTR 15Z7TH=SECONDCDTM) CTR 152830 C ------NO SUPPRESSION OF MINIMAX VALUES CTR 1529SUPPS=O. CTR 1530PRINT 901,Ti1 CTR 1531DINTB=INTB CTR 1532

CTR 153335 C FOR PUSH WIDEN INTORN CTR 1534CTR 1535NTOZ=2 CTR 1536NLAP = 20 CTR 1537NLP=5 CTR 153840 NSEV = 46 CTR 1539NALB = NSEV 12 CTR ~540C ------INCREASES WINDOW OF MAP SECTION BY 2 GRID UNITS ALL AROUND CTR 1541C TO ALLOW CONTOURING TO WINDOW EDGE. CTR 1542ILF = ILF - 2 CTR 154345 IRT = IRT + 2 CTR 1544JLF = JLF - 2 CTR 1545JRT = JRT + 2 CTR 1546JHG = JRT -JLF +1 CTR 1547NTI '" IRT- ILF+1 CTR 154850 NTJ=JHG CTR 1549DINT=1.0IlNTB CTR 1550C ------SET CONTOUR PLOT BLOCK WIDTH=NSEV=46.CALCULATE NO OF BLOCKS eTR 1551C iN X-DIRECTION OF HAP SECTION,AND 1/" OF GRID PTS IN LAST BLOCK, CTR 1552C IF NO OF GRID PTS IN LAST BLOCK ~ESS THAN 5.IGNORE IT.CNLI) eTR 155355 C OTHERWISE CHECK IF NLI GT. THAN NSEV/2. CTR 1554e IF NOT,REDUCE PLOT B~OCK SIZE BY 1 GRID UNIT AND REPEAT CTR 1555C ABOVE PROCEDURE. C7R 1556

F03

Page 101: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM CANTER 76/76 OPT=1 FTN 4.4+R40"j 12/08/76 09.27.04 PAGE 2

60

65

70

75

80

85

90

95

100

105

110

CCC

C

CC

C

C

CC

C

THIS IS TO MAKE SURE LAST BLOCkS ARE NOT TOO SMALL CTRIF ALRIGHT. REPEAT THE SAME PROCEDURE FOR Y-DIRtCTION OF MAP CTRSECTION CTR

KBI = NSEV CTR73 CONTINUE CTR

NBI=CNTI-NLP)/CKBI-NLP)+1 CTRNLI=NTI-CKBI-NLP)*CNBI-1) CTRIFCNLI.NE.NLP) GO TO 71 eTRNBI=NBI-1 eTRNLI=KBI CTRGO TO 72 CTR

71 CONTINUE CTRIFCNLI.GT.NALB) GO TO 72 eTRKBI=KBI-1 CTRGO TO 73 CTR

72 CONTINUE CTRIFCNTI.LT.NSEV) KBI=NTI CTRKBJ=NSEV CTR

8~ CONTINUE CTRNBJ=CNTJ-NLP)/CKBJ-NLP)+1 CTRNLJ=NTJ-CKBJ-NLP)*CNBJ-1) CTRIFCNLJ.NE.NLP) GO TO 81 CT~NBJ=NBJ-1 CTRNLJ=KBJ CTRGO TO 82 CTR

81 CONTINUE CTRIFCNLJ.GT.NAlB) GO TO 82 CTRKBJ=KBJ-1 CTR~roe m

82 CONTINUE CTRIFCNTJ.LT.NSEV) KBJ=NTJ CTR------NO OF CONTOUR PLOT BLOCKS IN Y-DIRECTION CTRNOCK=NBJ CTR------NO OF GRID PTS IN EACH CONTOUR PLOT BLOCK IN Y-DIRECTION CTR

EXCEPT THE LAST ONE CTRJOCK=KBJ CTRJOP=JOCK CTR------NO OF GRID PTS IN THE LAST BLOCKS CTRJEM=NLJ CTRPRINT 116.NBI.NOCK.JHG.JOCK.JOP.JEM CTR

116 FORMATC*O*I* NBI*.i5.5X.*NDCK*.I5.5X.*JHG*.I5.5X.*JOCK*.I5.5X.*JOP CTR1*.I5.5X.*JEM*.I5/) CTR------INTO CONTOUR PLOT BLOCKS(,K) CTR00 113 K=l,NOCK CTRTM=SECONOCDTM) CTRPRINT 901.TM CTR

CALCULATE THE ORIGIN AND SI2E OF BLOCKSC.K) IN Y-DIRECTION CTRIN GRID UNIT AND INCHES. CTR

JL=CK-1)*CJOCK-NLP)+JLF CTRJU=JL+JOCK-1 CTRPIST~CCK-1)*(JOCK-NLP)-2)*TDY CTRiHG=KBI CTRIFCK.NE.NOCK)GO TO 84 CTRJU=JRT CTRJOP=JU-JL+1 CTR------START OF CONTOUR PLOT BLOCK CIAO.K) CTR

84 DO 56 IAO=1.NBI CTR

G03

15571558155915601561156215631564156515661567156815691570iS7;157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613

Page 102: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM CANTER iG/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 3

115 C ------CALCULAT~ THE ORIGIN AND SIZE OF BLOCK(IAO,K)IN X-DIRECTION CTR 1614C IN GRID UNITS AND INCHES CTR 1615OIST=«IAO-1)*(KBI-NLP)-2)*TDX CTR 1616IF(IAO.EO.NBI)IHG=NLI CTR 1617IFK=(IAO-1)*(KBI-NLP)+ILF CTR 1618I~U IFKU=IFK +IHG -1 eTR 1619KNTR=KNTR+1 eTR 16Z0C ------GO TO 86 WHEN ONLY MINIMAX REOUIRED CTR 1621IF(MINMAX.EO.l)GO TO 86 eTR 1622IF(IAO.EO. 1.AND.K.EO.1)GO TO 85 eTR 1623125 CALL PLOT(0.,O.,-3) CTR 162485 CALL DISPLA(20H CONTOUR PLOT BLOCK ,KNTR) eTR 1625CAI.L DISPLA(20H MINOR CONTOURS ) eTR 162686 PRINT 902,KNTR,IAO,IHG,K,JOP,IFK,IFKU,JL,JU,OIST,PIST eTR 1627902 FORMAT(/*oeONTOUR PLOT BLoeK*,I4/*OIAO*,I4,5X,*IHG*,I4,5X,*K*,I4, CTR 1628130 15X,*JOP*,I4,5X,*X1',I5,5X,*X2*,I5,5X,*Y1*,I5,5X,*Y2*,15,5X,*OIST*, eTR 16292F9.4,5X,*PJST*,F9.4/) CTR 1630C ~-----CALL KATERD TO READ IN GRID ~ATA FOR THAT BLOCK eTR 1631CALL KATERD eTR 1632JPZ=JOP-NTOZ eTR 1633135 J=1+NTOZ CTR 16347 J=J+1 eTR '1635MM=J/2 eTR 1636L=2*J-4*MM-1 eTR 1637lA = 1 + IHG CTR 1638140 IB = 1 + Z * NT02 - IHG CTR 1639I = (lA y IB * L) / 2 eTR 1640IL = (lA - IB * L) / 2 eTR 1641I = I - L eTR 16425 I=I+L eTR 1643145 H=I+(J-1)*IHG eTR 1644HM1=H-IHG $ HH3=H+IHG eTR 1645HH2=H+1 S HM4=M-1 eTR 1646C ------CHEeK GRID VALUE IS A LOCAL MINIMUM,IF SO,SAVE IT CTAPE24) eTR 1647C CHECK IF VALUE-LABEL IS SUPPRESSED eTR 1648150 IF(A(H).GE.A(MH1).OR.A(M).GE.A(HM3»GO TO 2 eTR 1649

IF(A~M).GE.A(MH2).OR.A(M).GE.A(HM4»GO TO 2 CTR 1650303 ~ORHAT(1X,*HINlMA*,3110,5E15.3) eTR 1651A~IN=(A(HH1)+A(HMZ)+A(HH3)+A(HH4»/4. eTR 1652A3AMI=ABS(A(H)-AMIN) CTR 1653155 NJLAi3=1 eTR 1654IF(ABAHI.LT.SIJPPS)NOLAB=O eTR 1655PRINT 303, I,J,H,A(M),A(MH1),A(HH2),A(MM3),A(HM4) eTR 1656X=OIST+(I-1)*TDX CTR 1657Y=PIST+(J-1)*TDY eTR 1658160 INDle=o eTR 1659WRITE(24) X,Y,A(H),INDIe,K,NDLAB CTR 1660KP = KP+1 eTR 1661C ------CHEeK GRID VALUE IS A LOCAL HAXIMUM,IF SO,SAVE IT CTAPE24) eTR 1662C eHECK IF VALUE-LABEL SUPPRESSED eTR 1663165 2 IF(A(M).LE.A(MH1).OR.A(M).LE.A(HM3»GO TO 3 CTR 1664IF(A(H).LE.A(MHZ).OR.A(M).LE.A(HH4»GO TO 3 CTR 1665AHAX=(A(HH1)+A(MMZ)+A(MM3)+A(MM4»/4. eTR 1666ABAHA=ABS(A(H)-AMAX) eTR 1667NOLAB=1 CTR 1668170 IF(ABAHA.LT.SUPPS)NOLAB=O CTR 1669X=OIST+(I-1)*TDX CTR 1670

H03

Page 103: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM CANTER 76/76 OPT=1 FTN 4.4+P401 12/08/76 09.27.04 PAGE 4

Y=PIST+(J-1)tTDY CTR 1671INOIC=1 CTR 1672WRITE(24) X,Y,A(M),INDIC,K,NOLAB CTR 1673175 KP = KP+1 CTR 1674C ------REPEAT ABOVE FOR ALL GRID PTS IN BLOCK<IAO.K) CTR 16753 IFCI.NE.IL)GO TO 5 CTR 1676IF(J.LT.JPZ)GD TO 7 CTR 1677IF(MINHAX.EO.1)GD TO 56 CTR 1678180 NUMPL=IHGtJOP CTR 1679C ------OETERMINE THE DYNAMIC RANGE OF GRID VALUES A(M) CTR 1680C EAS LE.DR EO.A(M) LE,OR EO.GRT CTR 1681C FOR ALL A(M)S WITH BLOCK(IAO,K) CTR 1687.EAS=1.0E+300 S GRT=-EAS S M=O CTR 1683185 11 M=M+1 CTR 1684IF(GRT.GE.A(M»GO TO 12 CTR 1685GRT=A(M) CTR 168612 IF(EAS.LE.A(M»GO TO 13 CTR 1687EAS=A<M) CTR iM8190 13 IF(M.NE.NUMPL)GO TO 11 CTR 1689ABSGR = ABS(GRT) CTR 1690ABSEAS = ABS(EAS) CTR 1691C ------OETERMINE NO OF CONTOUR LEVELS FOR EACH CONTOUR INTERNAL CTR 1692C KONVL(LI2) (LIZ=1,2.3,4) ALSO CTR 1693195 C THE LOWEST LEVEL NO LGL=LG(LlZ> CTR 1694C THE HIGHEST LEVEL LLL=LL< LlZ) CTR 1695DO 705 LIZ=1,LIZP CTR 1696LGL = ABSGR/XONVL(LIZ) CTR 1697IF(GRT.GT.O.)GO TO 70Z CTR 1698200 LGL = -LGL-1 CTR 1699702 LLL = ABSEAS/KONVL(LIZ) CTR 1700IF(EAS.LT.O.)GO TO 703 CTR 1701LLL = LLL+1 CTR 170ZGO TO 704 lTR 1703205 703 LLL = -UL CTR 1704704 LG(LIZ) = LGL CTR 1705LL<LlZ) = LLL CTR 1706PRINT 302,LGL,LLL CTR 1707302 FORMAT(t LGL LLLt,I9,I10) CTR 1708210 C ------NO OF CONTOUR LEVELS NUCS(LIZ) CTR 1709NUCS(LIZ) = LG(LIZ)-LL(LIZ)+1 CTR 1710C ------NO OF CONTOUR LEVEL GROUPS (20 IN A GROUP) NULN(LlZ) CTR 1711NIJLM(LIZ) = (NUCS(LlZ)-1 >JNLAP+1 CTR 1712C ------NO OF CONTOUR LEVELS IN THE LAST GROUPS CTR 1713Z15 NUCN(LIZ) = NUCS(LIZ)-(NULN(LIZ)-1)tNLAP CTR 1714LAL(LIZ) = LL(LIZ) CTR 1715705 CONTI NUE CTR 1716DO 261 KOO =1,NUMPL CTR 1717KVAL(KOD)=A(KOO)tDINTB CTR 1718220 261 CONTI NUE CTR 1719TI~HIB = DINTB/(SINHIBtSCAY) CTR 1720C ------NO INHIBITION FOR 4TH CONTOR LEVEL CTR 1721DO 55 KKK=1,LIZP CTR 1722INHIB =IFIX(TINHIBtKONVL(KKK» CTR 1723225 IF(KKK.EO.LIZP)INHIB=999999999 CTR 1724NUOG = NLAP CTR 1725KKN=O CTR 172622 CONTINUE CT~ 1727

103

Page 104: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAI1 CANTER 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 5

KKN=KKN+1 CTR 1728230 KL=LAL(KKK)+(KKN-1)'NLAP CTR 1729

KU=KL+NLAP-1 CTR 1730C ------SET UP CONTOUR LEVEL CP(KEEP) ETC IN GROUPS OF 20 CTR 1731

IF(KKN.NE.NULN(KKK»GO TO 24 CTR 1732NUDG=NUCN(KKK) CTR 1733

235 KU=KL+NUDG-1 CTR 173424 IF(NUDG.EO.O)GO TO 263 CTR 1735

KEEP=O CTR 173625 KEEP=l{EEP+1 CTR 1737

CP(KEEP)=(KL+KEEP-1)·KONVL(KKK) CTR 1738240 MULP(KEEP) = KKK CTR 1739

:r-CKKK.EO.LIZP) GO TO 251 CTR 1740t...<KP = KKK+1 CTR 1741

C ------INHIBIT CONTOUR LEVELS OCCURING IN HIGHER/HEAVIER LEVELS CTR 1742DD 711 LIZ=KKKP.LI2P CTR 1743

245 IN'"EV = CP CKEEP) /KONVL< Ll Z) CTR 1744DOi~N = CP(KEEP)-INTEV'KONVL<LI2) CTR 1745DOi~N=ABS CDORN) CTR 1746IF(~nRN.LT .• 0001)MULP(KEEP)=0 CTR 1747

711 COIm",UE CTR 1748250 251 PRINT 921.CPCKEEP).KEEP.MULP(KEEP) CTR 1749

921 FORMAH' CP ='.F9.0.' KEEP ='.15.' MULP ='.15) CTR 1750IF(KEEP.LT.NUDG)GO TO 25 CTR 1751JOLP=JOP CTR 1752

C ------SCALING CONTOUR LEVELS CTR 1753255 DO 262 KOD =1.NUDG CTR 1754

KAFCKOD)=CP(KOD)'DINTB CTR 1755262 CONTI NUE CTR 1756

C ------CAlL PEN PUSHING CONTROL ROUTINES CTR 1757CALL PUSH CKVAL.LA.IHG.JOLP.NUDG.KAF.MULP.INHIB.OIST.PIST.TDX.TDY. CTR 1758

260 1NDERX. YALEC) CTR 1759263 IFCKKN.LT.NULNCKKK»GO TO 22 CTR 1760

55 CONTINUE CTR 176156 CONTINUE CTR 1762

113 CONTI NUE CTR 1763265 IFCMINMAX.NE.1)KNTBLKS=KNTR CTR 1764

TH = SECOND(DTM) CTR 1765PRINT 901, T~ CTR 1766

901 FORMAT('OSCANTER TIME IS .... ·.F12.3/·0·) CTR 1767END CTR 1768

CARD NR. SEVERITY DETAilS

127 I )

DIAGNOSIS OF PROBLEM

ARGUMENT COUNT INCONSISTENT WITH PRIOR USAGE.

J03

Page 105: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUT1N~ KATERO 76/76 OPT=1 FTN 4.4+R401 1Z/08/76 09 .Z7 .04 PAGE

SUBRUUTINE KATERD eTR 1769e KATERD ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• eTR 177:'e -----THIS ROUTI~E B~INGS IN GRID DATA WITHIN EAeH PLOT BLoeK FROM eTR 1771e THE MASS STORAGE FILE eTR 17725 eOMMON/LD/LD eTR 1773eOMKON/LAseB/IAX,JAR,NIGP,NAP, JAXLST,MAZE,AH,NUMPS, JAM,NAX ,NIT,NIP eTR 17741,NLP eTR 1775eOHHON/SOUARK/A(Z200),LA,ep,KAF,IKATL,IKATR,JL,JU,DINT eTR 1776eOHMON/KATERD/NB1,NBREH eTR 177710 DIMENSION BUF(6400) eTR 1778DIMENSION LA(9000),ep(ZO),KAF(400) eTR 1779e eTR 1780JTR=JU-JL+1 em 1781JRD=O CTR 178215 JK=O eTR 1783e eTR 1i'84NAPK=NAP'3-1 eTR 1785INe=1 eTR 1786IF(JL.GT.JAR)GO TO 6 eTR 1787ZO NB=Z eTR 1788NR=JAR eTR 1789NRR=NB1 erR 1790JS=JL eTR 1791GO TO 7 eTR 179225 6 NR=NB1 eTR 1793NRR=NBREM eTR 1794NN=(JL-NLP-1)/NR eTR 1795NB=NN'3+Z eTR 1796JS=JL-NLP-NN'NR eTR 179730 IF( JS.ECl.O) JS=NR eTR 17987 IF(JS.LE.NRR)GO TO 2 eTR 1799JS=JS-NRR eTR 1800c eTR 1801c B':GIN READ LClOP eTR 180235 '= eTR 1803NB=NB-INe eTR 1804INC=3'"INe eTR 1805NRR=NR-NRR eTR 18062 IF(NB.EO.NAPK)NRR=JAXLST-NLP eTR 180740 e eTR 1808JR=NRR-.IS+1 eTR 1809JJ=JTR-JI\D eTR 1810IF(JJ.GE.JR)GO TO 3 eTR 1811NRR=NRR-(JR-JJ) eTR 181245 JR=JJ eTR 18133 JF=NRR eTR 1814JRD=JRD+JR eTR 1815NW=JF'IAX eTR 1816eALL READHS(lD,BUF(1),NW,NB) eTR 181750 DO 5 K=JS,JF eTR 1818NW=(K-l)'IA~+IKATL eTR 1819DO 4 J=IKATL,IKATR eTR 1820JK=JK+1 eTR 1821A(JK)=DINT'BUF(NW) eTR 182255 4 NW=NW+1 eTR H235 CONTINUE eTR 1824JS=1 eTR 1825

K03

Page 106: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE KATERO "16/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2

60

IF(NB.EO.3)NR=NB1IF(JRD.LT.JTR)GD TO 1RETURNEND

L03

CTRC'RC'~Cn'

1826182718281829

Page 107: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTi'l 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTINE PUSH(F.KEP.IAX.JAX.NUOG.KPG.HULP.INHIB.GX.GY.TDX.TDY. eTR 18301NDERX. YALE> eTR 1831e PUSH *tt***~*t*w*****t*t**t*t*t*t*tt*tt****tt**t*****t*tt** ttttt eTR 1832e ------THIS ROUTINE GENERATES CONTOUR eUT STRINGS FROM GRID VALUES eTR 18335 INTEGER FL.GL.eL.USED.DNO.PEN eTR 1834DIHENSION F(1).FL(600>.GL(600>.eL(300>.DNO(600>.PEN(300> CTR 1835DIMENSION KPG(1).HULP(1> eTR 1836DIMENSION NEM~(20).NEXA(20>.NEYA(20>.NOUP(20>.NOUeH(20>.NND(20> eTR 1837DIHENSION LEXST(500).LEYST(500>.LEXF(500>.LEYF(500>.USED(500> eTR 183810 DIHENSION KUTA(5) eTR 1839DIHENSIO~ KAOAR(4.3>.HZAR(4.3>.HART(4>.HARG(4.3> eTR 1840DIMENSION KART(1Z>.MTW(12> eTR 1841DIHENSION KEP(1).NUPS(400>.LOOP(400>.LORBA(400>.KLINA(400> eTR 1&421.LARTLN(400).LULP(400> eTR 184315 OIHENSION NIDEP(4) eTR 1844DIHENSION NDN(12) eTR 1845OIHENSION HTR(12).NIDRN(12> eTR 1846eOHHON/UNTPIN/seINT.YALEe CTR 1847eO~HON/PEN/PEN eTR 184820 COHHON/ANLON/LONIT eTR 1849eOHHDN/DRAW/NULNS.LULP.NUPS.LOOP.LORBA.KLINA.LARTLN eTR 1850eOHHON/ORIGIN/OX.OY eTR 1851eOHHON/SCALES/STDX.STDY eTR 1852eOHHON/KozeOH/KOZSBX eTR 185325 eOMMON/NOFFS/NOFFSET.THICK.KNTR.NTOLD.NTWO.NTIN.FINe eTR 1854DATA(KADAR=1.0.1.0.0.1.0.1.1.0.1.0> eTR 1855DATA(NIDEP=3.4.1.Z> eTR 1856DATA(HARG=4.1.2.3.1.2.3.4.2.3.4.1> eTR 1857DATA(KART=0.1.0.1.u.0.1.0.1.0.1.1> eTR 185830 DATA(NDN=1.4.1.4.3.1.4.1.4.3.2.2> eTR 1859DATA(NIDRN=1.4.1.4.3.1.4.1.4.3.2.2> CTR 1860PRINT 922.IAX.JAX eTR 1861

922 FORHAT('O*I' ENTERING PUSH*.6X.'IAX'.15.6X•• JAX•• 15> eTR 1862STDX=SEeOND(STDX> eTR 186335 PRINT 923.STDX eTR 1864923 FORHAT(.OTIHE ...•• F12.3/> eTR 1865STDX = TDX S STOY = TOY eTR 1866OX=GX S OY=GY eTR ~&67YALEe = YALE eTR 186840 L1NEAR=O S NONLIN=O eTR 1869KTWELV=12 eTR 1870KTHREE=3 eTR 1871LONAG=10 eTR 1872LONIT=10 eTR 187::S45 INTS=1000 eTR 1874INTS02=INTS/2 eTR 1875LONA=3 eTR 1876LONB=1 eTR 1877LONe=40000 eTR 187850 LON=2 eTR 1879HNPL=4 eTR 18110seINT=INTS eTR 1881INTS2=INTS'2 eTR 1882INTS6=INTS'6 eTR 188355 lAXM=IAX-l SJAXH=JAX-1 SIAXMH=IAX-2 S JAXHM=JAX-2 eTR 1884HZAR(1.1>=-IAXSHZAR(2.1>=lSHZAR(3.1>=1+IAXSHZAR(4.1>=-1+IAX eTR 1885HZAR(1.3>=1-1AXSHZAR(2.3>=1+1AXSHZAR(3.3>=IAXSHZAR(4.3>=-1 eTR 1886

H03

Page 108: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 2

;'ZAR( 1,2)=- lAXSHZAR(2, 2)=2SHZAR(3, 2)=2*IAXtHZAR(4, 2) =-1 eTR 1887I~T(1)=-IAX S HART(2)=+1 S HART(3)=I.~ $ HART(4)=-1 eTR 188860 HTW(1)=-1-IAX S HTW(2)=-1-IAX S HTW(3)=-1 S HTW(4)::--'; eTR 1889HTW(5)=-1+IAX S HTW(6)=-IAX SHTW(7)=-IAX S HTW(8)=0 eTR 1890HTW(9)~0 S HTW(10)=IAX S HTW(11)=1-IA~ S HTW(12)=1 eTR 1891HTR(1)=-1-IAX S HTR(2)=-1-IAX S HTR(3)=-1 S HTR(4)=-1 eTR 1892HTR(5)=-1 S HTR(6)=-IAX S HTR(7)=-IAX $ HTR(~)=O eTR 189365 HTR(9)=0 S HTR(10)=0 $ HTR(11)=-IAX S HTR(12)=u eTR 1894NUHPS=IAX*JAX eTR 1895,NUHFL=2*NUHPS eTR 18961AX2=1A><*2 eTR 1897JIAXH : JAXH * lAX eTR 189870 JIAXHH = JIAXH - lA>< CTR 1899JIAXH3 = .J1AXHH . !AX eTR 1900H1 = NUHPS - 1 eTR 1901H2 : lAX + H1 eTR 190ZH3 = JIAXH3 + H1 eTR 190375 H4 = JIAXHH + H1 CTR 1904JIAXHI11 = JIAXHH - 1 CTR. 1905JIAXH1 = JIAXH - 1 eTR 1906LARGE=100000000000000 eTR 1907I<02SBX = 0 eTR 190880 I<OS = 0 eTR 1909CALL I<OZSTL(I<OS,GL) eTR 1910CALL I<OZSTL(I<OS,DNO) eTR 1911JJ = NUHFL - 1 eTR 1912DO 141 I<OZSBX =1,JJ CTR 191385 CALL I<OZSTL(I<OS,GL) eTR 1914CALL I<QZSTL(I<QS,DNO) eTR 1915141 CONTINUE eTR 1916I<OS =1 eTR 1917DO 142 1=1, lAx eTR 191890 I<OZSBX = 1-1 eTR 1919CALL I<OZSTL(I<OS,DNO) eTR 1920I<02SBX = I + IAXH eTR 1921CALL I<OZSTL(I<OS,DNO) eTR 1922I<02SeX = I + JlAXHH1 eTR 192395 CALL I<OZSTL(I<OS,DNO) eTR 1924I<GZSBX = I + JlAXH1 eTR 1925CALL I<OZSTL(KUS,DNC) eTR 10 ?L....uI<OZSBX = I + 111 eTR 1927CALL I<OZSTL(I<OS,DNO) eTR 1928100 I<OZSBX = I + H2 eTR 1929CALL I<OZSTL(I<OS,DNO) eTR 1930I<OZSBX = I + 113 eTR 1931CALL I<OZSTL(I<OS,DNO) eTR 1932I<llZSBX = I + H4 eTR 1933105 CALL I<OZSTL(I<OS,DNO) eTR 1934142 eONTI NUE eTR 1935L = -1 - lAX eTR 1936DO 145 J = 1,JAX eTR 1937L = L + lAX eTR 1938110 1I = L + NUHPS eTR 1939I<OZSBX = N + 1 eTR 1940CALL I<OZSTL(I<OS,DNO) eTR 1941l<OZSI3X = N + 2 eTR 194ZCALL I<OZSTL(I<OS,DNO) eTR 1943

N03

Page 109: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 3

115 ~02SBX = N+ IAXH eTR 1944CALL KOZSTL(~OS,DNO) eTR 1945~OZSBX = N+ lAX eTR 1946CALL KOZSTL(~OS,DNO) eTR 1947~OZSBX = L + 1 eTR 1948120 CALL KOZSTL(KOS,DNO) eTR 1949~OZSBX = L + 2 eTR 1950CALL KOZSTL(KOS,DNO) eTR 1951~OZSBX = L + IAXHH eTR 1952CALL KOZSTL(~OS,DNO) eTR 1953125 ~OZSBX = L + IAXH eTR 1954tlLL KOZSTL(~OS,DNO) eTR 1955145 eo ,T1NUE eTR 1956L= 0 eTR 1957DO 1133 J = 2,JAXH eTR 1958130 L = L + lAX eTR 1959DO 1133 I = 2.IAXHH eTR 1960r-t = I + L eTR 1961LURT~(FCH+2)-F(H+1»*(F(H)-FCM-1» eTR 1962IF(LURT.GE.O) GO TO 1133 eTR 1963135 ~OZSBX = H - 1 eTR 1964eALL KOZSTL(kOS.GL) eTR 19651133 eONTI NUE eTR 1966DO 1139 I = 2.IAXM eTR 1967H = I eTR 1968140 DO 1139 J = 2,JAXHH e-:-R 1969H= H + lAX eTR 1970LURT=(FCH+IAX2)-F(H+IAX»*CFCM)-F(H-IAX» eTR 1971IFCLURT.GE.O)GO TO 1139 eTR 1972~OZSBX = H + H1 eTR 1973145 CALL KOZSTL(~OS,GL) eTR 19741139 eONTI NUE eTR 1975DO 153 I = Z,IAXH eTR 1976H" I eTR 1977DO 153 J = Z.JAXH eTR '978150 H = H + lAX eTR 1979RLAVG=SORT«F(H+IAX)-F(H-IAX»**2+(F(M+1)-F(M-/»**Z)/2 eTR 1980LAVG=RLAVG eTR 1981IF(LAVG.LE.INHIB) GO TO 153 eTR 1982~OZSBX = H-1 eTk 1983155 CALL KaZSTL(~OS.DNO) eTR 1984~OZSBX = ~OZSBX - 1 eTR 1985CALL ~OZSTL(~OS,DNO) eTR 1986kOZSBX = H + H1 eTR 1987CALL KOZ~T~~~OS,DNO) eTR 1988160 ~OZSBX = ~OZSBX - lAX eTR 1989CALL KOZSTL(~OS.DNO) eTR 1990153 CONTINUE eTR 1991~EG=-1 eTR 1992LINE=1 eTR 1993165 w<=o eTR 1994120 eONTI NUE erR 1995~L~=~L~+1$IF(KL~.GT.NUDG) GO TO 999 . eTR 1996~UN=KPG\~L~)$IFCHULP(KL~).EO.O) GO TO 120 eTR 1997~OS = 0 eTR 1998i70 DO 101 HL=1,NUHPS eTR 1999~OZSBX = HL-1 eTR 2000

003

Page 110: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SU~ROUTlNE PUSH 76/76 OPT=1 FTN 4.4+R401 12108/76 09.Z7.04 PAGE 4

CALL KOZSTL(Kos.eL) eTR Z001IKUN=KUN-F(HL> eTR ZOOZIFCiABSCIKUN).GT.LONA) GO TO 101 CTR Z003175 IFCKUN.GE.F(HL)}F(HL)~F(HL)-LONA ':TR Z004IFCKUN.LT.F(HL»FCHL)=FCHL)+LONA eTR Z005101 CONTINUE eTf Z006I(OZSBX = 0 eTR Z007CALL ~~7STL(KOS.FL) CTR Z008180 DO 1011 KQZSE~ = 1.JJ eTR Z009CALL KOZ5TL(KG5.FL) CTR Z0101011 CONTINUE eTR Z011KOS = 1 eTR 201ZL = 0 eTR 2013185 DO 107 J =Z.JAXH eTR ZC'4L =L + lAX eTR 2015DO 106 I=Z.IAXMH eTR Z016HL = I + L eTR Z(i"?KOZSBX = HL - 1 eTR " ..3190 KOSA = KOZLDl(CL) eTRIF(KOSA.NE.1) GO TO ~04 eTR Zut.CALL KOZSTL(KOS.FL) eTR 20Z1104 K02SBX = HL eTR ZOZZ. KOSA =K02LDL(CL) eTR ZOZ31,95 IFCKGSA.EO.1) GO TO 106 CTR ZOZ4KEST=(KUN-F(HL»*(FCHL+1)-KUN) eTR ZOZ5IFCKEST.LT.O) GO TO 106 eTR ZOZ6KOZSBX = HL - 1 eTR ZOZ7CALL KOZSTL(KOS.FL) eTR ZOZ8ZOO 106 eONTI NUE eTR ZOZ9107 CONTI NUE . CTR Z030KGZSBX = lAX - Z eTR Z031DO 1071 J = Z.JAXH eTR Z03ZKOZSBX =KOZSBX + ;AX eTR 203320~ KOSA = KOZLDL(CL) eTR Z034IF(KOSA.NE.1)GO TO 1071 eTR 2035CALL KOZSTL(KOS.FL) eTR Z0361071 CONTINUE eTR 2037DO 117 I = Z,IAXH eTR ~j38210 HLP = I + lAX eTR Z039DO 116 J =Z.JAXHH eTR 2040HL = HLP eTR Z041HLP = HLP + lAX erR Z042

~DZSBX =HL - 1 eTR Z,143Z15 KOSA = KOZLDLCCL) eTR 2044IFCKDSA.En. 1)GO TO 116 CTR i:045KD2SBX = HLP - 1 CTR 2046KUSA = KDZLDL(CL) CTR Z047IFCKDSA.EO.1)GO TO 116 eTR 20482Z0 KF.ST=<KUN-F(HL»*(F(HLP)-KUN) CTR Z0491~(kEST.LT.O)GO TO 116 CTR Z050~f'!SBX = HL + H1 CTR Z051:. :.L kOZSTLCKDS. FL> CTR Z05Z116 r,~NTINUE CTR Z053ZZ5 117 eUNTI NUE CTR 2054C SEARCH FOR FLAG CTR Z055ZOO eONTI NUE CTR Z056LEVERS=O . CTR 2057

P03

Page 111: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE

230

235

240

245

250

255

260

265

270

275

280

285

NEMOR=O S l3R12=KTHREEJ=OMlP = -lAX

205 I = 0.J = J + 1MlP = MlP + lAX

201 I = I + 1Ml = I + MlPK02SBX = Ml-lKOS = K02l0l(Fl)IF(KOS.~O.l)GO TO 202IF(I.NF..IAXM)GO TO 201IF(J.EO.JAX)212.205

202 KOS = KOZlDl(el)IF(KOS.EO.l) GD TO 222KAD=OGO TO 223

222 l3R12=KTWElVMSP = Ml

223 NIDE=1M=Ml

GO TO 333e EXIT TO NEW lINE WITH M NIDE SETe NO FLAG WITH KAD=O

212 I = 0213 J = 0

I =I + 1Ml = I + NUHPS - lAX

214 J = J + 1Ml = Hl + lAXKOZSBX = III - 1KOS = KOZlDUFL>IF(KOS.EO.1)GO TO 215IF(J.NE.JAXH)GO TO 214IF(I.NE.IAX)GO TO 213

e NO KUTS lEFTGO TO 120

215 KAD = 1NIDE=4 $ M=Ml-NUHPS

e END SEARCHe .ENTER NEWLl NE

333 eONTI NUEHFM=Ml

IF(l3R12.EO.KTWElV) GO TO 224lESTF=«I-2)**2+(NIDE-4)**2)*

1 «IAXMM-I)**2+(NIDE-Z)**2)*2 «J-2)**2+(NIDE-l)**2)*3 ((JAXMM-J)**2+(NIDE-3)**2)IF(l~STF.NE.O) GO TO 221NEMOR=l $ Ml=M $ MP=M+(1-KAD)+KAD*IAXJKF=INTS*(KUN-F(Ml»/(F(MP)-F(Ml»IF(F(MP).EO.F(Ml»JKF=OlEX=(I-l)*INTS+JKF*(1-KAD)lEY=(J-l)*INTS+JKF*KAD t lEP=OlINST=l $ lES=-99 t MES=-99H=M+MARHNIDE)NI DE=N lDEP(N IDE)

904

eTReTRCTReTReTReTReTRCTReTRCTReTRCTReTReTRCTReTRCTReTReTReTReTReTReTReTReTRCTReTReTReTReTReTReTReTReTReTReTReTReTReTReTRCTReTReTReTReTReTReTReTReTReTReTReTReTReTReTReTReTR

205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114

Page 112: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 6

GO TO 5122 eTR 2115224 CONTINUE eTR 2116LEST=(1-1)*(IAXM-I)*(J-2)*(JAXM-J) eTR 2117IF(LEST.NE.O) GO TO 221 eTR 2118290 NEMOR=1 eTR 2119LINST=1 $ LES=-99 $ MES=-99 $ LEP=O eTR 2120LEX=(1-1)*INTS $ LEY=(J-1)*INTS eTR 2121GO TO 5126 eTR 2122221 CONTINUE eTR 2123295 LINST=O eTR 2124LES=-99 $ MES=-99 eTR 2125LEP=O eTR 2126e ENTER NEXTKUT eTR 2127300 eONTI NUE eTR 2128300 NZ=O $ MM=O eTR 2129301 CONTINUE eTR 2130MM=MM+1 eTR Z131MO=O eTR Z132IF(L3R12.EO.KTHREE) GO TO 4011 eTR 2133. 305 KAD=KARHMM) eTR 2134ML=MSP+MTW(MM) CTR 2135GO TO 4012 eTR 21364011 CONTINUE $ MSP=-33333 eTR 2137KAD=KADAR(NIDE.MM) eTR .1138310 ML=M+MZAR(NIDE.MM) CTR 21394012 CONTINUE eTR 2140J=(ML-1)/IAX+1 $ I=ML-(J-1) *lAX $ NUKUTS=O eTR .Z141e SET ML KAD TO FIND KUTA NUKUTS BEGIN KUTFIN eTR 2142NOUeH(1)=O $ NOUeH(Z)=O eTR 2143315 ME=ML-IAX*KAD-1+KAD CTR 2144MP=ML+IAX*KAD+1-KAD eTR 2145MT=ML+2*KAO*IAX+2*(1-KAD) eTR Z146KOZSBX = ML-1 eTR 2147 .KOS = KOZLDL<eU eTR 2148320 IF(KOS.EO.O) GO TO 402 eTR 2149KOS = KOZLDL<FU eTR Z150IF(KOS.EO.O) GO TO 402 eTR 2151NUKUTS=NUKUTS+1 $ KUTA(NUKUTS)=O $ NOUeH(NUKUTS)=ML eTR 2152402 eONTI NUE eTR 2153325 KOZSBX = MP-1 eTR 2154KOS = KGZLDL<eU CTR Z155IF(KOS.EO.O) GO TO 405 eTR 2156KOS = KOZLDL<FU eTR 2157IF(KOS.EO.O) GO TO 405 eTR 2158330 NUKUTS=NUKUTS+1 $ KUTA(NUKUTS)=INTS $ NOUeH(NUKUTS)=MP eTR 2159IF(NUKUTS.EO.2) GOTO 421 eTR 2160405 eONTI NUE eTR 2161MS=ML+KAD*NUMPS eTR 2162KOZSBX = MS-1 eTr. 2163335 KOS=KOZLDL< FU eTR 2164IF(KOS.NE.1)GO TO 421 eTR 2165KOS = KOZLDL<GU eTR 2166IF(KOS.NE.O)GO TO 406 eTR 21674219 NUKUTS=NUKUTS+1 eTR 2168340 RNDER=AB&(F(MT)-F(MP)-F(ML)+F(ME» eTR 2169NDER=RNDER ::TR 2170JKF=INTS*(KUN-F(ML»/(F(MP)-F(ML» eTR 2171

C04

Page 113: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 7

IFCFCMP).EO~FCML»JKF=O CTR 2172IFC~DER.GT.NDERX)GO TO 482 CTR 2173345 KUTACNUKUTS)=JKF ClF< 2174LlNEAR=LlNEAR+1 CTR 2175GO TO 421 CTR 2176482 JUMP=JKF CTR 2177KF=CFCML)+FCMP»/2 $ JKFD=INTS02 CTR 2178350 I<LOOP=O CTR 2179NONLl N=NONLl N+1 CTR 2180433 KLOOP=KLOOP+1 CTR 2181IFCKLODP.LT.101)GO TO 432 CTR 2182PRINT 903 CTR 2183355 903 FORMATC* LOOP IN COMPUTATION OF JT*) CTR 2184GO TO 485 CTR 2185432 KFD=KF CTR 2186JM=JKF-INTS CTR 2187JH2=JKF-INTS2 CTR 2188360 JP=JKF+INTS CTR 2189JP2=JKf'+INTS2 CTR 2190KF=-F(HE)*JKF/INTS*JM/INTS*JM2/INTS6 CTR 21911 +FCML)*JP/INTS*JM/INTS*JH2/INTS2. CTR 21922 -F(HP)*JP/INTS*JKF/INTS*JM2/INTS2 CTR 2193365 3 +F(MT)*JKF/INTS*JP/INTS*JM/INTS6 CTR 2194!~CKFD.NE.KF)GO TO 434 CTR 2195JT:"O CTR 2196GO TO 435 CTR 2197434 JT=JKF+CJI<FD-JKF)*CKUN-KF)/CKFD-KF) CTR 21983;~ 435 IFCIABSCJT-JKF).LT.LONIT) GO TO 484 CTR 2199JKFD=JKF $ JKF=JT CTR 2200GO TO 433 CTR 2201484 IFCJT.GE.O.AND.JT.LE.INTS) GO TO 486 CTR 2202PRINT 902,JKF,KF CTR 2203375 902 FORHAT(1X,*JKF KF *,2110) CTR 2204485 JT=JUHP CTR 2205CALL CUTSTEPCFCME),FCML),FCHP),FCMT),INTS,KUN,IXX,NUDUN) CTR 2206IFCNUDUN.EO.1) GO TO 486 CTR 2207JT=IXX CTR 2208380 486 KUTACNUKUTS)=JT CTR 2209GO TO 421 CTR 2210406 CONTI NU£: CTR 2211C A TURNING POINT EXISTS CTR 2212KA=3*C-FCHE)+3*CFCHL)-FCMP»+FCMT»/2 CTR 2213385 KB=2*FCHE)+4*FCHP)-5*FCHL)-FCMT) CTR 2214KC=CF(HP)-FCHE»/2 CTR 2215KET=KB*KB-4*KA*KC CTR 2216IFCKET.GE.O)GO TO 413 CTR 2217K02SBX = HL-1 CTR 2218390 KOS = K02LDL< CL> CTR 2219IFCKOS.EO.1) GO TO 421 CTR 2220K02SBX "= HP-1 CTR 2221KOS = K02LDL< CL> CTR 2222IfCKOS.EO.1) GO TO 421 CTR 2223395 GOTO 4219 CTR 2224413 IFCIABSCKA).GE.LON)GO TO 479 CTR 2225KURT=-INTS*KC/KB CTR 2226GO TO 424 CTR 2227479 CONTINUE CTR 2228

004

Page 114: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08176 09.27.04 PAGE 8

400 IF(KET.GE.LON)GO TO 423 eTR 2229KURT=-KBtINTS/(2*KA) eTR 2230GO TO 424 eTR 2231423 eONTI NUE $ KKKK=O eTR 2232KURTA=INTSt(-KB+IFIX(SORT(FLOAT(KET»»/(2tKA) eTR 2233405 425 CONTINUE eTR 2234KURTEST=(INTS-KURTA)tKURTA eTR 2235IF(KURTEST.LT.O)GO TO 426 eTR 2236KURT=KURTA eTR 2237GOTO 424 eTR 2238410 426 IF(KKKK.EO.1)GO TO 428 CTR 2239KURTA=INTSt(-KB-IFIX(SORT(FLOAT(KET»»/(ZtKA) eTR 2240KKKK=1 eTR 2241GO TO 425 eTR 2242428 CONTINUE eTR 2243415 K02SBX = HL-1 eTR 2244;,OS = K02LDL< CL> . eTR 2245IF(KOS.EO.1) GO TO 421 eTR 2246K02SBX = HP-1 eTR 2247KOS = K02LDL< CL> eTR 2248420 IF(KOS.EO.1) GO TO 421 eTR 2249GO TO 4219 eTR 2250424 CONTINUE eTR 2251JKF=KURT eTR 2252JH=JKF-INTS eTR 2253'.25 JH2=JKF-INTS2 eTR 2254JP=JKF+INTS eTR 2255JP2=JKF+INTS2 eTR 2256KF=-F(HE)*JKF/INTStJM/INTS*JM2/INTS6 eTR 22571 +F(HL)*JP/INTStJH/INTStJM2/INTS2 eTR 2258430 2 -F(HP)tJP/IN~StJKF/INTStJH2/INTS~ eTR 22593 +F(HT)tJKF/I~TStJP/INTStJH/INTS6 eTR 2260KFURT:.KF eTR 2261IF(IABS(KUN-KFURT).GT.LONA)GO TO 416 eTR 2262K02SBX = HL-1 eTR 2263435 KOS = K02LDL< CL> eTR 2264IF(KOS.EO.1) GO 10 421 eTR 2265K02SBX = HP-1 eTR 2266KOS = K02LDL< CL> eTR 2267IF(KOS.EO.1) GO TO 421 eTR 2268440 NUKUTS=NUKUTS+1 $ KUTA(NUKUTS)=KURT eTR 2269GO TO 421 CTR 2270416 CONTINUE eTR 2271IJH=O eTR 2272442 CONTINUE CTR 2273445 HVA=HL+IJHt(HP-ML) eTR 2274IGN=(KFURT-KUN)t(KUN-F(HVA» eTR 2275IF(IGN.LE.O)GO TO 443 eTR 2276JKF=INTS*IJH+(KURT-INTStIJH)t(KUN-F(HVA»/(KFURT-F(MVA» eTR 2277IF(KFURT.EO.F(HVA»JKF=O CTR 2278450 JUMP=JKF eTR 2279KLOOP=O eTR 2280KF=F(HVA) ~ JKFO=INTStIJH eTR 2281'·41 KLOOP=KLOOP+1 eTR 2282IF(KLOOP.LT.101)GO TO 440 cm 2283455 °RINT 903 CTR 228410 TO 450 eTR 2285

E04

Page 115: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

-.__ .-

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 9

440 KFD=KF eTR 2286JH=JKF-INTS eTR 2237JH2=JKF-INTS2 eTR 2288460 JP=JKF+INTS eTR 2289JP2=JKF+INTS2 eTR 2290KF=-F<!1E) *.IKFI INTS*JMI INTS* JH21 INTS6 eTR 22911 +FCHL)*JP/INTS*JH/INTS*JH2/INTS2 eTR 22922 . -F<HP)*JP/INTS*JKF/INTS*JH2/INTS2 eTR 2293465 3 +FCHT)*JKF/INTS*JP/INTS*JH/INTS6 eTR 2294IFCKFD.NE.KF)GO TO 447 eTR 2295JT=O eTR 2296GO TO 448 eTR 2297447 JT=JKF+CJKFD-JKF)*CKUN-KF)/{KFO-KF) eTR 2293470 448 IFC1ABS{JKF-JT).LT.LONIT) GO TO 449 eTR 2299JKFD=JKF $ JKF=JT eTR 2300GO TO 441 eTR 2301449 H(JT.GLO.!\NO.JT.U=.INTS)GO TO 451 eTR 2302PRINT 902.JKF,KF eTR 2303475 450 JT=JUHP eTR 2304451 KOZSBX = HVA-1 CTR 2305KOS = KOZLDU CL> eTR 2306IF(KOS.EQ.1) GO TO 443 eTR 2307NUKUTS=NUKUTS+1 eTR 2308480 KllTACNUKUTS)=JT eTR 2309443 CONTINUE eTR 2310IJH=IJH+1 eTR 2311IFCIJH.LT.2)GO TO 442 eTR 2312e END OF KUTFIND eTR 2313485 421 IFCHO.EO.NUKUTS)GO TO 302 eTR 2314HO=HO+1 $ NZ=N2+1 $ NEHHCNZ)=HH eTR 2315NEXACNZ)=INTS*CI-1)+(1-KAD)*KUTACHO) eTR 2316NEYACNZ)=INTS*CJ-1)+KAD*KUTACMO) eTR 2317NOUPCNZ)=NoueHCHO) eTR 2318490 GO TO 421 eTR 2319302 IF(HH.LT.L3R12) GO TO 301 eTR 2320NNK=O eTR 2321IF(NZ.LE.1) 315.305 eTR 2322305 CONTINUE ClR 2323495 LUG::O eTR 2324306 CONTINUE eTR 2325LUG=LUG+1 $ NNDCLUG)=O eTR 2326IF(LUG.EO.NZ) 307.306 CTR 2327307 eONTI NUE eTR 2328500 LUG=O eTR 2329308 eDNT! NUE eTR 2330LU(;-,-:"~IG+'~ eTR 2331IF(NNDCLUG).EO.O) 309.314 eTR 2332309 eONT! NUE eTR Z333505 IF(NOUPCLUG).EO.O) 314,310 eTR 2334310 eONT! NUE eTR 2335LUfJ::i.i..iG eTR 2336311 rClNT! NUE eTR 2337LUH=LUH+1 cm 2338510 IFCLUH.GT.NZ) GO TO 314 eTR 2339IF(NOUP(LUG).EO.NOUP(LUH»312.313 eTR 2340312 CONTINUE eTR 2341NNO(LUH)=1 $ NNK=NNK+1 eTR 2342

F04

Page 116: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=l FTN 4.4+R401 12108/76 09.27 04 PAGE 10

313 CONTINUE eTR 2343515 GOTO 311 eTR 2344314 CONTINUE erR 2345IF(lUG.ED.NZ) 315,308 eTR 2346315 CONTINUE CTR 2347NUKAl=NZ-NNK eTR 2348520 e ENTER BESTKUT eTR 2349IF(NUKAl.ED.O) 501,502 eTR 2350501 CONTINUE eTR 2351IF(lEVERS.ED.l) GO TO 5011 eTR 2352lEVERS=1 eTR 23535~5 M=M+HART< NIDE) S KIOE=NIDEP(NIDE) S NIDE=KIDE eTR 2354GO TO 300 eTR 23555011 CONTINUE eTR 2356PRINT 9271,KEG,KEP(KEG).KEP(KEG+1).M,~!DE eTR 2357927i II""nnUAT/7V .. I nt"T

KEG.KEP(~EG).KEP(KEG+1).M.NIDE*,5110) eTR 235&rUr\lIn' ' ..H'\, .. I-Ui;1 I

530 CAll lOSTPR(H,F,IA)() eTR 2359IF(lEP.lT.HNPl) GO TO S021 eTR 2360lEXF(lINE)=lEXSlEYF(lINE)=lEYSlOOP(lINE)=O CTR 2361NUPS(UNE)=lEP eTR 2362KD2SBX = HlH-1 eTR 2363535 KDS = 0 CTR 2364CAll KDZSTl(KDS,Fl) eTR 2365KOZSBX = HFH-1 eTR 2366CAll KDZSTl(KDS,Fl) eTR . 2367lUlP(lINE)=MUlP(KlK)SlINE=lINE+l S GO TO 200 eTR 2368540 5021 CONTINUE CTR 2369KEG=KEG-2*lEP+2 eTR 73/0KDZSBX =MlH-1 CTR 2371KDS = 0 eTR 2372CAll KDZSTl(KDS.Fl) eTR 2373545 KDZSBX = HFH-1 eTR 2374CAll KDZSTl(KDS.Fl) CTR 2375GO TO 200 eTR 2376502 eONTI NUE eTR 2377IF(NUKAl.ED.1) 505,507 eTR 2378550 505 CONTINUE CTR 2379HADlUG=1SlEX=NEXA(1) S lEY=NEYA( 1) S MM=NEHM (1) eTR 2380GO TO 512 eTR 2381507 CONTINUE eTR 2382HADlUG=1 S IF(lEP.lT.1) GO TO 516 eTR 2383555 lUG=OSMAD=lARGE eTR 2384513 eONTI NUE eTR 2385lUG=lUG+1 eTR 2386IF(NND(lUG).ED.1) GO TO 508 eTR 2387IF(NOUP(lUG).ED.HSP) GO TO 508 eTR 2388560 IF(lEP.lT.2) GO TO 5141 eTR 2389KDPX=KEP(KEG-2)-NEXA(lUG) eTR 2390KDPY=KEP(KEG-1)-NEYA(lUG) eTR 2391KPSD=KDPY**2+KDPX**2 eTR 2392IF(KPSD.lT.lONAG) GO TO 508 eTR 2393565 5141 KDSTY=(HES-NEYA(lUG»**2 eTR 2394KDSTX=(lES-NEXA(lUG»**2 CTR 7.395KABS=KDSTX+KOSTY eTR 2396IF(KABS.lT.HAD) 514,515 eTR 2397514 CONTINUE eTR 2398570 IF(KABS.lT.lONAG) GO TO 508 eTR 2399

G04

Page 117: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 11

HAD=KABS S MADLUG=LUG CTR 2400515 CONTINUE CTR 2401508 CONTINUE CTR 2402IF(LUG.EO.NZ) 516,513 CTR 2403575 516 CONTI NUE CTR 2404LEX=NEXA(HADLUG) CTR 2405LEY=NEYA(HADLUG) CTR 2406HH=NEHH(HADLUG) CTR 2407512 CONTI NUE CTR 2408580 C EXIT WITH NEXT CUT IN LEX LEY CTR 2409HSP=NOUP(HADLUG) CTR 2410IF(L3R12.EO.KTWELV) GO TO 5123 CTR 2411IF(HSP.NE.O) GO TO 5124 CTR 2412ML=H+HZAR(NIDE,MH)+NUMPS*KADAR(NIDE,MMl CTR 2413585 C SHIFT CELL CTR 2414H=M+HARHNIDEl CTR 2415NIDE=HARG(NIDE,HH) CTR 2416C ZERO FLAG CTR 2417KOZSBX=ML-1 CTR 2418590 KOS = 0 CTR 2419CALL KOZSTL(KOS,FL) CTR 2420GO TO 5122 CTR 24215123 CONTINUE CTR 2422IF(HSP.NE.Ol GO TO 5126 CTR 2423595 L3R12=KTHREE CTR 2424HL=MTW(HH)+H+NUMPS*KART(MMl CTR 2425H=HTR(HH)+H S NIDE=NIDRN(MM) CTR 2426KOZSBX=HL-1 CTR Z427KOS = 0 CTR 2428600 CALL KOZSTL(KOS,FLl CTR 2429GOTO 5122 CTR 24305124 CONTINUE CTR 2431L3R12=KTHELV CTR 24325126 H=HSP SHL=M CTR 2433605 KOZSBX=HL-1 CTR 2434KOS = 0 CTR 2435CALL KOZSTL(KOS,FL) CTR 2436KOZSBX = H-1 CTR 2437KQS = KOZLDL<DNO) CTR 2438610 IF(KOS.EO.1) HL =H +NUMPS CTR 24395122 CONTINUE CTR 2440IF(LEP.NE.2)GO TO 600 CTR 2441KOZSBX = MLH-1 CTR 2442KOS = 1 CTR 2443615 CALL KOZSTL(KOS,FLl CTR 2444C TEST FOR LOOP CTR Z445600 LEXSD=LEXST(LINE)-LEX S LEYSD=LEYST(LINEl-LEY CTR 2446LISTZ=LEXSD**2 +LEYSD**2 CTR 2447IFCLISTZ.LT.LONBl 601,602 CTR 2448620 601 CONTINUE CTR 2449IFCLEP.LT.HNPLl 618,617 CTR 2450618 CONTI NUE CTR 2451KEG=KEG-2*LEP+2 CTR 2452C IF LOOP TOO SHORT IGNORE CTR 2453625 KOZSBX = HLH-1 CTR 2454KOS = 0 CTR 2455CALL KOZSTL(KOS,FL) CTR 2456

H04

Page 118: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 . FTN 4.4+R401 12/08/76 09.27.04 PAGE 12

K02SBX = MFM-1 eTR 2457CALL KOZSTL(KOS.FL) eTR 2458630 GO TO 200 eTR 2459617 CONTINUE eTR 2460lEXF(LINE)=KEP(KEG) S lEYF(LINE)=KEP(KEG+1) eTR 2461NUPS(LINE)=LEP+1 SLULP(LINE)=MULP(KLK) eTR 2462lOOP(LINE)=1 eTR 2463635 LINE=LINE+1 eTR 2464KEL=KEG-2*LEP+2 eTR 2465KEG=KEG+2 eTR 2466KEP(KEG)=KEP(KEL) S KEP(KEG+1)=KEP(KEL+1) eTR 2467K02SBX=KEl-1 eTR 2468640 KOS=KOZLOl(PEN) eTR 2469K02SBX=KEG-1 eTR 2470CALL KOZSTL(KOS.PEN) eTR 2471KEG=KEG+2 S KEL=KEL+2 eTR 2472KEP(KEG)=KEP(KEL) S KEP(KEG+1)=KEP(KEL+1) eTR 2473645 KOZSBX=KEl-1 eTR 2474KOS=KOZLOUPEN) eTR 2475KOZSBX=KEG-1 eTR 2476CALL KOZSTL(KOS,PEN) eTR 2477KEG=KEG+2 $ KEL=KEl+2 eTR 2478650 KEP(KEG)=KEP(KEL) S KEP(KEG+1)=KEP(KEL+1) eTR 2479KOZSBX=KEl-1 CTR 2480KOS=KOZLOl(PEN) eTR 2481KOZSBX=KEG-1 eTR 2482CALL KOZSTL(KOS,P~N) eTR 2483655 KOZSBX = MLM-1 eTR 2484KOS = 0 eTR 2485CALL K02STL(KOS.FL) eTR 2486KOZSBX = MFM-1 eTR 2487CALL K02STL(KOS,FL) eTR 2488660 GO TO 200 eTR 2489e GO TO SEARCH eTR 2490602 CONTINUE eTR 2491e STORE THIS KUT eTR 2492KOSTP=(LES-LEX)**2 +(MES-LEY)**2 eTR 2493665 IF(KOSTP.GT.lONe) 603,604 eTR 2494603 eONT HJUE eTR 2495lES=LEX S MES=LEY S KEG=KEG+2 S KEP(KEG)=LEX $ KEP(KEG+1)=LEY eTR 2496LEP=LEP+1 eTR 2497KOZSBX=Ml-1 eTR 2498670 KOS=KOZLrIL <DNa) eTR 2499IF(KOS.EO.O) GO TO 621 eTR 2500KOZSBX=KEG-1 eTR 2501KOS=1 CTR 2502CALL KOZSTL(KOS,PEN) eTR 2503675 GO TO 622 eTR 2504621 CONTINUE eTR 2505KOZSBX=KEG-1 eTR 2506KOS=O eTR 2507CALL K02STL(KOS.PEN) eTR 2508680 622 CONTINUE eTR 2509IF(lEP.EO.1) 605,606 eTR 2510605 LEXST(lINE)=lEX $ lEYSHLI NE) =lEY eTR 2511lARTlN (LI NE) =KEG eTR 2512MlM=l1l $ lRST=l3R12 eTR 2513

[04

Page 119: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 nN 4.1.+R401 12/08/76 09.27.04 PAGE 13

685

690

695

700

705

710

715

720

725

730

735

740

IF(l3R12.EO.KTWElV)MLM=MLM-NUMPSt(MLM/NUMPS)HSTART=HNIDST=NIDE

606 CONTI NUEGO TO 6061

604 CONTINUEI:.OZSBX=~L-1I:.OS=I:.02LDL <DNO)IF(I:.OS.NE.O) GO TO 6047I:.OZSBX=I:.EG-1I:.OS=OCALL I:.OZSTL(I:.OS.PEN)

6047 CONTINUELES=lEXSHES=lEYSKEP(KEG)=LEXSKEP(KEG+1)=lEY

e TEST FOR EDGE6061 eONTI NUE

J=1+(M-1)/IAX $ .=H-(J-1)tIAXIF(l3R12.EO.KTWELV) GO TO 625lESTK=«I-2)tt2+(NIOE-4)tt2)t«IAXMM-I)tt2+(NI~E-2)ttZ)

1 t«J-2)tt2+(NIOE-1)tt2)t«JAXMM-J)tt2+(NIDE-3)tt2)GO TO 626

625 CONTINUEIF(lEP.EO.1) GO TO 300lESTK=(I-2)t(IAXM-!)t(J-2)t(JAXM-J)

626 eONTI NUEIF(lESTK.EO.O) 615,300

e GO TO NEXKUT OR IF EDGE615 CONTINUE

IF(NEMOR.EO.O) 607.616616 CONTINUE

!F(LEP.LT.MNPL) 619,6Z0619 CONTINUE

KEG=KEG-2tLEP+2e IF LINE TOO SHORT

KOS = 0KOZSBX = MLH-iCALL KOZSTl(KOS.FL)KOZSBX = HFH-1CALL KOZSTl(I:.OS,FL)GO TO 200

620 eONTI NUElEXF(LINE)=LEX S LEYF(lINE)=lEY S lOOP(LINE)=ONUPS(LINE)=LEP SLULP(LINE)=MULP(KLK)LINE=LINE+1KOS = 0KOZSBX = HLH-1CALL KOZSTL(KOS.FL)KOZSBX = HFH-1CALL KOZSTL(KOS.FL)

e GO TO SEARCHGO TO 200

607 NEHOR=1lEXST(LINE)=LEX S LEYST(LINE)=LEYNEG=KEG+2 S NEGM=LARTLN(LINE)-2

608 eONTI NUENEG=NEG-2 S NEGM=NEGM+2IF(NEG.GT.NEGH) 609,610

J04

eTReTReTRerReTReTReTRerRerReTRcmeTRerReTReTRerReTReTReTReTReTReTf<eTRCTReTReTReTReTReTRCTReTReTReTRCTRerReTReTReTReTReTReTRerReTReTReTRerRerReTReTReTRerReTRerReTReTReTReTR

251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570

Page 120: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 14

609 eONTI NUE eTR 2571LENT=KEP(NEG) $ MENT=KEP(NEG+1) eTR 2572K02SBX=NEG-1 eTR 2573745 LPT=KOZLDL<PEN) eTR 2574KEP(NEG)=KEP(NEGM) $ KEP(NEG+1)=KEP(NEGM+1) eTR 2575K02SBX=NEGM-1 eTR Z576KOS=KOZLDL(PEN) eTR 2577CALL KOZSTL(LPT.PEN) eTR 2578750 KOZSBX=NEG-1 eTR 2579CALL KOZSTL(KOS,PEN) eTR 2580KEP(NEGM)=LENT $ KEP(NEGM+1)=MENT eTR 2581GO TO 608 eTR 2582610 eONTI NUE eTR 2583755 LES=KEP(KEG) $ MES=KEP(KEG+1) eTR 2584IF(LRST.EO.KTWELV) GO TO 623 eTR 2585M=MSTART+MART(NIDST) CTR 2586NIOE=NIDEP(NIDST) eTR 2587GO '7(' ~Z4 eTR 2588760 623 eONT~t:Uc eTR 2589M=MSTART ~ MSP=M eTR 2590624 emmNUE $ l7R12=LRST eTR 2591GOTO 300 eTR 2592999 eONTI NUE eTR 2593765 NULNS=LINE-1 eTR 2594IF(NULNS.GT.O)GO TO 703 eTR 2595PRINT 906.NULNS eTR 2596906 FORMAT(* NO OF LINES*.I10/) eTR 2597RETURN eTR 2598770 e MINIMISE PEN UP eTR 2599703 KLINA(1 )=1 eTR 2600LORBA(1)=1 eTR 2601IF(NULNS.EO.1)GO TO 710 eTR 2602DD 712 JKL=1.NULNS eTR 2603775 USED(JKL>=1 eTR 2604712 eONTI NUE eTR 2605LINA=1 eTR 2606LORB=I eTR 2607K=1 eTR 2608780 MUK=LULP (1) eTR 2609lORB=LORB+2*(MUK/2)-MUK eTR 2610701 CONTINUE eTR 2611KISTANZ=LARGE eTR 2612LORB=1-LORB eTR 2613785 LERV=LORB*LEXST(LINA)+(1-LORB)*LEXF(LINA) eTR 2614~ERV=LORB*LEYST(LINA)+(1-LORB)*LEYF(LINA) eTR 2615LORB=1-LORB eTR 2616LINB=1 eTR 2617702 CONTINUE eTR 2618790 LINB=LINB+1 eTR 2619IF(LINB.GT.NULNS)GO TO 711 eTR 2620IF(USEDCLINB).NE.1)GO TO 702 eTR 2621IF(LINB.EO.LINA)GO TO 702 eTR 2622KISTA=(LERV-LEXST(LINB»**2+(MERV-LEYSTCLINB»**2 eTR 2623795 KISTB= (LERV-LEXF(L INB» **2+ (MEFV"LEYF( LINB» **2 eTR 2624IFCKISTA.GE.KISTANZ)GO TO 707 eTR 2625KISTANZ=KISTA eTR 2626LORB=1 eTR 2627

K04

Page 121: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTI NE PUSH 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE 15

:-lEXTLN=LINB eTR 26288uO 707 IF(KISTB.GE.KISTANZ)GO TO 702 eTR 2629

KISTANZ=KISTB eTR 2630LORB=O eTR 2631NEXTLN=LINB eTR 2632GO TO 702 eTR 2633

805 711 USED(NEXTLN)=O S LINA=NElC L;.... MUK=LULP(LINA) eTR 2634K=K+1 SLORBA(K)= LORB eTR 2635KL!NA<K)=LINA eTR 2636LOR8=LORB+2> (MUK/2)-HUK eTR 2637IF(K.LT.NULNS)GO TO 701 eTR 2638

810 710 PRINT 920,NULNS,LINEAR,NONLIN eTR 2639920 FI'RHAT< > NO OF LINES>, 110,1 OX, >LINEAR> ,110,1 OX, >NONLI NEAR> ,11 Of) eTR 2640

CALL DRAWLIN(KEP) eTR 2641END eTR 2642

CARD NR. SEVERITY DETAILS

84180

DIAGNOSIS OF PROBLEM

CONTROL VARIABLE IN COMMON OR EOUIVALENeED, OPTIMIZATION MAY BE INHIBITED.CONTROL VARIABLE IN COMMON OR EOUIVALENCED, QPTIMIZATION MAY BE INHIBITED.

L04

Page 122: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE CUTSTEP 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTINE CUTSTEPCFLA,FLB,FLC,FLD.INTS,KUN.IX,NUDUN) CTR 2643C CUTSTE~? ** *** ****** ****** ** **t** **** ** **** ***** *** *** *** _*** **_ *** CTR 2644C IT DOES THE ACTUAL INTERPOLATION OF CONTOUR CUTS BY FINITE CTR 2645C INCREMENT CTR 2646C FIND CONTOUR CUT IX BY STEPPING FRGM LB TO LC USING LEGENDRE CTR 2647C POLYNOMIAL CTR 2648C CONVERT TO FLOATING POINTS CTR 2649DINTS=INTS CTR 2650FUN=KUN eTR 265110 C NUMBER OF STEPS CTR 2652NEP=10 CTR 2653NUOUN=O CTR 2654STEP=NEP CTR 2655STEP=1./STEP CTR 265615 06=1./6. CTR 2657JJ=INTS/NEP CTR 2658C TEST INTERVAL CTR 2659IFCINTS.NE.JJ*NEP) GO TO 99 CTR 2660JJ=JJ+1 CTR 266120 C INITIALISE CTR 2662FIRST=FLB CTR 2663X=O. CTR 2664DO 5 J=1.JJ CTR 2665XM=X-1. CTR 266625 XMT=X-2. CTR 2667XP=X+1. CTR 2668C SUBSTI TUTE IN POLYNOM IAL . CTR 2669FF=-FLA*X*XM*XMT*D6+FLB*XP*XM-XMT*0.5-FLC*XP*X*XMT*0.5+FLD*X*XP*XM CTR 26701*06 CTR 267130 C BRACKET CONTOUR LEVEL CTR 2672IFCCFUN-FIRST)*CFF-FUN).GE.O.) GO TO 77 CTR 2673FIRST=FF CTR 2674X=X+STEP CTR 267~5 CONTINUE CTR 267/,35 77 CONTINUE CTR 267;'C FINE LINEAR INTERPOLATION CTR 2678IFCABSC FIRST-FF).LE.0.0000001) GO TO 99 CTR 2679X=X-(FUN-FF)*STEP/CFIRST-FF) CTR 2680C COMPARE FLOATING ERRORS ALLOWABLE CTR 268140 IF(X.GE.1.0R.X.LT.0.) GO TO 99 CTR 2682X=DINTS*X CTR 2683IX=X CTR 2684RETURN CTR 268599 NUDUN=1 CTR 268645 RETURN cm 2687END CT,'i 2688

H04

Page 123: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE LOSTPR 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTINE LOSTPR(M,F,IAX) eTR 2689e LOSTPR ••••••••••••••••••••• eTR 2690e ------IT INDICATES LOST CUTS eTR 2691

DIMENSION K2AC,5),F(1) eTR 26925 PRINT 900 eTR 2693

JL=(M-1>/IAX+l CTR 2694IL=M-(JL-l)'IAX eTR 2695DO 101 K=l,5 CTR 2696KO =IL +(JL +5 -K)'IAX eTR 2697

10 e KO IS LOCATION OF LH EOGE eTR 2698DO 100 N=l,5 eTR 2699K2A(N) =F(KO+N-l) eTR 2700

100 CONTINUE eTR 2701PRINT 900,(K2A(N),N=1,S) eTR 2702

15 900 FORHAT(3X,5I20) CTR 2703101 eONTI NUE eTR 2704

PRINT 900 eTR 2705RETURN CTR 2706END eTR 2707

N04

Page 124: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTJ NE K02STL 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTINE KOZSTL(LTEM.NVAR) eTR 2708e KOZSTL ••• t ••• t.tt •••••••• t. eTR 2709e ------THIS ROUTINE PAeKS 1-WORD FLAGS INTO 1-BIT FLAGS eTR 2710

DIMENSION NVAR(1) eTR 27115 eOMMON/K02eOM/KOZSBX.KOZBLL eTR 2712

IX=K02SBX/K02BLL eTR 2713IS=59-K02SBX+IXtKOZBLL eTR 2714IS=SHIFH1.IS) eTR 2715IF(LTEM.EO.1)GO TO 10 eTR 2716

10 NVAR(IX+1)=NVAR(IX+1).AND .. NOT.IS eTR 2717RETURN eTR 2718

10 NVAR(IX+1)=NVAR(!X+1).OR.IS eTR 27"1RETURN l:IK 2;7.(END eTR 2i.::1

004

Page 125: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE DRAWLIN 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE

SUBROUTINE ORAWLINCKEP) CTR 2722C DRAWLIN tttt**tt*t*ttttttt*t CTR 2723C ------THIS ROUTINE TAKES THE CONTOUR CUT STRINGS AND GENERATES CTR 2724C PLOT COHMANDS FOR THE CONTOUR LINES AT VERY FINE INCREHENTS,AND CTR 27255 C ALSO ORGANIZES HULTIPLE CONTOUR LINES. CTR 2726COHHON/UNTPIN/SCINT,Y~LEC CTR 2727COHHON/ORIGIN/OX,OY CTR 2728COHHON/DRAW/NULNS,NATT ,NUPS, LOOP, LORb .,KLlNA, LARTLN CTR 2729COHHON/PEN/PEN CTR 273010 COHMON/SCALES/STDX,~TDY CTR 2731COMMON/KDZCOM/KD2SBX CTR 2732COMMON/NOFFS/NOFFSET,THICK,KNTR,NTOLD,NTWO,NTIN,FINC CTR 2733INTEGER PEN CTR 2734DIMENSION KEP(1),PEN(300),NATT(400) eTR 273515 DIMENSION NUPS(400) ,lOOP(400), LORBA(',O(1) ,KLlNA(400), LARTLN( 400) CTR 2736IHHENSION H(300) ,XDELY(300), YDELY(300) ,H2 (300), B(300) ,XC(300) CTR 2737DIMENSION X(300),Y(300),JPEN(300),S(300),X2C300),Y2C300) eTR 2738DIMENSION ye(300),X3C300),Y3(300),XDELSDC300),YDELSDC300) eTR 2739DIMENSION PVZ(4,4) CTR 274020 DATA (EPSLN=. 005), (S( 1>=0. ) , (XZC 1>=0. ), CY2 Cl) =0. ) CTR 2741C ------I~ITIALI2E SINGLE LINES CTF' 2742NSIN=l eTR 2743,NOFF=NOFFSET eTR 2744NTW=NTWO eTR 274525 e ,-----SINGLE-LlNE NO OFFSET eTR 2746PVZC 1, 1>=0. eTR 2747e ------DOUBLE-LINE OFFSET eTR 2748PVZ(2,l)=1. CTR 2749PVZC2,2)=1. eTR 275030 e ------TREBLF.-LINE OFFSET eTR 2751PVZC3,1>=0. eTR 2752PVZC3,2)=2.0 eTR 2753PVZC3,3)=Z.0 eTR 2754e ------DUADRUPLE LINE OFFSET eTR 275535 PVZC4,1>=LO eTR 2756PVZC4,2)=1.0 eTR 2757PVZCIt,3)=3. eTR 2758PVZC4,4)=3. eTR 2759C ------IF OFFSET,GO TO 202 eTR 276040 IFCNOFFSET.EQ.1) GO TO 202 eTR 2761e ------INITIALI2E HEAVY LINES eTR 2762201 NHVY=1 eTR 2763c ------NO CONTOURS FOR NTWOL1 eTR UIAIFCNTWO.LT.l) GO TO 222 eTR 276545 C ------NO OFFSET FOR NTWO=1 CTR 2766IFCNTWD.ED.l) NOFFSET=O eTR 2767C ------OFFSET FOR NTWO=2 CTR 2768IFCNTWO.ED.2) NOFFSET=', CTR 2769GO TO 203 CTR 277050 e ------ONE SET OF tiORH/,L CONTOURS WITH HEAVY CONTOURS CTR 2771202 NTWO=1 CTR 2772NTW=1 CTR 2773NHVY=1 CTR 2774203 CONTI NUE CTR 277555 e ------PLOT CALL INCREHENT SIZE CPER UNIT LF.NGTH) CTR 2776FLTl=FINC CTR 2777KFL=O CTR 2778

P04

Page 126: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ORAWLIN 76/76 OPT=1 FTN 4.4+R401 '12/08/76 09.27.04 PAGE 2

STOXOSC=STOX/SCINT CTR 2779STOYOSC=STOY/SCINT CTR 278060 CVZ=0.005*THICK CTR 2781801 KFL=KFL+1 CTR 2782C ------MULTIPLICITY OF CONTOUR LINE CTR 2783LINE=KLIrlA(KFL> CTR 2784NT=NATT(LINE) CTR 278565 C ------IF NT=O,SKIP LINE CTR 2786IF(NT.EQ.O) GO TO 807 CTR 278;C ------SET HARK=O MEANS DO NOT START NEW PLOT BLOCK CTR 2788MARK=O CTR 2789C ------IF MULTIPLE LINE AND CHANGE IN MULTIPLICITY,SET MARK=1 CTR 279070 IF(NT.GE.2.ANO.NT.NE.NTOLD) MARK=1 CTR 2791C ------IF BOTH SETS REQUIRED AND START OF 2ND SET,SET MARK=1 CTR 2792IF(NT.GE.2.AND.NTIN.EQ.1) HARK=1 CTR 2793C ------IF HEAVY OR SINGLE LINES INCOMPLETE, KEEP WORKING ON THEM CTR 2794IF(NTW.EO.2.ANO.NTWD.EQ.1) MARK=1 eTR 279575 IF(NHVY.EQ.O.OR.NSIN.EQ.O) GO TO 301 CTR 2796IF(MARK.EO.O) GO TO 301 cm 2797C ------START NEW PLOT BLOCK CTR 2798CALL PLOT( 0.,0.,-3) CTR 2799C ------NEW PLOT BLOCK CTR 280080 KNTR=KNTR+1 cm 2801CALL OISPLA(20H CONTOUR PLOT BLOCK ,KNTR) CTR 2802IF(NOFFSET.EQ.O) GO TO 233 CTR 2803CALL DISPLA(i6H MULTIPLE LINES ,NT) CTR 2804PRINT 306 , KNTR CTR 280585 306 FORHAT(1H ,* HEAVY CONTOUR BLOCK = *,110,* ++++++++++ *,//) CTR 2806C ------ENTER HEAVY CONTOUR PLOT CTR 2807NHVY=O CTR 2808GO TO 301 CTR 2809233 CALL DISPLA(16H SINGLE LI NES ,Nn CTR 281090 PRINT 307,KNTR CTR 2811307 FORMAT(1H ,* SINGLE CONTOUR BLOCK = *,110,* XXXXXXXXXX *,//) CTR 2812C ------ENTER SINGLE CONTOUR PLOT CTR 2813NSIN=O CTR 2814301 NTOLD=NT CTR 281595 C ------IF NO OFFSET,SET HT=' CTR 2816IF(NOFFSET.EQ.O) NT=' CTR 2817C ------MULTIPLICITY OF CONTOUR LINE =NT=NTT CTR 2818NTT=NT CTR 2819

C ------NO OF CONTOUR CUTS IN STRINGS CTR 2820100 N=NUPS(LINE) CTR 2821C ------IF LOOP,ADO TWO MORE TO NO OF CUTS CTR 2822IF(LOOP(LINE).EQ.1) N=N+2 CTR 2823C ------STARTING POINT OF CUT (FIRST TWO CUTS REPEAT) CTR 2824LFX=LARTLN(LINE) CTR 2825105 LFX1=LFX-1 CTR 2826C ------STRING IN A~RAY KEP(1) CTR 2827DO 888J=1,N CTR 2828KQZSBX=2*J+LFX1 CTR 2829C ------Y-POSITION OF CUT WITH RESPECT TO MAP ORIGIN CTR 2830110 Y(J)=KEP(KQ2SBX)*STOYOSC+OY CTR 2831t ------PEN STATUS CTR 2832KOZSBX=KQZSBX-1 CTR 2833X(J)=KEP(KQZSBX)*STOXOSC+OX CTR 2834KOZSBX=KQZSBX-1 CTR '2835

805

Page 127: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE DRAWLIN 76/76 OPT=1 FTN 4. 4+R401 12/08/76 09.27.04 PAGE 3

115 888 JPEN(J)=KOZLOL(PEN) CTR 2836)(Z(N)=O. CTR Z837Y2(N)=0. . CTR 2838N2=N-2 CTR 2839C ------CALCULATE LENGTH OF CONTOUR CUT W.R.T. START CTR 2840120 DO 33J=Z,N CT!. 284133 S(J)=S(J-1)+SORT«X(J)-X(J-1»tt2+(Y(J)-Y(J-1»tt2) CTR 2842N1=N-1 CTR 2843DO 38J=1,N1 CTR 2844C ------CALCULATE OISTANCE BETWEEN CUTS CTR 2845125 H(J)=S(J+1)-S(J) CTR 2846C ------IF DISTANCE=O, GO TO 34 CTR 2847IF(H(J).EO.O.O)GO TO 34 CTR 2848C ------CALCULATE UNIT VECTOR IN X-DIRECTION CTR 2849XDELY(J)=(X(J+1)-X(J»/H(J) CTR 2850130 C ------CALCULATE UNIT VECTOR IN Y-DIRECTIOli CTR 2851YDELY(J}=(Y(J+1}-Y(J»/H(J) CTR 2852GO TO 38 CTR 285334 XDELY(J)=O.O CTR 2854YDELY(J)=O.O CTR 2855135 PRINT 1. J CTR 28561 FORMAT< to H(J) = 0.0 FOR J = t,I3/) CTR 285738 CONTINUE CTR 2858C ------GENE~TE COEFICIENTS AND VARIOUS PARAMETERS FOR Cr~TOUR CUT CTR 2859C STRINGS FOR SPLINE INTERPOLATION CTR 2860140 DO 44J=2,N1 CTR 2861H2(J)=H(J-1)+H(J) CTR 2862B(J)=.5*H(J-1)/H2(J) CTR 2863XDELSO(J)=(XDELY(J)-XDELY(J-1»/H2(J) CTR 2864YDELSO(J)=(YDELY(J)-YDELY(J-1»/H2(J) CTR 2865145 X2(J)=2.tXDELSO(J) CTR 2866Y2(J)=2.tYDELSO(J) CTR 2867XC(J)=3.tXDELSO(J) CTR 286!lYC(J)=3.tYDELSO(J) CTR . 286944 CONTINUE CTR 2870150 55 ETA=O. CTR 2871DO 66J=2,N1 CTR 2872XW=(XC(J)-B(J)tX2(J-1)-(.5-B(J»tX2(J+1)-X2(J»t1.0717968 CTR 2873IF(ABS(XW).LE.ETA)GO TO 66 CTR 2874 IETA=ABS(XW) CTR 2875155 66 X2(J)=X2(J)+XW CTR 2876IF(ETA.GE.EPSLN)GO TO 55 CTR 287773 ETA=O. CTR 2878DO 84J=2,N1 CTR 2879yw=(yceJ)-B(J)tY2(J-1)-(.5-B(J»tY2(J+1)-Y2(J»t1.0717968 CTR 2880160 IF(ABS(YW).LE.ETA)GO TO 84 CTR 2881ETA=ABS(YW) CTR 2882B4 Y2(J)=Y2(J)+YW CTR 2883IF(ETA.GE.EPSLN)GO TO 73 CTR 2884DO 94J=1,N1 CTR 2885165 IF(H(J).EO.O.O)GO TO 93 CTR 2886X3(J)=(X2(J+1)-X2(J»/H(J) CTR 2887Y3(J)=(Y2(J+1)-Y2(J»/H(J~ CTR 2888GO TO 94 CTR 288993 X3(J)=0.0 CTR 2890170 Y3(J)=0.0 CTR 2891PRINT 1. J CTR 2892

C05

Page 128: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROllTI NE DRAWL! N 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.04 PAGE 4

175

180

185

190

195

205

210

215

220

225

94 CONTINUE CTRC ------CHECK IF CONTOUR STRING FORMS A LOOP CTR

IF(LORBA(KFL).EO.O) GO TO 111 CTR85 J=1 CTR

OVZ=PVZ(NTT,NT)*CVZ CTR89 J=J+1 CTR

C ------CHECK START OF CONTOUR CUT STRING CTRIF(JPEN(J).EO.O.ANO.JPEN(J+l).EO.O)GO TO 90 CTRIF(J.LT.N2)89,807 CTR

90 CONTINUE CTRC ------MOVE PEN TO THE START OF CONTOUR LINE WITH APPROPRIATE OFFSE CTR

XINC=X(J)-X(J-1) CTRYINC=Y(J)-Y(J-1) CTRSXY=SORT(XINC*XINC+YINC*YINC) CTRIF(SXY.EO.O.O) SXY=O.OOOl CTRPRX=X(J)+OVZ*YINC/SXY CTRPRY=Y(J)-OVZ*XINC/SXY CTRXOLD=X(J) $ YOLD=Y(J) CTRCALL PLOT(PRX,PRY,3) . CTR

C ------START OF CONTOUR CUT STRING CTR95 MS=J CTR96 DO 107J=MS,N2 CTR

C ------CHECK IF CONTOUR CUTS BEINf SUPPRESSED CTRIF(JPEN(J).NE.O.OR.JPEN(J+l).NE.O)GO TO 107 CTR

C ------CHECK THE START OF CUTS FOR INTERPOLATION OF CONTOUR STEPS CTRIF(JPEN(J-l).EO.O)GO TO 110 CTRXINC=X(J)-X(J-l) CTRYINC=Y(J)-Y(J-l) CTRSXY=SORT(XINC*XI~C+YINC*YINC) CTRIF(SXY.EO.O.O) SXY=O.OOOl CTRPRX=X(J)+OVZ*YINC/SXY CTRPRY=Y(J)-OVZ*XINC/SXY CTRXOLD=X(J) $ YOLD=Y(J) CTRCALL PLOT{PRX,PRY,3) CTR

110 PLTD=H(J)*FLTI CTRC ------GENERATE CONTOUR STEPS FROM CUTS WITH STEP SIZE (l/ING)INCH CTR

LTK=PLTD+.5 CTRIF(LTK.LE.l)GO TO 100 CTRLTK1=LTK-l CTRFLTK=LTK CTRDIS=H(J)/FLTK CTRSPLT=O. CTRDO 99K=1,LTKl CTRSPLT=SPLT+DIS CTRSSPLT=S(J)+SPLT CTRHT1=SSPLT-S(J) CTRHT2=SSPLT-S(J+l) CTRPROD=HT1*HT2 CTRXX2=XZ(J)+HT1*X3(J) CTRXOD3=(X2(J)+X2(J+l)+XX2)/6. CTRXP=X(J)+HT1*XDELY(J)+PROO*XOD3 CTRYY2=Y2(J)+HT1*Y3(J) CTRYOD3=(Y2cJ)+Y2(J+l)+YY2)/6. CTRYP= Y(J)+HT1*YOELY(J)+PROD*YDD3 CTRXI NC=XP-XOLD CTRYINC=YP-YOLD CTRSXY=SORT(XINC*XINC+YINC*YINC~ CTR

005

28932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924Z92~

29262927292829292931)2931293229332934293529362937293829392940294129422943294429452946294729482949

Page 129: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE DRAWLIN 76/76 OPT=1 FrN 4.4+R401 12/08/76 09.27.04 PAGE 5

IF(SXY.EO.O.O) SXY=0.0001 CTR d50230 PRX=XP+OVZ*YIN~/SXY CTR 2951PRY=YP-OVZ*XINC/SXY CTR 2952XOLD =XP $ YOLD =YP CTR 2953CALL PLOT(PRX,PRY,Z) CTR 295499 CONTINUE CTR 2955235 C ------DRAW LINE FOR LAST STEP CTR 2956100 CONTI NUE CTR 2957XINC=X(J+1)-XOLD CTR 2958YINC=Y(J+1)-YOLD CTR 2959SXY=SORT(XINC*XINC+YINC*YINC) CTR 2960240 IF(SXY.EO.O.O) SXY=0.0001 CTR 2961YP=Y(J+1)-OVZ*XINC/SXY CTR 2962XP=X(J+1)+OVZ*YINC/SXY CTR 2963XOLD =X(J+1) $ YOLD =Y(J+1) CTR Z964CALL PLOT(XP,YP,2) CTR 2965245 107 CONTI NUE CTR 2966NT=NT-1 CTR 2967IF(NT.EO.O) GO TO 807 CTR 2968111 J=N CTR Z969OVZ=PVZ(NTT,NT)*CVZ CTR 2970250 C ------SEARCH START OF CONTOUR CUT STRING CTR 2971108 J=J-1 CTR 2972IF(JPEN(J).EO.0.AND.JPEN(J-1).EO.0)GO TO 109 CTR 2973C ------TEST IF END OF CUT STRING CTR 2974IF(J.GT.3)108,807 CTR 2975255 C ------MO'/E PEN TO START OF INTERPOLATED CONTOUR STEjS (;TR 2976109 CONTI NUE CTR 2977XINC=X(J)-X(J+1) CTR 2978YINC=Y(J)-Y(J+1) CTR 2979SXY=SORT(XINC*XINC+YINC*YINC) CTR 2980260 IF(SXY.EO.O.O) SXY=0.0001 cm 2981XPR=X(J)+OVZ*YINC/SXY CTR Z982YPR=Y(J)-OVZ*XINC/SXY CTR 2983XOLD =X(J) $ YOLD =Y(J) CTR 2984CALL PLOT(XPR,YPR,3) CTR 2985265 104 MSR=J CTR 2986JJ=MSR CTR 2987C ------MOVE PEN TO START OF STRING CTR 2988188 JJ=JJ-1 CTR 2989IF(JPE~(JJ).NE.0.OR.JPEN(JJ+1).NE.0)GO TO 177 CTR 2990270 IF(JPEN(JJ+2).EO.0)GO TO 155 CTR 2991XINC=X(JJ+1)-X(JJ+2) CTR Z992YINC=Y(JJ+1)-Y(JJ+2) CTR 2993SXY=SORT(XINC*XINC+YINC*YINC) CTR 2994IF(SXY.EO.O.O) SXY=0.OO01 CTR 29~5275 XPR=X(JJ+1)+OVZ*YINC/SXY CTR 299(,YPR=Y(JJ+1)-OVZ*XINC/SXY CTR 2997XOLD =X(J·J+1) $ YOLD =Y(JJ+1) CTR 2998CALL PLOT(XPR,YPR,3) CTR 2999155 PLTD=H(JJ)*FLTI CTR 3000280 C ------GENERATE CONTOUR STEPS FROM CUTS WITH STEP SIZE (1/FINC)INCH CTR 3001LTK=PLTD+.5 CTR 3002IF(LTK.LE.1)GO TO 167 CTR 3003LTK1=LTK-1 CTR 3004FLTK=LTK CTR 3005285 DIS=H(JJ)/FLTK CTR 3006

E05

Page 130: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE DRAWLIN 76/76 OPT=1 FTN 4. 4+R401 12/08/76 09.27.04 PAGE 6

SPLT =0. r.TR 3007DO 166K=1, LT:{1 CiR 3008SPLT=SPLT+DIS l:TR 3009SSPLT=S(JJ+1)-SPLT CTR 3010290 HT1=SSPLT- S(JJ) CTR 3011HT2=SSPLT-S(JJ+1) eTR 3012PROD=HT1*HT2 CTR 3013XX2=)(2(JJ)+HT1*X3(JJ) CTR 3014XOD3=(XZ(JJ)+)(2(JJ+1)+XX2)/6. CTR 3015295 XP=X(JJ)+HT1*XDELY(JJ)+PROD*XDD3 CTR 3016YY2=Y2(JJ)+HT1*Y3(JJ) CTR 3017YDD3=(Y2(JJ)+Y2(JJ+1)+YY2)/6. CTR 3018YP=Y(JJ)+HT1;YDELY(JJ)+PROD*YDD3 CTR 3019XI NC=XP-XOLD CTR 3020300 YINC=YP-YOLD CTR 3021SXY=SQRT(XINC*XINC+YINC*YINC) CTR 3022IF(SXY.EQ.O.O) SXY=0.0001 CTR 3023PRX=XP+QVZ*YINC/SXY CTR 3024PRY=YP-QVZ*XINC/SXY CTR 3025~1)5 YOLD = YP $ XOLD = XP CTR 3026CALL PLOT(PRX,PRY,2) CTR 3027166 CONTI NUE CTR 3028167 CONTINUE CTR 3029C ------DRAW LINE FOR LAST STEP CTR 3030310 XINC=X(JJ)-XOLD CTR 3031YINC=Y(JJ)-YOLD CTR 3032SXY=SQRT(XINC*XINC+YINC*YINC) CTR 3033IF(SXY.EQ.O.O) SXY=0.0001 CTR 3034XPR=X(JJ)+QVZ*YINC/SXY CTR 3035315 YPR=Y(JJ)-QVZ*XINC/SXY CTR 3036XOLD =X(JJ) $ YOLO=Y(JJ) CTR 3037CALL PLOT(XPR,YPR,2) CTR 3038177 IF(JJ.GT.2)GO TO 188 CTR 3039NT=NT-1 CTR 3040320 C ------CHECK IF LINE COMPLETELY DRAWN CTR 3041IF(NT.EQ.O)GO TO 807 CTR 3042GL TO 85 CTR 3043C ------CHECK IF MORE LINES TO BE DRAWN, IF YES GO TO 801 CTR 3044807 IF(KFL.LT.NULNS)GO TO 801 CTR 30',5325 NTON=NTWO CTR 3046NTWO=NTWO-1 CTR 3047NTlN=O CTR 3048IF(NTT.LT.2) GO TO 222 CTR 3049IF(NTON.EQ.1.AND.NTW.EQ.2) NTIN=1 CTR 3050330 C ------CHECK IF CONTO~R MULTIPLICITY LE. THAN OR EQ. TO 1, IF SO CTR 3051C RETURN CTR 3052C ------IF HEAVY LINES,FLAG(NTIN) ENTRY AT THIS POINT CTR 3053C ------WHEN NO OFFSET CONTOURS ARE REQUIRED AND GO TO START CTR 3054IF(NTWO.GE.l) GO TO 201 CTR 3055335 222 NOFFSET=NOFF CTR 3056NTWO"NTW CTR 3057RETURN CTR 3058END CTR 3059

F05

Page 131: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

1.933 $

0.033 $0.265 $0.789 $0.008 $0.302 $3.330 $

3.33 $

3333333

428

34.059125

2,269184417357

SECSECPFSSSKWSECMWSECMWSSK$/SEC

5.7983.0271.0000.796

118.3610.2310.2279.9892.0000.334

JOBUSR~T

URCSCMRMSI/OTOTALPRIRATECHARGE

DIOS VERSION 07/04/76.DAD DOCUMENT NAME - LISTZ.

16 RECORDS READ.-LIST2(T30)-COMHENT. TONY LUYENDYK EXT ZZ8-ATTACH(FUSE.FUSE)

DEFAULT HR=1. READ ACCESS ONLYPF254 - CYCLE 25 ATTACHED FROM SN=SYSTEH

-LIBRARY(*.FUSE)-TITLE (OUTPUT. INPUT)

FORTRAN LIBRARY 401 18/12/75END OF TITLE. NO INDEX SPECIFIED. FICHE NUHBER SPECIFIED. 3 TITLE FIELDS

50 DUPLICATES SPECIFIEDSTOP

.008 CP SECONDS EXECUTION TIME-MOUNT(VSN=PHC510.SN=DHR39Z2)

RP570 - VSN PHC510 OF SET DHR3922 HOUNTED-ATTACH(OLDPL.AEROCONTOURS.ID=DHRXAD,SN=DHR392Z)

DEFAULT MR=1. READ ACCESS ONLYPF254 - CYCLE 4 ATTACHED FROM SN=DMR3922

-UPDATE(F)RP727 - VSN PMC510 OF SET DHR3922 HOUNTED

UPDATE COMPLETED-FTN(I=COHPILE.SL)

5.278 CP SECONDS COHPILATION TIME-DISPOSE(OUTPUT.*PR=CFC.ST=COHCP)

RH770 - MAXIMUM ACTIVE FILESRH771 - OPEN/CLOSE CALLSRH772 - DATA TRANSFER CALLSRH773 - CONTROL/POSITIONING CALLSRH774 - BM DATA TRANSFER CALLSRM775 - BM CONTROL/POSITIONING CALLSRH776 - QUEUE MANAGER CALLSRM777 - RECALL CALLS2DMR><AD 0.157 BLOCKSDFILEAD 0.633 BLOCKSOUTPUT 74.604 BLOCKSSC050 - 000414 SC/LC SWAPS

** 7000 SCOPE 2.1.3-205 MOD 06/08/76 18.25.07 ** 12/08/76 76225

SYSTEM BULLETIN 23 --- 1/ 6/76. USE -SYSBULL.LFN. OR -SYSBULL.

HH.MM.SS CPU SECOND ORIGIN19.26.54 DAD.09.26.54 DAD.09.26.54 DAD.

09.26.57 00000.003 CYB.09.26.58 00000.008 JOB.09.26.58 00000.009 JOB.09.26.58 00000.010 CYB.09.26.58 00000.012 CYB.09.26.58 00000.013 JOB.09.26.58 00000.013 LOO.09.26.59 00000.019 USR.09.26.59 00000.026 USR.09.26.59 00000.026 USR.09.26.59 00000.027 USR.09.26.59 00000.027 USR.09.26.59 00000.028 JOB.09.27.00 00000.033 CYB.09.27.00 00000.034 JOB.09.27.00 00000.035 CYB.09.27.01 00000.037 CYB.09.27.01 00000.038 LOO.09.27.02 00000.050 CY~.09.27.03 00000.507 USR.09.27.03 00000.508 LOO.09.28.02 00005.790 USR.09.28.02 00005.790 JOB.09.28.02 00005.794 CYB.09.28.02 00005.794 CYB.09.28.02 00005.794 CYB.u9.28.02 00005.794 CYB.09.28.02 00005.795 CYB.09.28.02 00005.795 CYB.09.28.02 00005.795 CYB.09.28.02 00005.795 CYB.09.28.02 00005.795 CYB.09.28.02 00005.796 CYB.09.28.02 00005.796 CYB.09.28.02 00005.796 CYB.09.28.02 00005.7Y6 CYB.09.28.02 00005.797 CYB.09.28.02 U0005.797 CYB.09.28.02 00001.797 CYB.09.28.02 00005.797 CYB.09.28.02 00005.798 CYB.09.28.02 00005.798 CYB.09.28.02 00005.798 CYB.09.28.02 00005.798 CYB.09.2~.02 00005.798 CYB.09.28.02 00005.799 CYB.09.28.02 00005.799 CYB.09.28.02 00005.799 CYB.

G05

Page 132: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

I NDEXLOC CONTENT LOC CONTENT LOC CONTENT LOC CONTENT lOC CONTENT

BO t PROGRAK AIRAINCOt SUBROUTINE SKIFILEOOt PROGRAK LEAPSTEOt PROGRAK LEAPSTFOt PROGRAK LEAPSTGOt PROGRAK LEAPSTHOt SUBROUTI NE XYFllOt SUBROUTINE KSTOREJOt SUBROUTINE UTKTFKKOt SUBROUTINE UTKTFKLOl SUBROUTINE ZONEKUKKOt SUBROUTI NE GLOIlENOt SUBROUTINE CORNERSOOt PROGRAK SALPOt PROGRAK SALBOZ PROGRAK SALCOZ PROGRAK LASCOIlZ PROGRAK LASCEOZ PROGRAK LASCFOZ FUNCTION !;OZLOlGOZ PROGRAK USCETHOZ PROGRAK SCIZZY10Z PROGRAtl SCIZZYJOZ PROGRAK SCIZZYKOZ PROGRAK SCIZZYLOZ PROGRAK SCIZZYKOZ PROGRAK SCIZZYNOZ SUBROUTI NE CHECKOOZ SUBROUTINE KOZSTLPOZ PROGRAII DIN803 PROGRAK DINC03 PROGRAK DIN003 SUBROUTINE ITERATEE03 SUBROUTINE ITERATEF03 SUBROUTINE ITERATEG03 SUBROUTINE ITERATEH03 SUBROUTINE ITERATE103 SUBROUTINE ITERATEJ03 SUBROUTINE ITERA;EK03 SUBROUTINE ITERATEl03 SU&ROUTINE ITERATEK03 SUBROUTINE ITERATEN03 SUBROUTINE ITERATE003 BUBROUTINE ITERATEP03 00 SCOPE Z.I.3-Z05 KOD 06

I,

Page 133: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM AIRAIN 76/76 OPT='; FTN 4.4+R401 12/08/76 09.27.46 PAGE

OVERLAY (OVRLAYO ,0 ,0) GRID 2PROGRAM AIRAIN(~NPUT=151B.GUiPUT.TAPE1=1S1B.TAPE13.TAPE30=1S1B, GRID 3

1TAPE48,TAPE60=INPUT,TAPE2) GRID 4C ------MAIN OVERLAY ALWAYS IN CORE GRID )

5 C ------TO CALL OTHER OVERLAYS GRID 6COMMON/LD/LO,INDEX GRID 7COMMON/CNS/NUMSEC,NUBSA GRID 8COMMON/AIRCB/LAREA,TDY,KEEPER,NBB.SCAX.SCAY,L1.M1,LZ,M2.L3,M3 JA2276 1

1 ,INTB,MUL, NATABZ,NDB, LCMD,NADAST .NUMBF. :~BUFNT. NIJMBGP, ,'EP, TliX JA2Z76 Z10 DIMENSION LAREA(12),NUMSE~(100),NUBSA(100),INDEX(600) GRID 9

LD=30 GRID 10CALL OVERLAY (7HOVRLAY1 ,1,0) GRID 11CALL OVERLAY(7HOVRLAY2,2,O) GRID 12

. END GRID 13

801

Page 134: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE SKI FILE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

5

SUBROUTINE SKIFILE(LU) GRIOC ------SKIP FILE ROUTI~E TO POSITION THE TAPE AT THE START OF NE><T GRIO

DIMENSION A(10) GRID1 BUFFER IN (LU.1)(A(1).A(10» GRID

IF(UNIT(LU»1.2.1 GRID2 RETURN GRID

END GRID

COl

14.151617181920

Page 135: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM LEAPST 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

OVERLAY {OVRLAY1 ,1,0) GRID 21PROGRAM LEAPST GRID 22C LEAPST· ••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••• GRID 23C ------FUNCTIONS OF THIS OVERLAY ARE GRID 245 C (1) READ IN PARAMETERS RELATED TO INPUT DATA, GRID SURFACE, GRID 25C, AND FLIGHT-LINE PLOT. GRID 26C (2) BUFFER IN RELEVANT DATA CHANNEL AND RETRIEVE DATA. GRID 27C (3) SAVE SOME PARAMETERS ON THE TAPE FOR CONTOURING JOB. GRID 28C ------IT CALLS THE FOLLOWING ROUTINES GRID 2910 C (1) CALCOMP PLOT ROUTINES - FOR FLIGHT-LINE PLOT. GRID 30C (2) MASS STORAGE FILE - OPENMS. GRID 31C (3) OVERLAY C1,1)- SAL. GRID 32C (4) XYFL AND ENTRY POINT XYCPS. GRID 33C (5) MSTORE AND ENTRY POI~T HSTORES. GRID 3415 C GRID 35COHMON/LD/LD,INDEX GRID 36COHMON/AIRCB/LAREA,TDY,KEEPER,NBB,SCAX,SCAY,L1,M1,L2,M2,L3,M3 GRID 371 ,INTB,MUL,NATABZ,NDB,LCMD,NADAST,NUMBF,NBUFNT,NUMBGP,JEP,TDX GRID 38COMMON/LEAPCB/NUMF,DAX,DAY,Xl,X2,Y1,Y2,M,EOGE,XIN,XAX,YIN,YAX GRID 3920 1,BORDER,SHIFT,XYRATIO GRID 40COMMON/CNS/NUMSEC,NUBSA GRID 41COHHON/WINDOW/TLAT,BLAT,WLON,ELON GRID 42COMMON/ORIN/XO,YO,XRAT,IBASE,XCOMPR,SCA GRID 43COMMON/INPUT/ISDR(512),IDATC512),IDARC512),MT,BIG GRID 4425 COMMON/OUTPAR/NT,NZ,NEWLN,KBK GRID 45COMMON/XYCORD/GRIDLAT(2),GRIOLON (2),SCALE GRID 46DIMENSION IBUF(1024) GRID 47DIMENSION LAREA(12),NUMSEC(100),NUBSAC100) GRID 48LUN=13 GRID 4930 KBK=O GRID 50CALL PLOTSCIBUF,1024,2) GRID 51C GRID 52C ------READ I~j DATA, MAP ,AND GRID PARAMETERS, THEN PRINT THE!';. GRID 53READ 650,CLAREA(MM),MH=1,10) GRID 5435 650 FORMAT<10A8) GRID 55READ 20,SCALE,ZONE GRID 56j GRIDLON<1 )=ZONE'bO. +0. 00001 GRID 57GRIDLON(2)=ZONE'60.+0.00001 GRID 58CALL MAPSETCZONE,O.,O.,O.) GRID 5940 SCA=SCALE/39.37008 GRID 60LAREA(11)=TIME(NADAST) GRID 61LAREA(12)=DATE(LCHD) GRID 62PRINT 651,(LAREACMM),MH=1,12) GRID 63651 FORMAT('0',10A8,A10,2X,A10) GRID 6445 READ 652,KEEPER,NBB,BIGNUM GRID 65652 FORMAT(A8,110,F10.0) GRID 66BIG=BIGNUM GRID 67READ 21,NCHAN,NEDIT,NWS,NWN,INC GRID 68READ 64, IBASE,XCDHPR,SCALN GRID 6950 PRINT 26 GRID 70PRINT 24,NCHAN,NEDIT,NWS,NWN,INC GRID 71PRINT 23,SCALE,ZONE GRID 72PRINT 25, IBASE GRID 73PRINT 65, XCOMPP GRID 7455 IFCSCALN.LE.O.) SCALN=SCALE GRID 75SCLN=SCALE/SCALI GRID 76PRINT 70, SCALN GRID 77

001

Page 136: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM LEAPST 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 2

KBK=KBK+1 GRID 78PRINT 71. KBK GRID 7960 CALL PLOT(3 .• 3•• -3) GRID 80CALL FACTOR(SClN) GRID 8170 FORHAT(10X-SCALE OF FLIGHT LINE PLOT 1 -F10.0/) GRID 8271 FORHAT(10X-PLOT BLOCK NO *15* ORIGIN SHIFT*/) GRID 8365 FORHAT(10X.* COMPRESSION RATIO INX-DIRECTION*.F10.3/) GRID 8465 64 FORHAT(110.2F10.0) GRID 8520 FORHAT(2F10.0) GRID 8621 FORHAT< 5I10) GRID 8723 FORHAT(10X.* SCALE OF TRANSFORMATION *.F10.1/10X.* 20NE DEFINED BY GRID 881 MERIDIAN -.F10.3/) GRID 8970 24 FORHAT(9X.*CHANNEL-.8X.*EDITION*.6X.*SAMPLE SI2E*.4X.*WORD SAMPLED GRID 901*.4X.*INCR~MENT*/1X.5115/) GRID 9125 FORHAT(10X.* RAISE BASELINE BY*I10- UN ITS*/) GRID 9226 FORi1AT< 1H1> GRID 93NWN=NWN-1 GRID 9475 C GRID 95C -----~INITIATION MASS STORE FILE AND CALL MAP WINDOW ROUTINE. GRID 96CALL OPENMS(LD.INDEX.600.0) GRID 97CALL OVERLAY(7HOVRLA11.1.1) GRID 98CALL XYFL GRID 9980 C GRID 100C ------SEARCH AND CHECK RELEVANT DATA Cf;ANNEL AND RETRIEVE DATA. GRID 101NC={\ GRID 102NFIL=O GRID 10351 MSR=1 GRID 10485 J~() GRID 105IF(NFIL.GT.O) PRINT 115. ISDR(3) GRID 106NFIL=NFIL+1 GRID 107KBK=KBK+1 GRID 108PRINT 72. KBK GRID 10990 CALL PLOT(0 .• 0.• -3) GRID 110NEWLN=3 GRID 11172 FORHAT(10X*PLOT BLOCK NO-I5/) GRID 112BUFFER IN(1.1) (ISDR(1).ISDR(512») GRID 113IF(UNIT(1» 50.30.60 GRID 11495 SO NCHS=ISDR(4) GRID 115DO 189 NH=1.NCHS GRID 116NCW=NH-10+1 GRID 117IF,ISDR(NCW).EO.NCHAN.AND.ISOR(NCW+1).EO.NEDIT) GO TO 187 GRID 118189 CONTI NUE GRID 119100 PRINT 186.NCHAN GRID 120186 FORMAT(10X.* +++ CHANNEL CODE*I10- IS NOT IN THIS DATA FILE*II) GRID 121CALL SKIFILE(1) GRID 122GO TO 51 GRID 123187 MF=NCW+4 GRID 124105 ISN=ISDR(NC~I+2) GRID 125HG=MF+1 GRID 126HNF=ISDR(MF) GRID 127MNL=ISDR(MG) GRID 128IOVFL=O GRID 129110 52 CONTINUE GRID 130BUFFER IN(1.1) (IDAR(1).IDAR(512» GRID 131STS=UN IT( 1) GRID 132IF(STS) 61.51.60 GRID 13360 PRINT 1016. MSR.ISDR(3) GRID 134

E01

Page 137: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAMLEAPST . 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.46 PAGE 3

115

120

125

130

135

140

145

150

155

160

165

61 H=LENGTH(1)H=H-lMSR=HSR+lIF(HSR.LT.HNF.OR.HSR.GT.MNL) GO TO 52MI=O S NWT=NWS*INCNNI=3+IOVFLIDAT(1)=IDAR(1)IDAT(2)=IDAR(2)DO 188 NI=NNI,M,NWTKOUNT=NIl'il=HI+3IDAT(HI)=IDAR(NI)IDAT(MI+l)=IDAR(NI+l)IDAT(MI+2)=IDAR(NI+NWN)

188 CONTI NUEIOVFL=NWT-«M-KOUNT)/NWS+l)*NWSMT=MI+2CALL XYCPSGO TO 52

30 NFIL=NFIL-lCALL HSTORESPRINT 116, NFIL

116 FORHAT(lH ,* NUMBER OF LINES PROCESSED *I5/1X* ----- EOF ----- */)NAOAST=OLCMD=ONATABZ=1920NATABZM=NATABZ-3JEP=INCPRINT 318,JEP,BIGNUM

318 FORMAT(*O JEP*,I10,* BIGNUM*,F10.0)640 PRINT 643,XIN,XAX,YIN,YAX643 FORMAT(*O XIN XAX YIN YAX*/1X,4F10.5)

CC ------SAVE PARAMETER VALUES ON TAPE 48.

IF(KEEPER.NE.8HPRESERVE)GO TO 514BUFFER OUT(48,1) (LAREA(1),TDX)IF(UNIT(48» 649,649,649

649 DAX=O.ODAY=O.OBUFFER OUT (48,1) (NUMF,XYRATIO)IF(UNIT(48» 514,514,514

5~ 4 CONTI NUE642 DAX=XAX-XIN-EDGE

DAY=YAX-YIN-EDGEC CHANGE VALUES OF DAX DAY

tlDB=NZCALL DISPLA(7H NOB = ,NDB)PRINT160,NDB,~UMSEC(NZ),NUBSA(NZ),NFIL

160 FORHAT(*0*,7X,*NDB NUMSEC NUBSA*/1X,3110/*0 NO LINES*,ll0)115 FORMAT(lH ,* +++++ LINE *15* HAS BEEN PROCESSED +++++*/)

1016 FORHAT(1H ,* PARITY ERROR IN RECORD *15* LINE *151/)CALL CLOSMS(LD)CALL PLOT(0.,O.,999)END

F01

GRID3RIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDJA1976JA1976JA1976JA1976JA1976GRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGR:DGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

135136137138139140141142143

12345

149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188

Page 138: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

4PAGE12/08/76 G9.27.46FTN 4.4+R40176/76 OPT=1

DIAGNOSIS OF PROBLEM

FWA-AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO TH~ LABEL INDICATED.FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.

PROGRAH LEAPST

CARD NR. SEVERITY DETAILS

150 I151 I 649154 I155 I 514

Page 139: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE XYFl 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

SUBROUTINE XYFl GRIO 189C ------CHECK DATA FOR 10El0 AND ONLY ACCEPT DATA WITHIN WINDOW GRIO 190C ------WHEN NO OF OBSERVATIONS (X,Y,Z) IS GT. OR EO.640 SAVE THEM GRID 191C ------ON MS. GRIO 19Z5 C GRID 193CDMMQN/INPUT/ISDR(512),IDAR(51Z),IDAT(51Z),MT,BIG GRID 194COMMON/ORIN/XD,YO,XYRATIO,IBASE,XCDMPR,SCA GRIO 195COMMO~/WINDOW/TlAT,BlAT,WlON,ElON GRID 1%COMMON/OUTPUT/XYW(1920) GRID 19710 COMHON/OUTPAR/NT,NZ,NEWlN,KBK GRID 198COMMON/lEAPCB/NUMF,DAX,DAY,Xl,X2,Yl,Y2,M,EDGE,XIN,XAX,YIN,YAX GRID 1991 ,BORDER,SHIFT,XYR JA2276 3REAL lAT,lONG GRID 201NT=-2 GRID 20215 RETURN GRID 203ENTRY XYCPS GRIO 204MM=MT GRID 20500 1 N=3,MM,3 GRID 206100 IF(NT.lT.1918) GO TO 10 GRID 20720 CAll MSTORE GRID 208NT=-2 GRID 209

10 IF(IDAR(N).NE. 10000000000.AND.IDAR(N+l).NE.l0000000000)GO TO 11 GRIO 210NEWlN=3 GRID 211GO TO 1 GRIO 21225 11 DAR=IDAR(N+2)-IBASE GRID 213IF(DAR.GT.BIG.OR.DAR.lT.O.) GO TO 1 GRID 214RlD=(IDAR(N+l)-90000000.)/l000000. GRIO 215RlN=IDAR(N)/1000000. GRIO 216IF(RlD.GT.BlAT.OR.RlD.lT.TlAT) GO TO 1 GRID 21730 IF(RlN.GT.ElON.OR.RlN.lT.WlON) GO TO 1 GRID 218NT=NT+3 GRID 219C ------CONVERT lAT,lONG TO X,Y COORDS. GRID 220CAll MAPEN(RlN,RlD,Xl,Yl) GRID 221Xl=XlISCA $ Yl=YlISCA GRIO 22235 XD=Xl $ Xl=-Yl $ Yl=XD GRID 223XP=Xl-XO+4.0 GRID 224YP=Yl-YO+4.0 GRIO 225XW=(Xl-XO+4.0)/XCOMPR GRID 226XYW(NT)=XW*XYRATIO-XIN GRID 22740 XYW(NT+l)=YL-YO+4.0-YIN GRIO 228XYW(NT+Z)=DAR GRID 229C ------PlOT rlIGHT-PATH. GRID 230CAll PlOT(XP,YP,NEWlN) GRIO 231NEWlN=2 GRID 23245 CONTINUE GRIO 233~~~RETURN GRIO 234END GRID 235

HOl

Page 140: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE HSTORE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

SUBROUTINE HSTORE GRID 236C ------SAVE OBSERVATIONS (X,Y,2) ON HASS STORAGE FILE IN BLOCKS OF GRID 237C ------1920 WORDS. GRID 238

COHHON/LD/LD,INDEX(600) GRID 2395 COHHON/CNS/NUMSEC(100),NUBSA(100) GRID 240

COHHON/OUTPUT/XYW(1920) GRID 241COHHON/OUTPAR/NT.N2,NEWLN,KBK GRID 242IF(NT.EO.-2) GO TO 99 GRID 243N2=N2+1 GRID 244

10 NECK=NT+2 GRID 245NUBSA(N2)=NECK/3 GRID 246NUHSEC(N2)=NECK GRID 247CALL WRITMS(LD,XYW,NECK,N2) GRID 248RETURN GRID 249

15 ENTRY HSTORES GRID 250C ------THIS OPERATION FOR LAST BLOCK. GRID 251

IF(NT.EO.-2) GO TO 99 GRID 252N2=N2+1 GRID 253NECK=NT+2 GRID 254

20 NUBSA(N2)=NE~K/3 GRID 255NUHSEC(NZ)=NECK GRID 256CALL WRITMS(LD,XYW,NECK,NZ) GRID 257DO 2 L=l,NECK,3 GRID 258

2 PRINT 1.XYW(L).XYW(L+1),XYW(L+7.) GRID 25925 1 FORMAT(10X.3F15.3) GRID 260

99 NDB=NZ GRID 261PRINT 60. NOB. NUHSEC(N2),NUBSA(NZ) GRID 262

60 FORHAT(10X.*NDB NUHSEC NUBSA * 3110/) GRID 263RETURN GRID 264

30 END GRID 265

101

Page 141: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE UTMTFM 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

C

C

C

C

266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296i:n298299300301302303304305306307308309310311312313314315316317318319320321322

SUBROUTINE UTMTFM(RLONG,RLAT,GRIDE,GRIDN) GRIDWRITTEN D. THRUM 1717174 GRIDROUTINE TO CONVERT LATITUDE AND LONGITUDE IN GRIDDECIMAL DEGREES TO GRID NORTHING AND GRID GRIDEASTING ON THE TRANSVERSE MERCATOR PROJECTION. GRIDENTRY POINTS - GRID

MAPSET(RMERID,DUM,DUM,DUM) - CALLED TO INITIALISE ROUTINE GRID- RMERID IS ANY MERIDIAN WITHIN MAP 20NE GRID- RMERID IN DECIMAL DEGREES GPID- OTHER PARAMETERS NOT USED GRID

MAPEN(RLONG,RLAT,GRIDN,GRIDE) - CONVERTS LONG' AND LAT TO GRIDGRID NORTHING I EASTING IN APPROPRIATE ZON GRID- LATITUDE POSITIVE SOUTH,LONGITUDE EAST. GRID

ROUTINE CALLED - ZONENUM,GLOBE GRIDGRIDENTRY MAPSET GRID

DATA CSF,RADFAC/0.9996,0.017453292511 GRIDCONVERT MERIDIAN TO MINUTES FOR USE BY ZONENUM GRID

CMERID=RLONG*60.0 GRIDCALL ZONENUM(CMERID,IZONE) GRID

OBTAIN SPHEROID RADIUS(METRES) ,FLATTENING FACTOR FROM SIR GLOB GRIDCALL GLOBE(EORAD,RECIPF) GRIDFLATF=1.0/RECIPF GRID

CALCULATE PARAMETERS FOR ZONE I20NE GRIDE2=2.0*FLATF-FLATF*FLATF $ E4=E2*E2 $ E6=E4*E2 GRIDED2=E2+E4/(1.0-E2) GRIDAO=1-E~/4.0-3.0*E4/64.0-E6/51.2 $ A2=0.375*(E2+E4/4.+15.*E6/128.) GRIDA4=15.0*(E4+0.75*E6)/256.0 $ A6=35.0*E6/3072.0 GRIDC1= EORADISORT(1.0-E2) GRIDCMDEG=CMERID/60.0 GRIDPRINT 1000,IZONE,CMDEG,EORAD,RECIPF GRID

1000 FORMAT(1HO,7X,*MAPSET - TRANSVERSE MERCATOR PROJECTION FOR ZONE *, GRID1 I3/17X,*CENTRAL MERIDIAN =*,F10.4,* DEGREES*, GRID2 117X,*EOUATORIAL RADIUS =*,F10.0, GRID3 117X.*RECIPROCAL FLATTENING FACTUR =* ,F10.4t> GRID

GRIDN=O. GRIDRETURN GRID

GRIDENTRY MAPEN GRIDRADLAT=-RLAT*RADFAC $ CS1=COS(RADLAT) $ SS1=SIN(RADLAT) GRrrW1=(RLONG-CMDEG)*RADFAC GRI~WC1=~1*CS1 $ WC2=WC1*WC1 $ WC4=WC2*WC2 $ WC6=WC4*WC2 GRIDV1=1.0+ED2*CS1*CS1 $ SIG=C1*CSF/SORT(V1) GRIDV2=V1*V1 $ V3=V2*V1 $ V4=V2*V2 GRIDT2=(SS1*SS1)/(CS1*CS1) $ T4=T2*T2 $ T6=T4*T2 GRIDDM=EORAD*(AO*RADLAT-A2*SIN(2.0*RADLAT) GRID

1 +A4*SIN(4.0*RADLAT)-A6*SIN(6.0*RADLAT» GRIDGRID

GE=SIG*WC1*(1.0+WC2*(V1-T2)/6.0+WC4*(4.0*VJ*(1.0-6.0*T2)+V2*(1.0+ GRID18.0*T2)-2.0*V1*T2+T4)/120.0+WC6*(61.0-479.0*T2t179.0*T4-T6)/5040.) GRIDGRIDN=CSF*DM+SIG*SS1*W1*WC1*(0.5+WC2*(4.*V2+V1-T2) GRID

1/24.0+WC4*(8.0*V4*(11.0-24.0*T2)-28.0*V3*(1.0-6.0*T2) GRID2+V2*(1.0-32.0*T2)-2.*V1 j T2+T4)/720.0+WC6* GRID3(1385.0-3111.0*T2+543.0*T4-T6)/40320.0) GRID

GRIDE=GE+500000.0 GRIDGRIDN=GRIDN+10000000.0 GRID

RETURN GRID

CCCCCCCCCCCCCC

C

5

10

15

25

50

55

35

45

30

20

40

JOl

Page 142: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

12/08/76 09.27.46SUBROUTINE UTHTFH

END

76/76 OPT=1

K01

FTN 4.4+R401

GRID 323

PAGE 2

Page 143: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ZONENUM 76116 OPT=1 FTN 4.4+Fi401 1Z/08176 09.27.46 PAGE

SUBROUTINE 20ilENUM( CM. IZ) GRID 324C 040173 GRID 325

DATA (CS= 99.0).CWID=6.0).<IZF=47).CIZL=58) GRID 326C GRID 327

5 C COMPUTE ZONE FOR SPECIFIED LONGITUDE GRID 328IZ=INTCFLOATCIZF)+(CM/60.-CS)/WID+O.5000001) $ KENT=8HZONENUM GRID 329GO TO 10 GRID 330

C GRID 331ENTRY CEMERID GRID 332

10 C GRID 333C COMPUTE CF.NTRAL MERIDIAN FOR SPECIFIED ZONE GRID 334

KENT=8HCE;'1ERID GRID 33510 CM=CCS+C1Z-IZF)*W1D)*60. GRID 336

IFCIZ.LT.0)CM=CM-WID*60. GRID 33715 IFCIZ.LT.IZF.OR.IZ.GT.IZL)20.30 GRID 338

20 CMD=INTCCM/60.+.000001) $ PRINT 100.KENT.Il.CMD GRID 339100 FORMATC5X5H*****A7* ....ZONE*I3* MERIDIAN*Fa.2.* NOT IN AMG*) GRID 340

30 RETURN GRID 341END GRID 342

LOl

Page 144: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE GLOBE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

SUBROUTINE GLOBE(EORAD,RECIPFl GRIO 343C D.THRUM 1717174 - RuUTINE TO PROVIDE EOUATORIAL RADIUS GRID 344C ANO FLATTENING FACTOR TO CALLING ROUITNE. GRID :l45

DATA EORD,RECIPI GRID 3465 1 63781~0.O,298.251 GRID 347

EORAD=EORD GRID 348RECIPF=HECIP GRID 349RETURN GRID 350END GRID 351

H01

Page 145: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE CORNERS 12/08/76 09.27.46

SUBROUTINE CGRNERS(XR,VR,LAB)C ------GENEP~TE ANNOTATIONS OF GEOGRAPHICAL r.RID.ANNOTATIONS ARE·C CROSSES PLUS LABELS OF HAP NAME AND SCALE.

COHMON/AIRCB/LAREA,TDV,KEEPER,NBB,SCAX,Sr~Y,L1.M1,L2,M2,L3,M3

,.. ,INTB,I1Ul,NATAB2.NDB,LCMD,NADAST.NUMr.I'.NBUFNT,NUMBGP,JEP,TDXDiMENSION XR(1),VR(1),LAB(1),LAREA(12)HEIG=0.1NN=1 $ N=1IF(XR(NN).GT.500.) GO TO 59IF(VR(NN).GT.500.) GO·TO 59IF(XR(NN).LT.-500.) GO TO 59IF(VR(NN).LT.-500.) GO TO 59XPG=XR(N)VPG=VR(N)CALL SVMBOL(XPG,VPG.0.5,3,O.,-1)IF(LAB(N).ED.O) GO TO 52GO TO 60

52 XPL=XPG+3.0 $ VPL=VPG+2.0CALL SVMBOL(XPL,VPL.0.4,LAREA,90 .• 80)GO TO 60

59 PRINT 100100 FORMAT(1H .~ CORNER OUT OF PANGE -------------------------*,///)

60 CONTINUERETURNEND

r- .

{'

PAGE

3523533543553563573583593603613623633643b5366367368369370371372373374375376

GRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

FTN 4.4+R40176/76 OPT=1

5

25

20

15

10

N01

Page 146: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SAL 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

5

10

15

20

25

30

35

40

45

50

OVERLAY(OVRLA11,1,1) GRIDPROGRAM SAL GRIO

r SAL *•• ** ••*••*•• **••••••••••••••••••••••••••••••••••••••• *••*•••• GRIDC ------FUNCTIONS OF THIS OVERLAY ARE GRiDC (1) REAOIN GRID SI2E,IHNOOW LIMITS,GEOGRAPHI CAL GRID VALUES GRIOC (2) CONVERT GEOGRAPHIC GRIDS INTO X AND Y AND PLOT THEM ON GRIDr. FLIGHT-LINE PLOT THROUGH CORNER~ ROUTINE. GRIDC (3) COMPUTE P,~ETERS DEFINING THE GRID WINDOW IN TERMS OF GRID,C X+Y AND ALSO IN GRID UNITS. 9RIDC ------IT CALL ROUTINES HAPEN AND CORNERS. GRIllC ------NOTE THAJ SEVERAL SETS OF GEOGRAPHIC CORNERS CAN BE REAO IN GRIDC AND PROCESSED. GRID

COHMON/AIRCB/LAREA,TDY,KEEPER,NBB,SCAX,SCAY,L1,M1,L2,M2,L3,M3 GRID1 , INTB,MUL,MATAB2,NOB, LCMD,NAOAST,NUMBF,NBUFNT,NUMBGP,JEP,TDX GRID

COMMON/LEAPCB/NUMF,DAX,OAY,X1,X2,Y1,Y2,M,EDGE,XIN,XAX,YIN,YAX GnID1 , BORDER, SHI FT, XYRAT I0 GRIDCOMMON/WINOO~/TB,BB,WB,EB GRIDCOMMON/ORIN/XO,YO,XYRAT,IBASE,XCOMPR,SCA GRIDCOMMON/OUTPAR/NT,NZ,NEWLN,KBK GRIDDIMENSION LAREA(12) GRIDREAL LAT,LONG GRIDREAD 800, DELTA GRIll

800 FORMAT(5F10.3) GRIDC ------READ IN GRID SIZE AND WINDOW LIMITS IN DEGREES AND MINUTES. GRID

READ 810, BORDA,TD,TM,BD,BM,WD,WM,ED,EM GRID810 FORMAT(F10.0,8F5.0) GRID

BORD=BORDA/60. GRIDC ------COMPUTE GRID SURFACE EXTREMITIES INCLUDING BORDER. GRID

T=TD+TM/60. $ TB=T-BORD GRIDB=BD+BM/60. $ BB=B+BORD GRIDW=WO+WM/60. $ WB=W-BORD GRIDE=ED+EM/60. $ EB=E+BORD GRIDLAT=B $ LONG=E GRIDCALL MAPEN(LONG, LAT ,X2, Y2) GRIDXZ=XZ/SCA S Y2=Y2/SCA GRIDXO=XZ S X2=-Y2 $ Y2=XO GRIDLAT=T S LONG=W GRIDCALL HAPElI<LONG,LAT,X1,Y1> GRIDX1=X1/SCA S Y1=Y1/~CA GRIDXD=X1 S X1=-Y1 $ Y1=XD GRIDLAT=TB $ LONG=W GRIDCALL HAPE~(LON~,LAT,XBD,YB~) GRIDXBD=XBD/SCA SYBD=YBD/S(;A GRIDXO=XBD S XB~=-YBD $ YBD=XD GRIDBORDER=X1-Xu~ GRID

815 FORMAT(I5) GRIDC ------READ IN GEOGRAPHICAL GRID VALUES,r.ONVER' THEM INTO X,Y AND GRIOC PLOT THEM. GR IDC REPEAT FOR NCARD SETS OF CORNERS. GRID

READ 815, NCARD G~IDDO 816 NCD=1,NCARD GRIDREAD 812, TCD,TCM,BCD,BCM,WCD,WCM,E~D,ECM GRIDCALL PLOHO.,O.,-3) GRIDKBK=K~K+1 GRIDPRINT 817, KBK GRID

817 FORMAT(10X.PLOT BLOCK NO.I5' MAP CORNERS '/) r,RID8\2 FORMAT(&F5.0) GRID

001

377378379380381382383384385386387 '388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433

Page 147: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PAGE12/08/76 09.27.46FTN 4.4+R40176/76 OPT=1PROGRAM SAL

85

70

75

65

60

80

90

95

100

T=TCO+TCH/60. GRID 434B=BCD+BCH/60. GRID 435W=WCD+WCH/60. GRID 436E=ECD+ECH/60. GRID 437LAT=T S LONG=W GRID 438CALL HAPEN(LONG, LAT ,X, Y) GRID 439X=X/SCA S Y=Y/SCA GRID 440XD=X $ X=-Y t Y=XD GRID 441XNW=X-X1 +4.0 S YNW=Y-Y1 +4.0 $ I.AB=3 GRID 442CALL CORNERS(XNW, YNW, LAB) GRID 443LAT=T S LONG=E G' .. ..~,.;CALL HAPEN(LONG, LAT ,X, Y) GRID 445X=X/SCA S Y=Y/SCA GRID 446Y~=X S X=-Y S Y=XO GRID 447XNE=X-X1+4.0 S YNE=Y-Y1+4.0 $ LAB=2 GRID (48CA~L CORNERS(XNE,YNE,LAB) GR:D 449I.AT=B S LONG=E GRID 450CALL HAPEN(LONG, LAT ,X, Y) GRID 451X=X/SCA S Y=Y/SCA GRID 452XD=X S X=-Y S Y=XD GRID 453XSE=X-Xi+4.0 S YSE=Y-Y1+4.0 S LAB=1 GRID 454CALL CORNERS(XSE,YSE,LAB) GRID 455LAf=B S LONG=W GRID 456CALL HAPEN(LONG,I.AT,X, Y) GRID 457X=X/SCA S Y=Y/SCA GR!D 458XD=X S X=-Y S Y=XO GRID 459.ASW=X-X1+4.0 S YSW=Y-Y1+4.0 S LAB=O GRID 460CALL CORNERS(XSW,YSW,LAB) GRID 461PRINT 813,XNW,YNW,XNE,YNE,XSE,YSE,XSW,YSW GRID 462

813 FORHAT(10X,* MAP CORNERS *5X*XNW*7X*YNW*7X*XNE'7X*YNE*7X*XSE*7X GRID 4631*YSE*7X*XSW*7X*YSW*/22X,8F10.3/) GRID 464

816 CONTINUE GRID 465C ----~-COHPUTE GRID ORIGIN IN X,Y AND ALL PARAMETERS DEFINiNG SIZE GRID 466C AND POSITION OF THE GRID SURFACE. GRID 467

XO=X1 S YO=Y1 GRIO 468XZ=XZ-X1+4.0 S Y2=Y2-Y1+4.0 GRID 469X1=4.0 \ Y1=4.0 GRID 470X1=XlIXCOMPR S X2=XZ/XCOHPR GRID 471PRINT 811, BORDA, TO, TH,BD,BH,WD,WH,ED,EM GRID 472

811 FORHAT(*O BORDA TO TH BD BH WD WH ED EM */1X,9F10.3/) GRID 473801 i-ORHAT(*O OELTA BORDER*,8X,*X1*,8X,*X2*,8X,*Y1*,8X,*Y2*/1X, GRID 474

16F10.3) GRID 475PRINT 801, DELTA,BORDER,X1,X2,Y1,Y2 GRID 476IF(X1.LT.Y2.AND.Y1.LT.Y2)GO TO 805 GRID 477PRINT 802 GRID 478

802 FORMAT(*O X1 GE X2 OR Y1 GE YZ PLEASE CHECK VALUES*) GRIO 479STOP 77 GRID 480

805 HD=(Y2-Y1)/DELTA+ .5 GRID 481TDY=(Y2-Y1)/MD GRID 482LD=(XZ-X1)/TDY +.5 GRID 483TDX=(X2-X1)/LD GRID 484NGPB=BORDER/TDY + 4.5 GRID 485

I 110 EDGE=4.*TDY GRID 486

LSHIFT=NGPB*TDY GRID 487XYRATIO=TDY/TDX GRID 488

. X_I_N_=X_1_*_XY_RA_T1_0_-_SH_I_FT ---::-=-=- G_R_ID 4_89 -l

_ XAX''''XV",TIO''HI'' ORIO 4'0

P01

Page 148: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SAL 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 3

115

120

125

13~

XYRAT=XYRATIO GRIDYIN=Y1-SHIFT GRIDYAX=Y2+SHIFT GRIDL1=NGPB+1 GRIDM1=L1 GRIDL2=L1+LD GRIDM2=M1+MD GRIDL3=LZ+L1-1 GRIDM3=M2+M1-1 GRIDSCAX=1./TDX GRIDSCAY=1./TDY GRIDPRINT 803.MD,LD,L1.M1.L2.M2.L3,M3 GRID

803 FORHATC*0*.8X,*MD*,8X.*LD*.8X.*L1*.8X,*M1*,8x.*L2*.8X.*M2*.SX,*L3* GRID1.aX.*M3*/1X,8110) GRID

PRINT 804. TDY,TDX.SHIFT.XYRATIO.SCAX.SCAY GRID804 FORMATC*O TOY TDX SHiFT XYRATIO SCAX S GRID

1CAY*/1X,6E10.3) GRIDEND GRID

802

491492493494~95

4964974984995005015025035045r~

506507508

Page 149: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM LASC 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

10

15

ZO

25

30

35

40

45

50

55

OVERLAY(OVRLAY2,2,0) GRIDPROGRAM LASC GRID

C LASC ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• GRIDC ------THIS ROUTINE HANDLES, CONTROLS AND MONITORS THE DEVELOPMENT GRIDC OF GRID SURFACE AND ALSO GENERATE PRINTOUT OF GRID VALUES GRIDC ETC. FOR EACH SUB-BLOCK IF REOUIRCD. GRID

COMMON/KOZCOM/KOZS~X,DUMMA,DUMHB GRIDCOMMON/LD/LD,INDEX{600) GRIDCOHMON/HSNEC/NAVE,HVAO,NF1,NA01,NAD2,NF2,NF3,NFF,NF4 GRIDCOMMDN/AIRCB/LAREA,TDY,KEEPER,NBB,SCAX,SCAY,L1,M1,L2,M2,L3,M3 GRID

1 ,INTB,HUL,NATABZ,NDB,LCHD,NADAST,NUHBF,NBUFNT,NUHBGP,JEP,TDX GRIDCOHMON/LASCB/IAX,JA~,NIGP,NAP,JAXLST,MAZE,AH,NUMPS,JAM,NAX,NIT GRID

1,NIP,NLP,KP,KG,LE,LON,INDIV,KFDIH,NAL,RAD,NIPST GRIDCOMHON/FAR/F,NN,NO GRIDCOMHON/KOEBLER/FL,GL,INA,H GRIDCO~MON/SHELLS/NSHELL,KA GRIDDIMENSION LAREA(12),NSHELL(300),KA(300),HAGAR(130),KRINT(20) GRIDDIMENSION FL(200),GL(200),INA(2000),H(6,2000),KOEB(14400) GRIDDIMENSION F(6400) GRIDINTEGER FL,GL,H GRIDEOUIVA~ENCE (FL,KOEB) GRID

C ------INITIALIZE VARIOUS PARAMETERS GR:DINDIV=100 GRIDINTB=100 GRIDNLP=4 GRIDCALL OPENHSCLD,INDEX,MO,O) GRID

C MAZE SHOULD BE EOU.\L TO SUM OF DIMENSIONS OF FL,GL AND IK.\ GRIDMAZE=2400 GRIDKP=100 GRIDKG=120 GRIDLE=100000 GRIDLON=100 GRIDNIT=1 GRID

C ------READ IN AND PRINT RAD,NAL,NIP,KFDIM. GRIDREAD 944,RAD,~AL,NIP,KFDIH GRID

944 FORMAT(Fl0.3,3110) GRIDIFCKFDIM.EO.0)KFDIM=6400 GRIDPRINT 945,RAD,NAL,NIP,KFDIM GRID

945 FORMAT(.O RAD NAL NIP KFDIM'/1X,F10.3,3110) GRIDNUMBGP=NIP GRIDNUMBF=O GRIDHO~~=SECOND(SUN) GRIDPRINT 9,HORAE GRID

9 FORHAT('O',24X,'THE TIHE IN SECONDS BY THE SUNDIAL IS',F12.3/) GRIDC ------CALL ROUTINE TO SET UP THE GRID GRID

CALL OVERLAYC7HOVRLA21,2,1) GRIDIF(KEEPER.NE.8HPRESERVE)GO TO 614 GRIDBUFFER OUT C48,1)CLAREA(1),TDX) GRIDIFCUNIT(48» 613,613,613 GRID

613 BUFFER OUT C48,1) (IAX,RAD) GRIDIFCUNIT(48» 614,614,614 GRID

614 HORAE=SECONDCSUN) GRIDPRINT 9,HORAE GRID

C ------CALL ROUTINE TO INITIALIZE THE GRID SURFACE GRIDCALL OVERLAY(7HOVRLA2Z,2,2) GRIDHORAE=SECONDCSUN) GRIDPRINT 9,HORAE GRID

C02

5095105115125135'1451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155Z553554555556557558559560561562563564565

Page 150: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PRINT 117NIPST=1

C --··---CALL ROUTINE TO SMOOTH THE GRID SURFACECALL OVERLAY(7HOVRLA23,2,3)HORAE=SECOND(SUN)PRINT 9,HORAE

C READ AND PRINT THE LOGICAL FLAGS AWD THE COEFFICIENTSJAX=JARIR = NDB

C ------PRINT ONLY THE FIRST SUB-BLvCK(DIN BLOCK) COEFr-ICIENTSDO 7 NO=1,1IF(NO.EO.NAP) JAX=JAXLSTIR = IR+1NELL=NSHELU NO)CALL READMS(LD,KOEB,NELL,IR)KMAX=KA(NO)IF(KMAX.EO.O)GO TO 32PRINT 117PRINT 15,NO

1~ FORMAT(20X,*COEFFlflENTS FOR BLOCK*,13)DO 126 K=1,KMAXLA=INA(K)PRINT 125,(H(L,Kl,L=1,6),K,LA

125 FORMAT (ZOX,6115,215)126 CONTI NUE

PRINT 117DO 30 1=1,11·,)(DO 28 J=1,JAX$ M=I+(J-1)*IAXKOZSBX=M-1KFL=KOZLfiU FUIF(KFL.~E.i)GO TO 24KFL=Ka::'LDL(GI.)IF(KFL.EO.1) GOT026GOTO 25

24 MAG=1H. $ GOTO 2725 MAG=1HF $ GOTO 2726 MAG=1HG27 i1AGAR(J)=MAG2'.. CONTINUE

C ------FLAG MAPPRI NT 29, (MAGAR( J) ,J=1, J.I>O

29 FORMAT(1X,130A1)30 CONTINUE32 IF(NO.GT.1) GO TO 801

IR=IR+1CALL READMS(LD,F(1),NFF,IR)IR=IR+1CALL READMS(LD,F(NAD2),NF3,IR)GO TO 802

801 DO 700 MV=1,NAVEF(MV)=F(MV+NFF)

700 CONTI NUEIF(NO.EO.NAP) GO TO 803IR= IR+1CALL READMS(LD,F(NAD1),NF2,IR)IR=IR+1CALL READMS(LD,F(NAD2i,NF3,IR)

PROGRAM LASC 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 2

GRID 566GRID 567GRID 568GRID 569GRID 570GRID 571GRID 572GRID 573GRID 574GRID 575GRID 576GRill 577GRID 578GRID 579GRID 580GRID 581GRID 582GRID 583GRID 584GRID 585GRID 586GRID 587GRID 588GRID 589GRID 590GRID 591GRID 592GRID 593GRID 594GRID 595GRID 596GRID 597GRID 598GRID 599GRID 600GRID 601GRID 602GRID 603GRID 604GRID 605GRID 606GRID 607GRID 608GRID 609GRID 610GRID 611GRID 612GRID 613GRID 614GRID 615GRID 616GRID 617GRID 618GRID 619GRID 620GRID 621GRID 622

002

Page 151: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM LASC 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 3

115 GO TO 802 GRID 623803 IR=IR+l GRID 624

CALL REAOMS(LO,F(NAD1),NF4,IR) GRID 625802 NUMBPW=(JAX-l)/20+1 GRID 626

NUMLST = JAX-(NUMBPW-l)-20 GRID 627120 KJK=20 GRID 61:8

DO 703 NOO=1,NUMB?W GRID 6:l9PRINT 117 GRID 630IF(NOO.EO.NUMBPW) KJK=NUMLST GRID 631JL=(NOO-l)-20+1 GRID 632

125 JU=JL+19 GRID 633IF(NOO.EO.NUMBPW) JU=JAX GRID 634

C ------GRIo VALUES GRID 635DO 701 I=1,IAX GRID 636K = 0 GRID 637

130 DO 702 J=JL,JU GRID 638M=I +(J-1) -lAX GRID 639K=K+l GRID 640~RINT(K)=F(H)/INOIV GRID 641

702 CONTINUE GRID 642135 PRINT ~18,(KRINT(KK),KK=1,KJK) GRID 643

118 FORMAT(8X,20I6) GRID 644701 CONTINUE GRID 645703 CONTINUE GHID 646

7 CONTINUE GRID 647140 117 FORMAH1Hl) GRID 648

CALL CLOSHS (LD) GRID 649END GRID 650

CARD NR. SEVERITY DETAILS DIAGNOSIS OF PROBLEM

1,84950516808

613

614

FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INOICATEO.CONTROL VARIABLE IN COMMON OR EOUIVALENCED, OPTIMIZATION MA~ a~ INHIBITED.LO~ER LIMIT .GE. UPPER LIMIT, DNE TRIP LOOP.

E02

Page 152: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

FUNCTION KOZLDL 76/76 OPT=1 FTN 4.4+R401 1Z/08/76 09.27.46 PAGE

5

10

CCC

FUNCTION KOZLDL(NVAR)FUNCTION KOZLDL (NVAR) •••••• ••••••••• •••••• ••• •••• •••••••• ••••••••------UNPACKS FLAG WORD (NVAR) AND RETURNS THE FLAG INFORMATION

THROUGH VARIABLE KOZLDlDIMENSION NVAR(1)COMMON/KOZCOM/KOZSBX.KOZBLLDATA (KOZBLL=32)IX=KOZSBX/K02BLLIS=1+KOZSBX-IX·KOZBLLKOZLDL=SHIFT(NVAR(IX+1).IS).AND.1RETURNEND

FOZ

GRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

65165265365465565665765865966066/602

Page 153: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM USCET 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

OVERLAYCOVI~LA21,2,1 ) GRiD 663PROGRAM USCI::T GRID 664

C ------SUBDIVIDE THE GRID SURFACE INTO ASERIES OF N-S BLOCKS EACH GRID 665C CONSISTS OF NO HORE THAN 6400 GRID POINTS A~D CO~PUTE GRID 666

5 C PARAMETERS DEFINING THE SUB-BLOCKS GRID 667COHHON/AIRCB/LAREA,TDY.KEEPER.NBB,SCA><,SCAY,L1.H1,L2,H2,L3.H3 GRID 668

1 ,INTB,HUL,NATABZ,NDB,LCHD,NADAST.NUHBF,NBUFNT,NUHBGP,JEP,TDX GRID 669COHHON/LASCB/IA><,JAR,NIGP.NAP,JA><LST,MAZE,AH,NUHPS,JAH,NA><,NIT GRID 670

1,NIP,NLP,KP.KG.LE,LON,INDIV.KFDIH,NAL.RAD.NIPST GRID 67110 DIHENSION LAREA(12) GRID 672

IA><=L3 GRID 673JAH=H3 GRID 674AH=TDY GRID 675JAR=Y.FDIHIIAX GRID 676

15 NUHPS=IAX*JAR GRID 677NAP=CJAH-NLP)/CJAR-NLP)+1 GRiD 678NAX=NAP*CJAR-NLP)+NLP GRID 679JAXLST=JAR+J~~-NAX+1 GRID 680NIGP=IAX*JAH GRID 681

20 PRINT 100,JAR,NUHPS,NAP,NAX,JAXLST.NIGP.HAZE,NATABZ,AH GRID 682100 FORHATC*O JAR NUMPS NAP NAX JAXLST N GRID 683

1IGP HAZE NATABZ AH*/1X.8I10,F10.3) GRID 684IF(NIGP.GT.'OOOOO)PR:NT 200 GRID 685

200 FORHATC*0*.9X,*MORE THAN 100000 GRID POINTS*) GRID 68625 END GRID 687

G02

Page 154: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SCIZZY 76/76 OPT.::1 FTN 4.4+R401 1Z/08/76 09.27.46 PAGE

5

10

15

ZO

Z5

30

35

40

45

50

55

CCCCCC

CC

OVERLAYCOVRLA2Z.Z.2> GRIDPROGRAM SCIZZY GRIDSCIZZY•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• GRID------THIS ROUTINE GENERATES GRID

C1> INITIAL ~STARTING> VALUES FOR THE GRID SURFACE. GRID(Z> COEFFICIENTS FOR GRID POINTS INDIRECTLY ASSOCIATED WITH GRID

OBSERVATIONS. GRIDC3> SAVE (1) AND CZ> ON HASS STORAGE FILE AND TAPE. GRID

CDtIHON/HSNEC/NAV[ .HVAD. NF1.NAD1. NADZ. NFZ. NF3. NFF. NF4 GRIDCO~MON/KQZCOH/KQZSBX.DUHHA.DUHHB GRIDCOHHON/LD/LD GRIDCOMHON/AIRCB/LAREA. TOY .KEEPER.NBB.SCAX. Sti'l'/. L1.H1. L2.H2. L3.H3 GRID

1 .INTB.HUL.NATABZ.NDB.LCHD.NADAST.NUHBF.N~UFNT.NUHBGP.JEP.TDX GRIDCOHMON/LASCB/IAX.JAR.NIGP.NAP.JAXLST.HAZE.AH.NUHPS.JAH.NAX.NIT GRID

1.NIP.NLP.KP.KG.LE.LON.INDIV.KFDIH.NAL.RAD.NIPST GRIDCOHHON/FAR/F.NNDIFF.NQ GKIDCOHHON/KOEBLER/~L.GL.INA.H GRIDCOHHON/SHELLS/NSHELL.KA GRIDCOHHONI CNSiNUHSEC. NUBSA GRIDDIHE~SION LAREAC1Z>.NUHSECC100>.NUBSA(1QO).XYW(19Z0) GRIODIHE~SION NSHELLC300>.KAC300>.NN(4).U(4>,VC4).JAN(2000>.LAWCZOOO) GRIDDIHENSION FLCZOO>.GLC200>.INACZOOO).H(6.Z000).KOEB(14400) GRIDDIHENSION FC6400>.KBLAW(ZOOO> GRIDINTEGER FL.GL.H . GRIDREAL HOBS GRIDEQUIVALENCE CFL.KOEB> GRID

KDIH IS EQUAL TO DIHENSION OF JAN.LAW.INA AND 2ND DIM OF H GRID-~----INITIALISE VARIOUS PARAHETEr-S. GRIDK~~M=ZOOO GRIDNNC1>=OSNNCZ)=1SNNC3)=1+IAXSNNC4>=IAX GRIDRS=RAD'RAD GRIDRL=0.707Z·0.707Z GRIDLARGE=Q99999999999 GRIDNAVE=IAX'NLP GRIDMVAD=NUMPS-NAVE+1 GRIDNASE=Z'iAX GRIDNF1=NAVE GRIDNAD1=NF1+1 GRIDNADZ=HVAD GRIDNFZ=NADZ-NAD1 GRIDNF3=NAVE GRIDNFF=NADZ-1 GFlIDNF4=JAXLST'IAX-NAVE GRIDJAX=JAR GRIDJAXH=JAX-1 GRIDJAXHH=JAXH-1 GRIDJ!AX=JAX'IAX GRIDJI AXH=JAXH'lAX GRIDJIAXHH=JAXHH'IAX GRIDJARHNLP=JAR-NLP GRIDNU=NLP GRIDNL=1-JARHNLP GRIDLAB=O GRIDIR=NDB GRIDIAXH=IAX-1 GRIDIAXHM=I AX-2 GRIDIAXH3=IAX-3 GRID

HOZ

688689690691697693694695liS'"69/69869970070110Z70370470570670770870971071171Z713714715716717711171972072172Z7237247257267277287Z973073173Z73373473573673773873974074174Z743744

Page 155: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SCIZZY 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 2

60

65

70

75

80

85

90

95

100

105

110

C ------SUB-BLOCK NO.DO 99 NO=1, NAPCALL DISPLA(6H NO = ,NO)IF(NO.LT.NAP)GO TO 79JAX=JAXLSTJAXI1=JAX-1JAXI1l'1=JAXI1-1JIAX=JAX* lAXJ IAXI1= JAXI1* lAXJIAXI1l'1= JAXI1l'1*lAXNU=NU+JAXLST-NLPGO TO 11

79 NU=NU+JARl'1NLP11 NL=NL+JARHNLP

KOS=OC ------SET ALL GRID POINTS TO LARGE=999999999999.

DO 704 MV=1,NASE704 F(!'1V)=F(l'1V+NFF)

NSS=NASE+1IF(NO.EO.1) NSS=1DO 80 L=NSS,JIAXKOZSBX=L-:CALL KOZSTL<KOS, FL>CALL KOZSTL(KOS,GL)F<L>=LARGE

80 CONTINUEK=O S NAW=O

C ------COl'1PUTE COEFFICIENTS FOR SUB-BLOCK NO.DO 81 NZ=1,NOBNUBS=NUBSA(NZ)NECK=NUl'1SEC(NZ)CALL REAOl'1S(LD,XYW,NECK,NZ)DO 18 NNN=1,NUBS ~ N=3*NNN-ZOY=XYW(N+1)/AH S JY=OY S JG=JY+1JUD=(NU-1-JG)*(JG-NL)IF(JUD.LT.O)GO TO 18OX=XYW(N)/AH S IX=OX S I=IX+1l'1G=I+(JG-1)*IAX $ 1'1=MG-IAX*(NL-1)J=JG-NL+1l'1ARZ=(I-4)*(IAXM3-I)*(J-1)*(JAXM-J)IF(MARZ.LE.O) GO TO 18NAW=NAI.l+ 1LAW(NAW)=1'1F(1'1)=F(M+1)=F(1'1+IAX)=F(M+IAX+1)=XYW(N+Z)*INTBU(1)=OX-IX S V(1)=OY-JY $ J=JG-NL+1U(Z)=U(3)=1.-U(1)$U(4)=U(1)SV(Z)=VC1)SV(3)=VC4)=1.-VC1)DO 47 L=1,4LU=C(J-Z)"Z+«L-1)'CL-Z»"Z)*C(JAXMl'1-J)*'Z+C(L-3)'CL-4»"Z)

1 '(CI-Z)'*Z+CCL-1)'(L-4»"Z)Z '(CIAXI1l'1-I)'*Z+C(L-Z)'(L-3» ••Z)

IF(LU.EO.O)GO TO 47l'1AZ=NN (L> +MDSO=U(L)'.Z+V(L)"ZIF(DSO.GE.RL)GO TO 47KOZSBX=MA2-1KFL=KOZLDLCFL)IFCKFL.NE.1)GO TO 112

102

GRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787738789790191792793794795796797798799800801

Page 156: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SCIZZY 76/76 OPT=1 FTN 4.4+R401 1Z/08/76 09.27.46 PAGE 3

115

120

125

130

135

140

145

150

155

160

165

170

PRINT 114,NNN,HAZ,NZ114 FORHAT(20X,-OBSERVATION-,15,_ NOT USED AT-,17,* BLOCK-,13)

GO TO 47112 KOS=1

CALL KDZSTL(KOS,FL)IF(DSO.GE.RS)GO TO 52CALLK02STL(KOS,GL)GOTO 47

52 K=K+1IF(K.LT.KDIH)GO TO 72PRINT 73,KDIH

73 FORHAT(tOKHAX GT *,(4)STOP 77

72 INA(K)=LJAN(K)=H+NN(L) SDX=U(L) SDY=V(L) SP=DX+DY SD=P-P+PE=2./DSRX=1.-(DX**2+DX)*ESRY=1.-(DY*-2+DY)*ESBX=(DX_*2+P-DY**2)-EBY=(DY**2+P-DX--2)-E SGOTO(15,16,15,16) ,L

1~ H(1,K)=LE-RYSH(2,K)=LE*BYSH(3,K)=LE*BXSH(4,K)=LE*RX S GOT01716 H(1,K)=LE-RX$H\2,K)=LE*BXSH(3,K)=LE*BYSH(4,K)=LE_RY;7 H(6,K)=LE-(2.*E+RX+RY+SX+BY)

H(5,K)=LE*2*INTB*XYW(N+2)*Eq CONTINUE18 CONTINUE81 CONTINUE

C ------CHECK THE NO OF COEFFICIENTS IN SUB-BLOCK NO.711 KHAX=K

KA(NO)=KHAX SPRINT 56,KMAX,NO~6 FORHAT(*0*,9X,*KM~X 15*,16,* FOR BLOCK*,IS/)

IF(KMAX.GT.1)GO TO 51IF(Kl~.EO.1)GO TO 50IF(LAB.NE.O)GO TO 69LAB=1 SSUH=O. SNTS=O

C ------COHPUTE AN AVERAGE Z VALUE FOR S~B-BLOCK NO.0057 NZ=1,NDBNUfJS=NUBSA(NZ)NECK=Nl:HSE C(NZ>CALL READHS(LD,XYW,NECK,NZ)NTS=liTS+NUBSDO 57 NNN=1, NUBSN=3tNNN-ZSUl1=SUH+XYW(N+2)

57 COIlTlNUEKAVER=SUH*INTB/NTS

C ------SET ALL NON-DIRECT-ASSIGNED GRIDPOINTS TO AVERAGE Z VALUE.69 DO 58 H=1,JIAX

KOZSBX=H-1KFL=KOZLDUGUIFCKFL.EO.1)GO TO 58F(11) =KAVER

58 COImNUEGO TO 93

51 KHA=KMAX-1C --~---SEOUE~r.ING COEFFICIENTS

D048 H=1,KHADO 22 L=H,KMAXIFCJANCM).LE.JANCL»GO TO 22LJ=JAN(H) SJAN(H)=JANCL) SJAN(L)=LJ

JOZ

"RID\",i DGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID~~!D\.,j·;lDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

802803804805806807808809810811~1Z8138148158168178188198208Z~822823824il25826il27828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858

Page 157: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SCIZZY 76/76 OPT=1 FTN 4.t.+R401 12/08/76 09.27.46 PAGE 4

LJ=INACH) SINA(H)=INA(L> SINA(L>=LJ GRID 859DO 49 J=1.6 GRID 860LJ=H(J.H) SH(J.M)=H(J.L> SH(J.L>=LJ· GRID 81')1175 49 CONTINUE GRID 86222 CONTINUE GRID 86348 CONTINUE GRID 86450 TH=SECOND(DTH) GRID 865PRINT 901.TH GRID 866180 901 FORHAT(1X.'SCIZZY TIME IS ..•.•• F12.3/) GRID 867C ------SET STARTING VALUES FOR GRID SURFACE. GRID 868DO 340 N=1.NAW GRID 869340 KBLAW(N)=1 GRID 870DO 32 JAG=1.1000 GRID 871185 KAM=O GRID 872DO 28 N=1.NAW GRID 873IF(LAW(N).EO.O)GO TO 2g GRID 874KAMST=O GRID 875HAW=LAW(N) S J=1+(MAW-1>/IAX S I=MAW-(J-1)'IAX GRID 876190 HOBS=FeHAW)SJU=J+JAG

GRID 877IL=I -JAG SIU=I+JAG SJL=J-JAG GRID 878IF<IL.LT.2>IL=2 GRID 879IF( Itl.GT.IAXH) IU=IAXM GRID 830IFe JL. LT.2) JL=2 GRID 881195 IF(JU.GT.JAXH)JU=JAXM GRID 882JLlAX:.:( JL-1>. lAX GRID 883JUIAX=(JU-1).IAX GRID 884DO ~71 II=IL.IU GRID 885MH= II+JLlAX GRID 886200 HL=II+JUIAX GRID 887IF(F(HH).LT.LARGE) GO TO 372 GRID 888KAMST=1 GRID 889F(MM)=HOBS GRID 890372 IF(F(ML).LT.LARGE)GO TO 371 GRID 891205 KAMST=1 GRIU 892F(ML>=HOBS GRID 893371 CONTINUE GRlO !94MRM=(JL-2)*IAX GR1J 895DO 373 JG=JL.JU GRID 896210 HRM=MRH+IAX GRiD 897MM=IL+HRM GRID 898HL=IU+HRM GRID 899IF(F(HH).LT.LARGE)GO TO 374 GRID 900F(HH)=HOBS GRID 901215 KAHST=1 GRID 902374 IF(F(HL> ..'..:r ,'_~io:.·(GE)GO TO 373 GRID 903KA~T .•.;tor. GRID 904':;.I1L>=110BS GRID 905373 LONT:llI!!E GRID 906220 IF(KAM"ST.EO.O)GO TO 328 GRID 907KAli=1 GRID 908GO TO 28 GRID 909328 IF(KBLAW(N).EO.O)GO TO 329 GRID 910KBLAW(N)=O GRID 911225 GO TO 28 GRID 912329 LAW(N)=O GRID 91328 CONTINUE GRID 914IF(KAM.EO.O)GO TO 33 GRID 915

KOZ

Page 158: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SCIZZY 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 5

37 CONTINUE GRIO 916230 33 PRINT 34,JAG GRIO 91734 FORHAT(10X,-JAG =-,16/) GRID 918DO 91 1=2,IAXH GRID 919F<I)=F(I+IAX) GRID 920F(I+JIAXH)=F(I+JIAXHH) GRID 921235 91 CONTINUE GRID 922J1=-IAX GRID 923DO 92 J=1,JAX GRID 924J1=J1+IAX GRID 925F(J1+1>=F(J1+2) GRID 926240 F(J1+IAX)=F(J1+IAXH) GRID 92792 CONTINUE GRID 92893 CALL CHECKC1,JIAX) GRID 929TH=SECOND<DTH) GRID 930PRINT 901. TH GRID '131245 C ------SAVE COEFFICIENTS,STAR~TNG VALUES ETC. ON HASS STORAGE GRII) 932IF(ND.ED.1) GO TO 705 GRID 933IR=IR+1 GRID 93-',CALL WRITHS(LD,F(1),NF1,IR) GRID 935705 NUHH=6-KHAX GRID 936250 IR=IR+1 GRID 937NELL=NUHH+HAZE GRID 938NSHELL(ND)=NELL GRID 939CALL WRITHS(LD,KOEB,NELL,IR) GRII) 940IF(ND.GT.1) GO TO 701 GRID 941255 IR=IR+1 GRID 942CALL HRITHS(LD,F(1),NFF,IR) GRID 943GO TO 702 GRID 946701 IF(~D.ED.NAP)GO TO 703 GRID 947IR=IR+1 GRID 948.:.";0 CALL HRITHS(LD,F(NAo1),NF2,IR) GRID 949GO TO 702 GRID 952:I.;' 703 IR=IR+1 GRID 953CALL WRITHS(LD,F(NAD1),NF4,IR) GRID 954702 IF(KEEPER.NE.8HPRESERVE)GO TO 99 GRID 955265 NUHBUF=NUHH+HAZE GRID 956BUFFER OUT (48,1) CKoEB,KoEBCNUHBUF» GRID 957IFCUNIT(48» 99,99,99 GRID 95899 CONTINUE GRID 959C ------SAVE COEFFICIENTS ETC. ON TAPE 48. GRID 960270 IF(KEEPER.NE.8HPRESERVE)Go TO 517 GRID 961BUFFER OUT C48,1) (NSHELl(1),KACNAP» GRID 962IF(UNITC48» 516,516,516 GRID 963516 ENDFILE 48 GRID 964517 CONTINUE GRID 965275 END GRID 966

CARD NR. SEVERITY DETAILS DIAGNOSIS OF PRoBLEH59 I CONTROL VARIABLE IN COMMON OR EOUIVALENCED, OPTIHIZATIoN MAY BE INHIBITED.266 I KOEB ARRAY NAME OPERAND NOT SUBSCRIPTED, FIRST ELEHENT WILL BE USED.267 I 99 THIS IF DEGENERATES INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.271 I FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.

L02

Page 159: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM SCIZZY

CARD NR. SEVERITY DETAILS272 I 516

76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46

DIAGNOSIS OF PROBLEMTHIS IF DEGENERATE3 INTO A SIMPLE TRANSFER TO THE LABEL INDICATED.

M02

PAGE 6

Page 160: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE CHECK 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 P,4,l.:E

5

10

SUBROUTINE CHECK(K,L)COMHON/FAR/F(6400),NN,NO

CC -~----CHECK ALL GRID VALUES INTO ARRAY F(640C)C (9999\999999) IF SO STOP. .

M=K+L-1DO 1 J=K,HIF(F(JLNE.999999999999)GO TO 1PRINT SOO,NO,J

500 FORHAT<~0NO J*,2I10)STOP 75CONTINUERETURNEND

N02

GRIDGRIDGRID

FOR ANY lINSET VALUE GRIDGRIDGIUDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

967968969970971972973974975976977978979980

Page 161: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE K02STL 76/76 OPT::1 FTN 4.4+R401 12/08/76 09.27.46 PAGE

5

10

CC

SUBROUTINE K02STL(LTEH,NVAR)------PACK FLAG INFORHATION(LTEH,O OR 1)

FLAGDIHENSION NVAR(1)COHHON/K02COH/K02SBX.K02BLLIX::K02SBX/K02BLLIS::59-K02SBX+IX*KOZBLLIS::SHIFT<1.IS)IF(LTEH.EO.1)GO TO 10NVAR(IX+1)::NVARCIX+1).AND.. NOT.ISRETURN

10 NVARCIX+1)::NVAR(IX+1).OR.ISRETURNEND

GRIDIN 60-BIT WORD AS ONE-BIT GRID

GRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRIDGRID

002

981982983984985986987988989990991992993994

Page 162: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM OIN 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46

OVERLAV(OVRLA23,7.,3) GRID 995PROGRAM DIN GRID 996C DIN •••••••••••••••••••••••••• ~ •••••••••••••••••••••*••••••••••••• GRID 997C -·-----THIS ROUTINE CONTROLS AND MONITORS THE ITERAi'ON PROCESS AND GRIO 9985 C SAVESr;RID VALUES ON MASS STORAGE FILE AND TAPeS IF REOUIRED GRID 999COHHON/HSNEC/NAVE,HVAD,NF1,NAD1.NAD2,NF2,NF3,NFF,NF4 GRID 1000COMHON/KQ2COH/KQZSBX, DUHMA, DUHHB GRID 1001COHHON/LtJ/LD GRID 1002COHHON/LASCB/IAX,JAR,NIGP,NAP,JAXLST,HA2E,AH,NUHPS,JAH,NAX,NIT GRID 100310 1,NIP,NLP,KP,KG,LE,LON,INOIV,KFDIH,NAL,RAO,NIPST GRIO 1004COHHON/AIRCB/LAREA,TDV,KEEPER,NBB,SCAX,SCAV,L1,H1,L2,H2,L3,M3 GRID 10051 , INTB,HUL,NATABZ,NDB,LCHD,NADAST,NUKBF,NBUFNT,NUHBGP,JEP,TDX GRID 1006COHHON/FAR/F,NN,NQ GRID 1007COHHON/KOEBLER/FL,GL,INA,H GRID 100815 COHHON/SHELLS/NSHELL,KA GRID 1009COHHON/LEUN/LEUN GRID 1010DIHENSION LAREA(12),NSHELL(300),KA(300) GRID 1011DIHENSION FL(200),GL(200),INA(20QO),H(6,2000),KOEB(14400) GRID 1012DIHENSION F(6400) GRID 101320 INTEGER H, FL,GL GRID 1014EQUIVALENCE (FL ~O~B) GRID 1015DIHENSION IB(4,~),JB(4,4) GRID 1.016DATA (IB(J),J=1,16)/-i,-1,1,1,-1,0,1,0,0.1,0,-1.1,1,-1,-11 GRID 1017DATA (JB(J),J=1,16)/1,-1,-1,1,0,-1,0,1,-1,0,1,O,-1,1,1,-11 GRID 101825 NBUFNT=1 GRID 1019llRECB=NAP+3 GRID 1020LH=LE GRID 1021LEUN=NIP-NAL GRID 1022KXX=IAX GRID 102330 EGA=KG/1 00. GRID 1024C ------START OF ITERATIONS GRID 1025DO 100 NN=NIPST,NIP GRID 1026CALL DISPLA(6H NN = ,N~) GRID 1027IR=NDB GRID 102835 JAX=JAR GRID 1029JITTER=O GRID 1030C ------CALL IN SUB-BLOCK NO. GRID 1031DO 99 NQ=1,NAP GRID 1032IF(NO.LT.NAP)GO TO 126 GRID 103340 JAX=JAXLST GRID 1034126 NELL=NSHELL(NO) GRID 1035IR=IR+1 GRID 1036CALL READHS(LD,KO~B,NELL,IR) GRID 1037C . ------READ IN GRID POINT V';LUES FOR SUB-BLOCK NO. GRID 103845 IF(NO.EO.1)GO TO 722 GRID 1039DO 721 HV=1,NAVE GRID 1040FCHV)=F(HV+NFF) GRID 1041121 CONTINUE GRID 1042IF(NO.EQ.NAP) GO TO 7C~ GRID 104350 722 IR=IR+2 GRIl) 104:,CALL READHS(LD.F(NAD2),NF3,IR) GRID 104~~IF(NO.GT.1> GO TO 701 GRID 1046IR=IR-1 GRID 104i'CALL READHS(LD,F(1),NFF,IR) GRID 1048

L55 GO TO 702 G"ID 1049701 IR=IR-l GhID 1050CALL READHS(LD. FOIAD1),NF2, IR) GRID 1051

POZ

PAGE

'~

Page 163: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROGRAM DIN 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 2

GO TO 702 GRID 1052703 IR=IR+1 GRID 105360 CALL REAOMS(LD,F(NA01),NF4,IR) GRID 1054702 JIT=O GRID 1055KYY=JAX GRID 1056C ------CALL ITERATE GRID 1057CALL ITERATE(KXX,KYY,NAP,EGA,NIT,JIT) GRID 105865 C ------JITTER-CONVERGENCY INDICATOR GRID 105990 IF(JIT.GT.JITTER)JITTER=JIT GRID 1060C ------SAVE ITERATED GRID DATA FOR SUB-BLOCK NO 0N MASS STORAGE AND GRID 1061C TAPE48. GRID 1062IF(NO.GT.1) GO TO 704 GRID 1[\6370 CALL WRITMS(LD,F(1),NFF,IR, 1) GRID 1064IR=IR+1 GRID 1065GO TO 705 GRID 1066704 IF(NO.EO.NAP)GO TO 706 GRID 1067CALL WRITMS(LD,F(NAD1),NF2, IR, 1) GRID 106875 IR=IR-2 GRID 1069CALL WRITMS(LD,F(1),NF1,IR, 1) GRID 1070IR=IR+3 GRID 1071GO TO 705 GRID 1072706 CALL WRIT"lS:LD,F<liAD1),NF4.IR, 1) GRID 107380 IR=IR·-2 GRID 1074CALL WRITMS(LD,F(1),NF1,IR, 1) GRID 1075705 IF(KEEPER.NE.8HPRESERVE)GO TO 99 GRID 107SIF(NBUFNT.LT.NBB)GO TO 99 GRID 1077BUFFER OUT (48,1) (F(1),NO) GRID 107885 IF(UNIT(48» 99,99,99 GRID 107999 CONTINUE GRID 1080C ------PRINT JITTER GRID 1081PRINT 91,NN,JITTER GRID 108291 FORHhT(*0*,9X,*JITTER *,13,* = *,110) GRID 108390 IF(KEEPER.NE.8HPRESERVE)GO TO 517 GRID 1084IF(NBUFNT.LT.NBB)GO TO 517 GRID 1085C ------REWIND TAPE48 TO THE START OF FILE 2 READY FOR DUMPING OF GRID 1086C NEXT ITERATED GRID DATA. GRID 1087PRINT 599,NN GRID 108895 599 FORMAT(*0*,39X,*SAVE GPTVALS*,I10) GRID 1089C ENOFILE 48 GRID 1090DO 205 LIT=1,NREfB GRID 1091BACKSPACE 48 GRID 1092205 CONTI NUE GRID 1093100 CALL SKIFILE(48) GRID 1094NBUFNT=O GRID 1095517 NBUFNT=NBUFNT+1 GRID 1096100 CONTI NUE GRID 1097IF(KEEPER.EO.8HPRESERVE)CALL SKIFILE(48) GRID 1098105 END GRID 1099

CARD NR. SEVERITY DETAILS

323884

DIAGNOSIS OF PROBLEM

CONTROL VARIABLE IN COMMON OR EOUIVALENCED, OPTIMIZATION MAY BE INHIBITED.CONTROL VARIABLE IN COMMON OR EOUIVALENCEC, OPTIMIZATION MAY BE INHIBITED.FWA AND LWA NOT IN SAME ARRAY OR EOUIVALENCE CLASS.

803

Page 164: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

PROSRAii DIN 76/76 OPT=1 FTN 4.4+R401 12/08176 09.27 .~6

CARD NR. SEVERITY CETAILS DIAGNOSIS OF PROBLEM85 I 99 THIS IF DEGENERATES INTO ASIMPLE TRANSFER TO THE LABEL INDICATED.

C03

PAGE 3r.-

Page 165: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 \>9.27.46 PAGE

SUBROUTINE ITERATE(KXX,KYY,NAPP,EGA,NITT,JIT> GRID 1100C ITERATE t •••••••••••••••••••••••••••• _ •••••••••••••••••••••••••••• r,RID 1101C ------THE ACTUAL ITERATION PROCESS IS CARRIED OUT WITHIN THIS GRID 1102C ROUTINE. GRID 11035 COMMDN/LEUN/LEUN GRID 1104COMMONiFAR/F,NN,NO GRID 1105COMMON/KOEBLER/FL,GL,INA,H GRID 1106COMMON/KOZCOM/KOZSBX,DUMMA,DUMMB GRID 1107DIMENSIO~ F(6400> GRID 110810 DIMENSION FL(200),GL(200>,INA(2000>,H(6,2000>,KOEB(14400> GRID 1109DIMENSION IB(4,4>,JB(4,4> GRID 1110EOUIVALENCE (FL,KOEB> GRID 1111EOUIVALENCE (LG6,LA6~,(LG7.LA7>,(LG8,LA8>,(lG9,LA9> GRID 1112EOUIVALENCE (LA1,lG1>,(LA2,LG2>,(LG3,LA3>,(LG4,LA4>,(LG5,LA5> GRID 111315 EOUIVALE~CE (LG10,LA10>,(LG11,LA11>,(LG12,LA12>,(LG13,LA13> G.-lID 1114INTEGER FL,GL,H GRID 1115LOGICAL FL,GL GRID 1116DATA (P1=1.> GRID 1117DATA«(IB(I,J>,J=1,4>,1=1,4>=-1,-1,O,1,-1,O,1,1,1,1,0,-1,1,0,-1, GRID 111820 1-1) GRID 1119DATA«(JB(I,J>,J=1,4>,I=1,4>=1,O,-1,-l,-1,-1,0,1,-1,0,1,1,1,1,0, GRID 11201-1) GRID 1121DATA (PD25=0.25>,(PD05=.OS>,(PD1=.1>,(PD4=0.4> GRID 1122DATA (K1=1>,(K2=2>,(K3=3>,(K4=4>,(P8=8.>,(P4=4.>,(P2=2.> GRID 112325 OMEGA=EGA GRID 1124014 = 1./14. GRID 11251.>3=1./3. GRID 1126019=1./19. GRID 112706=1./6. GRID 112830 . 02=1./2. GRID 112907=1.17. GRID 1130018=1./18. GRID 1131C GRID 1132KX=KXX GRID 113335 KY=KYY GRID 1134NAP=NAPP GRID 1135NIT=NITT GRID 1136KXBY=KX·KY GRID 1137C GRID 113840 KXM1 KX-1 GRID 1139KXM2 KX-2 GRID 1140KYM1 KY-1 GRID 1141KYM2 KY-2 GRID 1142C GRID 114345 KXBY1 = KX'KY-K2'KX+K2 GRID 1144C GRID 1145C GRID 1146KV1 K2'KX GRID 1147KV2 KX-K1 GRID 114850 KV3 KX GRID 1149KV4 KX+K1 GRID 1150KV5 -K2 GRID 1151KV6 -K1 GRID 1152KV7 0 GRID 115355 KV8 K1 GRID 1154KV9 K2 GRID 1155KV10 -KX-K1 GRID 1156

003

Page 166: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTHlE ITERATE 76/76 OPT:1 FTN 4.4+R401 1Z/08/76 09.Z7.46 PAGE Z

\(V11 : -KX GRID 1157KV1Z : -KX+1 GRID 1158M KV13 : -KZ*KX GRID 1159C GRID 1160C GRID 1161LC1 : KZ GRID 1162LC2 : KX+K1 GRID 116365 LC3 : KX+K2 GRID 1164LC4 : KX+K3 r,!1ID 1165LC5 : K2*KX+K2 GRID 1166LC6 : KX-K1 GRID 1167LC7 : K2*KX-K2 GRID 116870 LC8 : KZ*KX-K1 GRID 1169LC9 : KZ*KX GRID 1170LC10 : K3*KX-i'1 GRID 1171LC11 : KXBY-K3*KX+K2 GRID 1172LC12 : KXBY-K2*KX+1 GRID 117375 LC13 : KXBY-K2*KX+K2 GRID 1174LC14 : KXBY-K2*KX+K3 GRID 1175L~i} : KX~Y-KX+K2 GRID 1176LC'i6 : KXEiY-K2*KX-K1 GRID 1177LC17:KXBY-KX-K2 GRID 117880 LC18 : KXBY-KX-K1 GRID 1179LC19 : KXBY-KX GRID 1180LC20 : KXBY-K1 GRID 11 ~1C GRID 1182C GRID 118385 C GRID 1184LV1 : K1 GRID 1185LV2 : LV1+K1+KX GRID 1186LV3 : LV2+K1+KX GRID 1187LV4 :KX GRID 118890 LV5 : LV4~KX-r.1 GRID 1189LV6 : LV5+KX-K1 GRID 1190LV7 : KXBY-KX+K1 GRID 1191LV8 : LV7-KX+K1 GRID 1192LV9 : LV8-KX+K1 GRID 119395 LV10 : KXBY GRID 1194LV11 : LV10-KX-K1 GRID 1195LV12 : LV11-KX-K1 r.RID 1196C GRID 1197C GRID 1198100 C GRID 1199l.A:K2 GRID 1200LU1:LA+KV1 GRID 1201LIJZ:LA+KVZ GRID 1202LU3:LA+KV3 GRID 1203105 LU4:LA+KV4 GRID 1204LU5:LA+KV5 GRID 1Z05LU6:LA+KV6 GRID 1206LU7:LA+KV7 GRID 1207LU8:LA+KV8 GRID 1208110 LUc;':LA+KV9 GRID 1209C GRID 1210C GRID 1211C GRID 1212LA~KXBY-KX+K2 GRID 1213

E03

Page 167: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii
Page 168: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.46 PAGE 4

L06=L05+I<X GRID 1271L07=LC10+I<X GRID 1272L08=L07+1<1 GRID 1273175 L09=LE5-I<X GRID 1274L010=L09+1<1 GRID 1275LOll=LC14+1<1 GRID 1276L012=LOll+I<X GRID 1277L013=LC16-KX GRID 1278180 L014=L013+Kl GRID 1279L015=LC17-K1 GRID 1280L016=I.015+I<X GRID 1281DO 92 LIT=l,NIT $ N=O GRID 1282L=I<XM2+I<X GRID 1283185 C GRID 1284C GRID 1285DO 93 J=1<3.I<YM2 GRID 1280C GRID 12P1L=L+4 GRID 1?il8190 C GRID 1289C GRID 1290LGl = L+KV1 GRID 1291LG2 = L+I<V2 GRID 1292LG3 = L+I<V3 GRID 1293195 LG4 =L+I<V4 GRID 1294LG5 = L+I<V5 GRID 1295LG6 = L+I<V6 GRID 1296LG7 = L+I<V7 GRID 1297LG8 = L+I<V8 GRID 1298200 LG9 = L+I<V9 GRID 1299LG10 = L+1<'J1 0 GRID 1300LG11 =, L+I<V11 GRID 1301LG12 = L+I<V12 GRID 1302LG13 = L+KV13 GRID 1303205 C GRID 1304C GRID 1305DO 93 I=K3.KXN2 GRID 1306C GRID 1307L=L+1 GRID 1308210 C GRID 1309C GRID 1310C GRID 1311LGl = LGl +1<1 GRID 1312LG2 = LG2 +1<1 GRID 1313215 LG3 = LG3 +Ki GRID 1314LG4 = LG4 +Kl GRID 1315LG5 = LG5 +1<1 GRID 1316LG6 = LG6 +K1 GRID 1317LG7 = LG7 +Kl GRID 1318220 LG8 = LG8 +1<1 GRID 1319LG9 = LG9 +Kl GRID 1320LG10 = LG10+1<1 GRID 1321LG11 = LGll+l<l GRID 1322LG12 = LG12+K1 GRID 1323225 LG13 = LG13+Kl GRID 1324C GRID 1325C GRID 1326KOZSBX=LG7-1 GRID 1327

G03

Page 169: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 5

K.FL=KQ2LDL (FL) GRID 1328230 IF(KFll 82.81 GRID 132981 CONTINUE GRID 1330C GRID 1331FS = FCLG3) + F(LG8) + F(LG11) + F(LG6) GRID 1332C GRID 1333235 FUF = ~(LG1) + F(LG9) + F'LG13) + F(LG5) GfllD 1334C GRID 1335FUC = F(LG2) + F(LG4) + F<'.G12i + FCLG10) GRID 1336C GRID 1337TT=PD4t FS-PD05tFUF-PD1tFUC GRID 1338240 F(LG7)=F(LG7)+(TT-F(LG7»tOMEGA GRID 1339JIF=TT-F(LG7) GRID 1340JAB=IABS(JIF) GRID 1341IF(JAB.GT.JIT) JIT=JAB GRID 1342C GRID 1343245 GO TO 85 GHID 134482 CONTINUE GRID 1345IF(NN.LT.LEUN) 93.51 GRID 134651 CONTINUE GRID 1347KFL=KQZLDL(GL) GRID 13~8250 IF(KFll 93.83 GRID 134983 CONTINUE GRID 1350FHS=O. S N=N+1 GRID 1351LB3=(INA(N)-1)t4 GRID 1352DO 125 LB1=1.4 GRID 13537.55 LB3=LB3+1 GRID 1354LB2=LG7+IB(LB3)+JB(LB3)*KX GRID 1355FHS=FHS+H(LB1.N)tF(LB2) GRID 1356125 CONTINUE GRID 1357FHS=FHS+HC5.N) GRID 1358260 FS = F(LG3) + FCLG8) + FCLG11) + F(LG6) GRID 1359FUF = F(LG1) + F(LG9) + F(LG13) + F(LG5) GRID 1360FUC = F(LG2) + F(LG4) + F(LG12) + F(LG10) GRID 1361FUZ = P4 t FS - FUF -P2 * FUC GRID 1362FUD = P4 * C P1 + H ( 6 • N » GRID 1363265 F(LG7) = (FUZ + P4 * FHS ) / FUD GRID 136484 CONTINUE GRID 136585 CONTINUE GRID i36693 CONTINUE GRID 1367C GRID 1368270 C GRID 1369C GRID 1370C GRID 1371IF(NQ.EQ.1) 31,32 GRID 137231 CONTINUE GRID 1373275 LA = KX + Kt: GRID 1374C GRID 1375LG1 LA + KV1 GRID 1376LG2 LA + KV2 GRID 1377LG3 LA + KV3 GRID 1378280 LG4 LA + KV4 GRID 1379LG5 LA + KV5 GRID 1380LG6 LA + KV6 GRID 1381LG7 LA + KV7 GRID 13112LG8 LA + KV8 GRID 1383285 LG9 LA + KV9 GRID 1384

H03

Page 170: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii
Page 171: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

J03

Page 172: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 8

400 FCLV4)=CP2 t CFCLC6)+F<LC9»-FCLE3)-F<LE4»tD2 GRID 149932 CONTINUE GRID 1500C GRID 1501C GRID 1502C GRID 1503405 C GRID 1504LA = KX + K2 GRID 1505C GRID 1506LB = K2 t KX - K1 GRID 1507C GRID 1508410 C GRID 1509LA1=LA+KV1 GRID 1510LA2=LA+KV2 , w·, GRID 1511LA3=LA+KV3 GRID 1512LA4=LA+KV4 GRID 1513415 LA5=LA+KV5 GRID 1514LA6=LA+KV6 GRID 1515LA7=LA+KV7 GRID 1516LA8=LA+KV8 GRID 1517LA9=LA+KV9 GRID 1518420 LA10=LA+KV10 GRID 1519LA11 =LA+KV11 GRID 1520LA12=LA+KV12 GRID 1521LA13=LA+KV13 GRID 1522C GRID 1523425 C GRID 1524LB1=LB+KV1 GRID 1525LB2=LB+KV2 GRID 1526LB3=LB+KV3 GRID 1527LB4=LB+KV4 GRID 1528430 LB5=LB+KV5 GRID 1529LB6=LB+KV6 GRID 1530LB7=LB+KV7 GRID 1531LB8=LB+KV8 GRID 1532LB9::LB+KV9 GRID 1533435 LB10=LB+KV10 GRID 1534LB11=LB+KV11 GRID 1535LB12=LB+KV12 GRID 1536LB13=LB+KV13 GRID 1537C GRID 1538440 C GRID 1539DO 95 J=K3.KYM2 GRID 1540C GRID 1541C GRID 1542LA1=LA1+KX mID 1543445 LA2::LA2+KX GRID 1544LA3=LA3+KX GRID 1545LA4=LA4+KX GRID 1546LA5=LA5+KX GRID 1547LA6=LA6+KX GR!.D 1548450 LA7=LA7+KX GRID 1549LA8=LA8+KX GRID 1550LA9=LA9+KX GRID 1551LA10::LA10+i;X GRID 1552LA11=LA11"KX GRID 1553455 LA12=LA12+I<X GRID 1554LA13=LA13+KX GRID 1555

K03

Page 173: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.46 PAGE 9

C GRID 1556C GRID 1557LB1=LB1+I<X GRID 1558460 LB2=LB2+1<X GRID 1559LB3=LB3+I<X GRID 1560LB4=LB4+I<X GRID 1561LB5=LB5+I<X GRID 1562LB6=LB6+I<X GRID 1563465 LB7=LB7+I<X GRID 1564LB8=LB8+I<X GRID 1565LB9=LB9+I<X GRID 1566LB10=LB10+I<X GRID 1567LB11=LB11+I<X GRID 1568470 LB12=LB12+I<X GRID 1569LB13=LB13+I<X GRID 1570C GRID 1571C GRID 1572FS=P8*(F(LA3)+F(LA8)+F(LA11»+P4*F(LA6) GRID 1573475 C GRID 1574FUF=P2*(F(LA4)+F(LA12» GRID 1575C GRID 1576FUC=F(LA1)+F(LA13)+F(LA9)+F(LAZ)+F(LA10) GRID 1577C GRID 1578480 F(LA7)=(FS-FUF-FUC)*D19 GRID 1579C GRID 1580C GRID 1581FS=P8*(F(LB3)+F(LB6)+F(LB11»+P4*F(LBS) GRID 1582C GRID 1583485 FUF=P2*(F<LB2)+F(LB10» GRID 1584C GRID 1585FUC=F(LB1)+F(LB13)+F(LB5)+F(LB4)+F(LB12) GRID 1586C GRID 1587F(LB7)=(FS-FUF-FUC)*D19 GRID 1588490 C GRID 1589C GRID 159095 CONTINUE GRID 1591C GRID 1592C GRID 1593495 LA1=L21 GRID 1594LAZ=LZ2 GRID 1595LA3=LZ3 GRID 1596LA4=LZ4 GRID 1597LA5=LZ5 GRID 1598500 LA6=LZ6 GRID 1599LA7=LZ7 GRID 1600LA8=LZ8 GRID 1601LA9=LZ9 GRID 1602C GRID 1603505 LB1=LBZl GRID 1604LB2=U122 GRID 1605LB3=LBZ3 GRID 1606LB4=LBZ4 GRID 1607LB5=LBZ5 GRID 1608510 LB6=LBZ6 GRID 1609LB7=LBZ7 GRID 1610LB8=LBZ8 GRID 1611L99=LBZ9 GRID 1612

L03

Page 174: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12/08/76 09.27.46 PAGE 10

C GRID 1613515 C GRID 1614C GRID 1615C GRID 1616C GRID 1617DO 97 J=K3,KYM2 GRID 1618520 C GRID 1619C GRID 1620LA1=LA1+KX GRID 1621LA2=LA2+KX GRID 1622LA3=LA3+KX GRID 1623525 LA4=LA4+KX GRID 1624LA5=LA5+KX GRID 1625LA6=LA6+KX GRID 1626LA7=LA7+KX GRID 1627C GRID 1628530 LA8=LA8+KX GRID 1629LA9=LA9+KX GRID 1630C GRID 1631C GRID 1(:32LB1=LB1+KX GRID 1633535 LB2=LB2+KX .GRID 1634LB3=LB3+KX GRID 1635LB4=LB4+KX GRID 1636LB5=LB5+KX GRID 1637LB6=LB6+KX GRID 1631i540 LB7=LB7+KX GR' 1639LB8=LB8+KX GRJ 1640LB9=LB9+KX GRID 1641C GRID 1642C GRID 1643545 C GRID 1644FS=P4*(F(LA6i+F(LA3)+F(LA8» GRID 1645F(LA7)=(FS-F(LA1)-F(LA5)-F(LA9)-F(LA2)-F(LA4»*D7 GRID 1646C GRID 1647C GRID 1648550 FS=P4*(F(LB6)+F(LB3)+F(LB8» GRID 1649F(LB7)=(FS-F(LB1)-F(LB5)-F(LB9)-F(LB2)-F(LB4»*D7 GRID 1650C GRID 1651C GRID 1652C GRID 1653555 97 CONTINUE GRID 1654C GRID 1655IF(NO.EO.NAP) 33,34 GRID 165633 CmmNUE GRID 1657C GRID 1658560 LB = KXBY1 GRID 1659C GRID 1660C GRID 1661LB1 LB + KV1 GRID 1662LB2 LB + KV2 GRID 1663565 LB3 LB + KV3 GRID 1664LB4 :'B + KV4 GRID 1665LB5 LB + KV5 GRID 1666LB6 LB + KV6 GRID 1667LB7 LB + KV7 GRID 1668570 LBa LB + KV8 GRID 1669

H03

Page 175: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=l FTN 4.4+R401 12/08/76 09.27.46 PAGE 11

LB9 LB + KV9 GRIO 1670Ul10 LB + KV10 GRIO 1671LB11 LB + KV11 GRIO 1672LB12 LB + KV12 GRIO 1673575 LB13 LB + KV13 GRIO 1674C GRID 16750098 I=K3,KXM2 GRID 16:'6C GRID 1677 r.-LB1 = LB1 + K1 GRID 1678 r'580 LB2 = LB2 + K1 GRID 1679LB3 = LB3 + Kl GRIO 1680LB4 = LB4 + K1 GRID 1681LB5 = LB5 + K1 GRID 1682LB6 = LB6 + K1 GRIO 1683585 LB7 = LB7 + K1 GRIO 1684LB8 = LB8 + K1 GRIO 1685LB9 = LB9 + K1 GRIO 1686LB10 =LB10 + K1 GRIO 1687. tB11 = LB11 + K1 GRIO 1688590 LB12 = LB12 + K1 GRID 1689LBB = LB13 + Kl GRID 1690C GRID 1691C GRIO 1692FS=P8 t (F(LB6)+F(LB11)+F(LB8»+P4tF(LB3) GRID 1693595 C GRID 1694FUF=P2t (F(LB10)+F(LB12» GRID 1695C GRID 1696FUC=F(LB5)+F(LB9)+F(LB13)+F(LB2)+F(LB4) GRID 1697C GRIO 1698IJOO C GRID 1699C GRID 1700C "'- GRIO 1701F(LB7)=(FS-FUF-FUC)tD19 GRID 170298 CONTINUE GRID ·1703605 C GRIO 1704FS=P8 t (F(LC11)+F(LC14»+P4t (F(LC12)+F(LC15» GRIO 1705C GRIO 1706FUF=F(L011)+F(L010)+F(LE5)+F(LE6)+P2tF(LV9) GRID 1707C GRID 1708610 F(LC13)=(FS-FUF)t018 GRID 1709C GRIO 1710'C GRID 1711C GRID 1712FS=P8 t (F(LC17)+F(LC16»+P4t (f(LC19)+F(LC20» GRID 1713615 C GRID 1714FUF=F(L013)+F(L015)+F(LE8)+F(LE7)+P2tF(LV12) GRID 1715C GRID 1716F(LC18)=(FS-FUF)t018 GRID 1717C GRID 1718620 C GRID 1719LB1=LUB1 GRID 1720LB2=LUB2 GRW 1721LB3=LUB3 GRID 1722LB4=LUB4 GRID 1723 .1--.625 LB5=LUB5 GRID 1724LB6=LUB6 GRID 1725LB7=LUB7 GRID 1726

N03

Page 176: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

SUBROUTINE ITERATE 76/76 OPT=1 FTN 4.4+R401 12103/76 09.Z7.46 PAGE 1Z

LB8=LUB8 GRID 1727LB9=LU~9 GRID 1728630 C GRID 1729DO 199 I=K3,KXMZ GRID 1730LB1=LB1+K1 GRID 1731LBZ=LBZ+K1 GRID 173ZLB3=LB3+K1 GRID 1733635 LB4=LB4+K1 GRID 1734LB5=LB5+K1 GRID 1735LB6=LB6+K1 GRID 1736LB7=LB7+K1 GRID 1737LB3=LB3+K1 GRID 1738640 LB9=LB9+K1 GRID 1739C GRID 1740C GRID 1741FS=P4t (F(LB6)+F(LB3)+F(LB8» GRID 1742F(LB7)=(FS-F(LB1)-F(LB5)-F(LB9)-F(LBZ)-F(LB4»tD7 GRID 1743645 C GRID 1744199 CONTINUE GRID 1745C GRID 1746FS=P4 t (F(LC 1 3)+F(LE5»+PZtF(LV7) GRID 1747C GRID 1743650 F(LC1Z)=(FS-F(LC14)-F(LC11)-F(LC15)-F(L09»tD6 GRID 1749C GRID 1750C GRID 1751FS=P4 t (F(LC13)+F(LE6»+PZtF(LV7) GRID 175ZC GRID 1753655 F(LC15)=(FS-F(LC14)-F(LC11)-F(LC1Z)-F(L01Z»tD6 GRID 1754C GRID 1755C GRID 1756FS=P4 t (F(LE3)+F(LC13»+PZtF(LV10) GRW 1757C GRID 1758660 F(LC19)=(FS-F(LC17)-F(LC16)-F{LfZO)-F(L014»*D6 GRID 1759C GRID 1760C GRID 1761FS=P4t (F(LC13)+F(LE7»+PZtF(LV10) GRID 176ZF(LCZO)=(FS-F(LC16)-F(LC17)-F(LC19)-F(L016»tD6 GRID 1763665 C GRID 1764F(LV7)=(PZt(F(LC1Z)+F(LC15»-F(LE5)-F(LE6»tDZ GRID 1765C GRID 1766F(LV10)=(PZt(F(LCZO)+F(LC19»-F(LE7)-F(LE3»tDZ GRID 1767C GRID 1763670 C GRID 176934 CO~TlNUE GRID 17709Z CONTINUE GRID 1771END GRID 177Z

CARD NR. SEVERITY DETAILS DIAGNOSIS OF PROBLEM17 FL A TYPE HAS DECLARED PREVIOUSLY FOR THIS VARIABLE OR FUNCTION. THIS DECLARATION IGNORED.17 GL A TYPE HAS DECLARED ?REVIOUSLY FOR THIS VARIABLE OR FUNCTION. THIS DECLARATION IGNORED.

1..- ----.---O-O-.~----------------------------l

Page 177: BUREAU OF MINERAL RESOURCES, GEOLOGY … OF MINERAL RESOURCES, GEOLOGY AND GEOPHYSICS .. ... Even with rules, ... and that the bending moment is zeto -~T~*'~ ii

1.240 S

0.033 10.162 S0.504 S0.003 S0.174 S2.116 S

2.12 S

,,

428

20,181117

2,004180364327

RM77/\ - ~ • .,:::::.: . ~ .••c: riLES~~lll - OPEN/CLOSE CALLSRM772 - DATA TRANSFER CALLSRM773 - CONTROL/POSITIONING CALLSRH774 - BM DATA TRANSFER CALLSRM775 - BM CONTROL/POSITIONING CALLSRM776 - QUEUE MANAGER CALLSRH777 - RECALL CALLS1DMRXAD 0.157 BLOCKSDF ILEAD 0.633 BLOCKSOUTPUT 43.651 BLOCKSSCJ50 - 000430 SC/LC SWAPS

JOB 3,719 ScCUSR\.907 SECATT 1.000 PFSURC 0.486 SSSCM 75.664 KWSECRMS 0.087 MWSECI/O 0.131 MWTOTAL 6.349 SSPRI 2.000 KRATE 0.334 S/SECCHARGE

DIOS VERSION 07/04/76.DAD DOCUMENT NAME - LIST1.

16 RECORDS READ.-LIST1 CnO)-COMMENT. TONY LUYENDYK EXT 27 8-ATTACHCFUSE,FUSE)

DEFAUI.T MR=1, READ ACCESS ONLYPF254 - CYCLE 25 ATTAC~ED FROM QN=5rSTEM

- LI BRARY Ct , FUSE)-TITLECDUTPUT,INPUT)

FORTRAN LIBRARY 401 18/12.75END OF TITLE, NO INDEX SPECIFIED, FICHE NUMBER SPECIFIED, 3 TITLE FIELDS

SO DUPLICATES SPECIFIEDSTOP

.008 CP SECONDS EXECUTION TIME-MOUNTCVSN=PMC510, SN=DMR3922)

HP1034- VSN PMC510 OF SET DMR3922 MOUNTED-ATTACH(OLDPL,AEROGRIDS,ID=DMRXAD,SN=DMR3922)

DEfAULT MR=1, READ ACCESS ONLYPF254 - CYCLE 3 ATTACHED FROM SN=DMR3922

-UPDATE(F)RP727 - VSN PMC5100F SET DMR3922 MOUNTED

UPDATE COMPLETED-FTN(I=COMrILE,SL)

3.388 CP SECOWOS COMPILATION TIME-DISP05ECOUTPUT,tFR=CFC,ST=COMCP)

tt 7000 SCOPE 2.1.3-205 MOD 06/08/76 18.25.07 tt 12/08/76 76225

OR -SYSBULL. 3333333SYSTEM BULLETIN 23 --- 1/ 6/76. USE -SYSBULL,LFN.

HH.MM.SS CPU SECOND ORIGIN09.27.39 DAD.09.27.39 DAD.09.27.39 DAD.

09.27.40 00000.003 CYB.09.27.40 00003.008 JOB.09.27.40 00000.009 JOB.09.27.41 00000.0.0 CYB.09.27.41 00000.012 CYB.09.27.41 0000Q.0~3 JOB.09.27.41 00000.013 LOO.09.27.42 00000.019 USR.09.27.42 00000.026 USR.09.27.42 00000.026 USR.09.27.42 00000.027 USR.09.27.42 00000.027 USR.09.27.42 00000.028 JOB.09.27.42 00000.028 CYB.09.27.42 00000.029 JOB.09.27.42 00000.030 CYB.09.27.42 00000.032 CYB.09.27.42 00000.033 LOD.09.27.43 00000.046 CYB.09.27.45 00000.319 USR.09.27.45 00000.319 LOD.09.29.06 00003.711 USR.09.29.06 00003.711 JOB.09.29.06 00003.715 CYB.09.29.06 00003.715 CYB.09.29.06 00003.715 CYB.09.29.06 00003.715 C)~.

09.29.06 00003.715 CYB.09.29.06 00003.715 CYB.09.29.06 00003.716 CYB.09.29.0600003.716 CYB.09.29.06 00003.716 CYB.09.29.06 00003.716 CYB.09.29.06 00003.717 CYB.09.29.06 00003.717 CYB.09.29.06 00003.717 CYB.09.29.06 00003.717 CYB •.09.29.06 00003.718 CYB.09.29.06 00003.718 CYB.09.29.06 OU003.718 CYB.09.29.06 00003.718 CYB.09.29.06 00003.718 CYB.09.29.06 0000~.719 CYB.09.29.06 00003.719 CYG.09.29.06 00003.719 CYB.09.29.06 00003.719 CYB.09.29.06 00~03.720 CYB.09.29.06 00003.720 CYB.

P03