41
Synchronization in Power Networks Florian D¨orer and Francesco Bullo Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu Institute for Energy Eciency UC Santa Barbara Santa Barbara, California, October 19, 2011 F. D¨ orer & F. Bullo (UC SB) Synchronization in Power Networks Inst. fo r Energy E c ie n cy 1 / 23

BulloSlides

Embed Size (px)

Citation preview

Page 1: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 1/41

Synchronization in Power Networks

Florian Dorfler and Francesco Bullo

Center for Control,

Dynamical Systems & Computation

University of California at Santa Barbara

http://motion.me.ucsb.edu

Institute for Energy EfficiencyUC Santa Barbara

Santa Barbara, California, October 19, 2011

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 1 / 23

Page 2: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 2/41

Motivation: the current power grid is . . .

“. . . the greatest engineering achievement of the 20th century.”[National Academy of Engineering ’10]

1

large-scale, complex, & rich nonlinear dynamics2 100 years old and operating at its capacity limits

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 2 / 23

Page 3: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 3/41

Motivation: the current power grid is . . .

“. . . the greatest engineering achievement of the 20th century.”[National Academy of Engineering ’10]

1

large-scale, complex, & rich nonlinear dynamics2 100 years old and operating at its capacity limits ⇒ BLACKOUTS

The Blackout of 2003: 8/15/2003

Failure Reveals Creaky System, Experts Believe

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 2 / 23

Page 4: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 4/41

Motivation: the envisioned power grid

Energy is one of the top three national priorities

Expected developments in “smart grid”:

1 large number of distributed power sources

2 increasing adoption of renewables3 sophisticated cyber-coordination layer

challenges: increasingly complex networks & stochastic disturbances

opportunity: some smart grid keywords:

control/sensing/optimization ⊕ distributed/coordinated/decentralized 

Central theme: “understanding and taming complexity”

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 3 / 23

Page 5: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 5/41

Motivation: the envisioned power grid

Energy is one of the top three national priorities

Expected developments in “smart grid”:

1 large number of distributed power sources

2 increasing adoption of renewables3 sophisticated cyber-coordination layer

challenges: increasingly complex networks & stochastic disturbances

opportunity: some smart grid keywords:

control/sensing/optimization ⊕ distributed/coordinated/decentralized 

Central theme: “understanding and taming complexity”

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 3 / 23

Page 6: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 6/41

Motivation: the envisioned power grid – our viewpoint

Projects at UCSB: “power systems engineering” ⊕ “networked control”

1 detection and identification of faults & cyber-physical attacks(together with F. Pasqualetti)

ω1

ω2

ω3

g1

g2 g3

b4

b1

b5b2

b6

b3

Sensors

WECC 3/9 power system system dynamics & measurement

Objectives: Is the attack or fault detectable/identifiable by measurements?

How to design (distributed) filters for detection/identification?F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 4 / 23

M i i h i i d id i i

Page 7: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 7/41

Motivation: the envisioned power grid – our viewpoint

Projects at UCSB: “power systems engineering” ⊕ “networked control”

1

detection and identification of faults & cyber-physical attacks(together with F. Pasqualetti)

ω1

ω2

ω3

g1

g2 g3

b4

b1

b5b2

b6

b3

Sensors

WECC 3/9 power system system dynamics & measurement

Objectives: Is the attack or fault detectable/identifiable by measurements?

How to design (distributed) filters for detection/identification?F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 4 / 23

M i i h i i d id i i

Page 8: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 8/41

Motivation: the envisioned power grid – our viewpoint

Projects at UCSB: “power systems engineering” ⊕ “networked control”

2 Synchronization & transient stability

Generators have to swing synchronouslydespite severe fluctuations in generation/loador faults in network/system components

Objectives [D. Hill & G. Chen ’06]: power network dynamics? graph

Observations from distinct fields:

◦ power networks are coupled oscillators

◦ coupled oscillators sync for large coupling

◦ graph theory quantifies coupling, e.g., λ2

⇒ plausible(?): power networks sync for large λ2F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 5 / 23

M ti ti th i i d id i i t

Page 9: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 9/41

Motivation: the envisioned power grid – our viewpoint

Projects at UCSB: “power systems engineering” ⊕ “networked control”

2 Synchronization & transient stability

Generators have to swing synchronouslydespite severe fluctuations in generation/loador faults in network/system components

Objectives [D. Hill & G. Chen ’06]: power network dynamics? graph

Observations from distinct fields:

◦ power networks are coupled oscillators

◦ coupled oscillators sync for large coupling

◦ graph theory quantifies coupling, e.g., λ2

⇒ plausible(?): power networks sync for large λ2F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 5 / 23

Page 10: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 10/41

S a of acti ities of last 2 ea s

Page 11: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 11/41

Summary of activities of last 2 years

Research Areas: “power systems engineering” ⊕ “networked control”1 synchronization and transient stability2 detection and identification of faults and cyber-physical attacks3 model reduction and scalability

AcademicsEducation: PhD students Florian Dorfler and Fabio Pasqualetti

Publications: 3 journal articles (SIAM & IFAC), 9 conference articlesAwards: two plenaries, two best paper awards

2011-14 NSF project “Cyber-Physical Challenges of TransientStability and Security in Power Grids.”

NSF CyperPhysical Systems and Trustworthy Computing ProgramsCollaboration with Ian Dobson (Wisconsin) and Bruno Sinopoli (CMU)

Collaboration with Los Alamos National Lab, DOE project“Optimization and Control Theory for Smart Grids”, Misha Chertkov

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 7 / 23

Summary of activities of last 2 years

Page 12: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 12/41

Summary of activities of last 2 years

Research Areas: “power systems engineering” ⊕ “networked control”1 synchronization and transient stability2 detection and identification of faults and cyber-physical attacks3 model reduction and scalability

AcademicsEducation: PhD students Florian Dorfler and Fabio Pasqualetti

Publications: 3 journal articles (SIAM & IFAC), 9 conference articlesAwards: two plenaries, two best paper awards

2011-14 NSF project “Cyber-Physical Challenges of TransientStability and Security in Power Grids.”

NSF CyperPhysical Systems and Trustworthy Computing ProgramsCollaboration with Ian Dobson (Wisconsin) and Bruno Sinopoli (CMU)

Collaboration with Los Alamos National Lab, DOE project“Optimization and Control Theory for Smart Grids”, Misha Chertkov

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 7 / 23

Outline

Page 13: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 13/41

Outline

1 Introduction and Motivation

2 Mathematical Modeling & Synchronization Problem

3 Synchronization in the Kuramoto Model

4 From the Kuramoto Model to the Power Network Model

5 Conclusions

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 7 / 23

Page 14: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 14/41

Page 15: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 15/41

Structure-preserving power network model

Page 16: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 16/41

Structure-preserving power network model

Classic structure-preserving model [A.R. Bergen & D. Hill ’81]:

M i θi  + D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1

P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

P ij  = |V i | · |V  j | · |Yij | ≥ 0 max. power transferred i  ↔  j 

P i  =

P mech.in,i  for i  ∈ {1, . . . , n}

−P load,i  for i  ∈ {n + 1, . . .m}real power injection at i 

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 10 / 23

Synchronization and transient stability

Page 17: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 17/41

Synchronization and transient stability

M i θi  + D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

1 General synchronization problem: |θi  − θ j | bounded & θi  = θ j 

2 Classic analysis methods: Assumptions & Hamiltonian arguments

highly developed field based on global system perspective

Open Problem [D. Hill & G. Chen ’06]:

synchronization in power networks? underlying graph properties

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 11 / 23

Detour: Synchronization of coupled oscillators

Page 18: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 18/41

Detour: Synchronization of coupled oscillators

It all began with two pendulum clocks and theobservation of “an odd kind of sympathy ”.

[Huygens, C. Horologium Oscillatorium, 1673]

Today’s canonical coupled oscillator model

[A. Winfree ’67, Y. Kuramoto ’75]

Kuramoto model of coupled oscillators:

θi  = ωi  −K 

n

n

 j =1sin(θi  − θ j )

n oscillators with phase θi  ∈ S1

non-identical natural frequencies ωi  ∈ R1

elastic coupling with strength K /nω1

ω3ω2

S1

K/n

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 12 / 23

Detour: Synchronization of coupled oscillators

Page 19: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 19/41

Detour: Synchronization of coupled oscillators

Kuramoto model of coupled oscillators:

θi  = ωi  −

nn

 j =1 sin(θi  − θ j )

Just a few of various direct & related applications:

Sync of coupled pendulum clocks [C. Huygens XVII, M. Bennet et. al ’02]

Sync in Josephson junctions [S. Watanabe et. al ’97, K. Wiesenfeld et al. ’98]

Sync in a population of fireflies [G.B. Ermentrout ’90, Y. Zhou et al. ’06]

Deep-brain stimulation and neuroscience

[P.A. Tass ’03, E. Brown et al. ’04]Coordination of particle models[R. Sepulchre et al. ’07, D. Klein et al. ’09]

Countless other technological, biological, & social syncphenomena [A. Winfree ’67, S.H. Strogatz ’00, J. Acebron ’01]

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 13 / 23

Detour: Synchronization of coupled oscillators

Page 20: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 20/41

Detour: Synchronization of coupled oscillators

A well-understood linear synchronizationmodel [M. DeGroot ’74, J. Tsitsiklis ’84,. . . ]

Consensus protocol:

x i  = −n

 j =1 aij  (x i  − x  j )

n identical agents with state variable x i  ∈ R

interaction described by a connected graph with weights aij 

a few applications: robotic coordination, sensor networks, distributedcomputation & optimization, continuous Markov chains, . . .

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 14 / 23

“The big picture”

Page 21: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 21/41

The big picture

Consensus protocols:  Kuramoto oscillators:

?

Open problem:  sync in power networks

state, parameters, and topology of  graph

θi = ωi −

�n

j=1

nsin(θi − θj)

M iθi +Diθi = P i −

�n

j=1P ij sin(θi − θj)

xi = −�n

j=1aij(xi − xj)

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 15 / 23

“The big picture”

Page 22: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 22/41

b g p

Consensus protocols:  Kuramoto oscillators:

?

Open problem:  sync in power networks

state, parameters, and topology of  graph

θi = ωi −

�n

j=1

nsin(θi − θj)

M iθi +Diθi = P i −

�n

j=1P ij sin(θi − θj)

xi = −�n

j=1aij(xi − xj)

Previous “observations” about this connection:

Power systems: [D. Subbarao et al., ’01, G. Filatrella et al., ’08, V. Fioriti et al., ’09]

Networked control: [D. Hill et al., ’06, M. Arcak, ’07]

Dynamical systems: [H. Tanaka et al., ’97, A. Arenas ’08]

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 15 / 23

Outline

Page 23: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 23/41

1 Introduction and Motivation

2 Mathematical Modeling & Synchronization Problem

3 Synchronization in the Kuramoto Model

4 From the Kuramoto Model to the Power Network Model

5 Conclusions

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 15 / 23

Synchronization in the Kuramoto Model

Page 24: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 24/41

y

Classic Homogeneous Kuramoto model

˙θi  = ωi  −

nn

 j =1 sin(θi  − θ j )

Notions of synchronization:

1

phase cohesiveness: |θi (t ) − θ j (t )| bounded2 frequency synchronization: θi (t ) = θ j (t )

Classic intuition:

K  small & |ωi  − ω j | large⇒ incoherence & no sync

K  large & |ωi  − ω j | small⇒ cohesiveness & frequency sync

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 16 / 23

Page 25: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 25/41

Synchronization in the Kuramoto Model

Page 26: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 26/41

y

Topological Kuramoto model

θi  = ωi  −n

 j =1

aij  sin(θi  − θ j )

Assume: coupling graph isundirected and connected

ω1

ω3ω2

a12

a13

a23

S1

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 18 / 23

Synchronization in the Kuramoto Model

Page 27: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 27/41

y

Topological Kuramoto model

θi  = ωi  −n

 j =1

aij  sin(θi  − θ j )

Assume: coupling graph isundirected and connected

1 Necessary conditions: no sync if n

 j =1 aij  ≤ωi  −

nk =1 ωk 

n

2 Various sufficient conditions in the literature [F. Dorfler & F. Bullo, ’09]:

Based on algebraic connectivity: λ2 >ω1 − ω2 , . . .

2

3 Under development are exact conditions for synchronization

⇒ implication: “coupling dominates non-uniformity” ⇒ sync

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 18 / 23

Synchronization in the Kuramoto Model

Page 28: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 28/41

Topological Kuramoto model

θi  = ωi  −n

 j =1

aij  sin(θi  − θ j )

Assume: coupling graph isundirected and connected

1 Necessary conditions: no sync if n

 j =1 aij  ≤ωi  −

nk =1 ωk 

n

2 Various sufficient conditions in the literature [F. Dorfler & F. Bullo, ’09]:

Based on algebraic connectivity: λ2 >ω1 − ω2 , . . .

2

3 Under development are exact conditions for synchronization

⇒ implication: “coupling dominates non-uniformity” ⇒ sync

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 18 / 23

Synchronization in the Kuramoto Model

Page 29: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 29/41

Topological Kuramoto model

θi  = ωi  −n

 j =1

aij  sin(θi  − θ j )

Assume: coupling graph isundirected and connected

1 Necessary conditions: no sync if n

 j =1 aij  ≤ωi  −

nk =1 ωk 

n

2 Various sufficient conditions in the literature [F. Dorfler & F. Bullo, ’09]:

Based on algebraic connectivity: λ2 >ω1 − ω2 , . . .

2

3 Under development are exact conditions for synchronization

⇒ implication: “coupling dominates non-uniformity” ⇒ sync

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 18 / 23

Outline

Page 30: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 30/41

1 Introduction and Motivation

2 Mathematical Modeling & Synchronization Problem

3 Synchronization in the Kuramoto Model

4 From the Kuramoto Model to the Power Network Model

5 Conclusions

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 18 / 23

From the Kuramoto Model to the Power Network Model

Page 31: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 31/41

1) Structure-preserving power network model on Tn+m × Rn:

M i ¨θi  + D i 

˙θi  = P i  −

n+m

 j =1 P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

2) Non-uniform variation of Kuramoto model onTn+m

:

θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n + m}

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 19 / 23

From the Kuramoto Model to the Power Network Model

Page 32: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 32/41

1) Structure-preserving power network model on Tn+m × Rn:

M i ¨θi  + D i 

˙θi  = P i  −

n+m

 j =1 P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

2) Non-uniform variation of Kuramoto model onTn+m

:

θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n + m}

Synchronization conditions can be related via1 extension of 1st-order analysis [D. Koditschek ’88, Y.P. Choi et al. ’10]

2 time scale separation analysis [F. Dorfler & F. Bullo ’09]

3 today: local topological equivalence [F. Dorfler & F. Bullo ’11]

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 19 / 23

From the Kuramoto Model to the Power Network Model

Page 33: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 33/41

⇒ near the equilibrium manifolds 1) synchronizes ⇔ 2) synchronizes

⇒ near the equilibrium manifolds 1) & 2) are topologically conjugate

0.5 1 1.5

−0.5

0

0.5

0.5 1 1.5

−0.5

0

0.5

            ˙         θ              (

           t

              )

θ(t) rad θ(t) rad

       ˙         θ        (        t        )

        [     r     a        d          /      s        ]

       ˙         θ        (        t        )

        [     r     a        d          /      s        ]

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 20 / 23

Main Synchronization Results

Page 34: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 34/41

Structure-preserving power network model:

M i θi  + D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

1 necessary condition: Let ωsync =

k  P k /

k  D k , then

n+m j =1 P ij  ≤ |P i  − D i  · ωsync| ⇒ no sync

2 sufficient condition: Let P i  = P i  − D i  · ωsync, then

λ2 >˜

P 1 −˜P 2 , . . .

2 ⇒ sync

3 conjectured exact conditions are under development

bottom line: “coupling dominates imbalance in active power”

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 21 / 23

Main Synchronization Results

Page 35: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 35/41

Structure-preserving power network model:

M i θi  + D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

1 necessary condition: Let ωsync =

k  P k /

k  D k , then

n+m j =1 P ij  ≤ |P i  − D i  · ωsync| ⇒ no sync

2 sufficient condition: Let P i  = P i  − D i  · ωsync, then

λ2 >˜

P 1 −˜P 2 , . . .

2 ⇒ sync

3 conjectured exact conditions are under development

bottom line: “coupling dominates imbalance in active power”

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 21 / 23

Main Synchronization Results

Page 36: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 36/41

Structure-preserving power network model:

M i θi  + D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {1, . . . , n}

D i θi  = P i  −n+m

 j =1P ij  sin(θi  − θ j ) , i  ∈ {n + 1, . . .m}

1 necessary condition: Let ωsync =

k  P k /

k  D k , then

n+m j =1 P ij  ≤ |P i  − D i  · ωsync| ⇒ no sync

2 sufficient condition: Let P i  = P i  − D i  · ωsync, then

λ2 >˜

P 1 −˜P 2 , . . .

2 ⇒ sync

3 conjectured exact conditions are under development

bottom line: “coupling dominates imbalance in active power”

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 21 / 23

Page 37: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 37/41

Main Synchronization Results

Page 38: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 38/41

Illustration with the IEEE Reliability Test System ’96  under severe loading

t [s]

    |

         θ        i

        (           t        )   −

         θ        j

        (           t        )    |

        [     r     a        d        ]

γ min

t [s][s]

        ˙           θ              i

         (         t         )

         [      r      a         d           /       s         ]

         θ            i

        (           t

        )

        [     r     a        d        ]

θi

θ(t)

θ(t)

ωi −Diωsync

Conjectured Kuramoto sync condition is marginally satisfied

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 22 / 23

Main Synchronization Results

Page 39: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 39/41

Illustration with the IEEE Reliability Test System ’96  under severe loading

    |

         θ        i

        (           t        )   −

         θ        j

        (           t        )    |

        [     r     a        d        ]

π

/2

t [s]t [s]

        ˙           θ              i

         (         t         )

         [      r      a         d           /       s         ]

         θ            i

        (           t        )

        [     r     a        d        ]

50 s

7 rad

50 s

rad/s

−3 rad/s

15rad

−10rad 50 s

t [s]

Conjectured Kuramoto sync condition is marginally not satisfied

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 22 / 23

Outline

Page 40: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 40/41

1 Introduction and Motivation

2 Mathematical Modeling & Synchronization Problem

3 Synchronization in the Kuramoto Model

4 From the Kuramoto Model to the Power Network Model

5 Conclusions

F. Dorfler & F. Bullo (UCSB) Synchronization in Power Networks Inst. for Energy Efficiency 22 / 23

Page 41: BulloSlides

8/3/2019 BulloSlides

http://slidepdf.com/reader/full/bulloslides 41/41