69
Peter Steinberg Bulk Dynamics Bulk Dynamics in Bulk Dynamics in Heavy Ion Collisions Heavy Ion Collisions Peter Steinberg Peter Steinberg Brookhaven National Laboratory Brookhaven National Laboratory INPC2004 INPC2004 June 27-July 2, 2004 June 27-July 2, 2004 Göteborg, Sweden Göteborg, Sweden

Bulk Dynamics in Heavy Ion Collisions

  • Upload
    trisha

  • View
    31

  • Download
    4

Embed Size (px)

DESCRIPTION

Bulk Dynamics in Heavy Ion Collisions. Peter Steinberg Brookhaven National Laboratory INPC2004 June 27-July 2, 2004 Göteborg, Sweden. Strongly-Interacting Matter. On the lattice, only reach 75-80% of Stefan-Boltzmann limit. - PowerPoint PPT Presentation

Citation preview

Page 1: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Bulk Dynamics in Bulk Dynamics in

Heavy Ion Heavy Ion CollisionsCollisions

Peter SteinbergPeter SteinbergBrookhaven National LaboratoryBrookhaven National Laboratory

INPC2004INPC2004June 27-July 2, 2004June 27-July 2, 2004

Göteborg, SwedenGöteborg, Sweden

Page 2: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Strongly-Interacting Matter

On the lattice, onlyreach 75-80% of

Stefan-Boltzmann limit

In context of N=4 SUSY QCDthis is the signature of

a strongly-interacting plasma(Klebanov et al, 1996)

Shift of paradigm:QCD does not predict weakly interacting QGP for accessible T

Can we study strongly-interacting matter in A+A collisions?

Page 3: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

The Bulk of Particles: dN/d

Comprehensive study of particle production in A+A• Energy• Centrality• Rapidity

dN

/d

19.6 GeV 130 GeV 200 GeV

Most Central

PHOBOS

Participant

Spectator

Page 4: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

The Bulk of Particles: dN/dpT

STAR

Page 5: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Dynamical ModelsNuclear Geometry

Parton distributionsNuclear shadowing

Parton production& reinteraction

Chemical Freezeout &Quark Recombination

Jet FragmentationFunctions

Hadron Rescattering

Thermal Freezeout &Hadron decays

Independent stages: Bulk physics integrates time history

0 fm/c

2 fm/c

7 fm/c

>7 fm/c

Page 6: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Dynamical Models vs. Data

HIJINGHard + Soft

Hadron Transport

RHIC Data

pp Data

ParticleDensity

near y=0

2 1/3

3~5/

TAA

F

m dNA

dyAR

GeVfm

Large variation inpredictions

Page 7: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

The Big Surprise

Contrary to popular belief…

Bulk observables are “simple”

…just not necessarily at =0!

Page 8: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Participant Scaling

Participant scaling = Long-range rapidity correlations

Page 9: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

“Limiting Fragmentation” in A+A

Yield depends on ’-ybeam

Logarithmic increase at =0 centrality-dependent “universal curve”

peripheral central

log log /

~ '

beamy yTF

beam F T

beam

mx e

My y x m M

y

2.4beamy

Page 10: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Difference between p+p vs. A+A

/ 2s

In a head-on p+p collision…

…half of energy emerges as “leading particles” flat in xF

In a typical A+A collision…

…“leading particles” can be struck again!

May make sense to consider A+A as havingall the available energy for particle production

/ 2part NNN s

NA49

Page 11: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Universality of Total Multiplicity

A+A per participant pair ~ p+p @ s/2 ~ e+e- @ sA real surprise at RHIC – not predicted by SPS extrapolations

LEP200 GeV

Page 12: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Essential Features of A+A

1.Npart scaling• Factorization of Energy & Geometry

2.Universal multiplicity / Npart/2• Connections between e+e- & p+p

3.“Limiting fragmentation”

How can we understand this in a simple way?

Dynamical models have too many independent stages

Page 13: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Hydrodynamic Evolution

Strongly-interacting 6Li released from an asymmetric trapO’Hara, et al, Science 298 2179 (2002)

A new canonical image for heavy-ion physics

Hydro useful for strongly interacting matter:

buildup of pressure gradients due to geometry

How does it work for A+A?

Page 14: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Longitudinal Dynamics

1. Early thermalization

2. Blackbody EOS

3. Multiplicity formula:

4. Npart scaling

5. Gaussian dN/dy

z

y

Landau

Assumes matterstops briefly and

explodes longitudinally

Ultra-high energy densityRapid thermalization 2

2

1ln

2

s

m

1/ 4chN Ks

ch partN N

/ 3p

/ 0E V t

Page 15: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Universal Multiplicity Formula

Multiplicity formula impliesp=/3 in early times

Nch=2.2s1/4

Npart scaling impliesEntropy~Volume

Page 16: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

dN/dy: Longitudinal Dynamics

2

exp ln2 2 p

dN y sL

dy L m

M. Murray, BRAHMS

dN/dy may be consequence of hydrodynamic evolutionof Lorentz contracted early stage = DYNAMICS

Page 17: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Limiting Fragmentation

20s GeV

60s GeV

130s GeV

200s GeV

y-yy-yTT

21/ 4/ 2

2

y LdN se

dy L

Approximate scalingin y’

Page 18: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Transverse Dynamics1. Assume boost-

invariance

2. dN/dy is initial condition

3. Non-trivial EOS

4. Pressure gradients Radial & elliptic flow

5. Cooper-Frye Freezeout

dN

dy

y

Page 19: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Radial Flow

20eff TT T m

A clear mass effect on top of “thermal” spectrum

Kolb & Rapp 20% normalizationat 2 GeV

Subm. to PRLnucl-ex/0401006

Au+Au 200 GeVAu+Au 200 GeV

Page 20: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Elliptic Flow vs. Geometry

2~ 1 2 cos 2 R

dNv

d

Hydrodynamic limit

STAR

PHOBOS

Hydrodynamic limit

STAR

PHOBOS

Compilation and Figure from M. Kaneta

Peripheral collisions show “elliptic flow”

Reasonable agreement with hydro

Page 21: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

pT Dependence

2 ~ Tv p

“fine structure” (mass dependence) Described by hydro (and hydro-inspired) fits

STAR

Page 22: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Pseudorapidity Dependence

Limiting fragmentation works almost too well for v2()(Is there really a hydro “limit”?)

Challenge even for 3D hydro calculations, even ifrule sounds simple!

T. Hirano - CGC+HydroT. Hirano - CGC+Hydro

T. Hirano, Nov ‘03

PHOBOS19.6, 62,130,200 GeV

PHOBOS130 GeV

Page 23: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Hydro approach appears to bewarranted by a wide range of data

(but no single model gets everything right!)

Joining longitudinal & tranverse

stages is arbitrary for now(when does evolution begin?)

Serious conceptual issues regardingapplicability of hydro to small

systems…

Page 24: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

More similarities: AA & e+e-

Similar “longitudinaldynamics”?

Similar “energy density”?

Page 25: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Limiting FragmentationDELPHI PLB 459 (1999)

p+p e+e-

Page 26: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Similar Freezeout Properties

e+e-

A+A

From Braun-Munzinger, Stachel, Redlich (2003)

Becattini (1995)

Relative particle yields described using

thermal-statistical modelsin both e+e- and A+A

Page 27: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Radial Expansion in p+p?

R. Witt, STAR Collaboration

Page 28: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Radial Expansion in p+p?

HBT radii have similar relativemomentum dependence:

Similar “expansion dynamics”?

A A T

A A Tp p T

R mC f m

R m

Rout / Rout(pp) Rside / Rside(pp)

Rlong / Rlong(pp)

START. Gutierrez, QM04

Page 29: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Soft Physics = Difficult Physics?

Dynamical models have few constraintsalthough global constraints seem to matter

Page 30: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Incoming nuclei:Npart, Lorentz contraction

Rapid thermalization:Entropy production

1D expansion stage:Rapidity distributions

3D expansion stage:Elliptic & radial flow

Freezeout into hadrons:Statistical phenomenology

t = 0.0 fm/c

t = 0.1 fm/c

t < 0.6 fm/c

t = 0.6 fm/c

t = 6-10 fm/c

Soft Physics = Hydrodynamics?

0T

3 cp T T

3p B

cT T

System is strongly interacting throughout(conserving entropy the whole time!)

Page 31: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Paths to Progress How do we understand differences and similarities

between A+A and p+p, e+e-?• Is hydrodynamics in conflict with Color Glass Condensate?

How does this system thermalize so rapidly?• Which degrees of freedom thermalize and when?• Partons, hadrons, or something else (G. Brown)?

How can we integrate the longitudinal and transverse physics?• For now, study systematics of initial state, EOS, final state• Ultimately, need 3D hydrodynamic calculations starting at the

earliest times no parameters!

Data over a broad rapidity range with PID is essential• Soft physics is global physics: y = 0 may not be special

Page 32: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Extra Slides

Page 33: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Longitudinal Transverse

z

y~

mz O

s

x

y

~z O R

pz

pTLongitudinal dynamics provide initial conditions

for transverse dynamics

Page 34: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Energy Density

2

3~ 0.4

Tpp

F

mdN

dy R

GeV

fm

2 1/3

1/3

TAA

F

TAApp

Tpp

m dNA

dyAR

mA

m

3~ 5 /

~ 10AA

pp

GeV fm

Energy densityrelated to

energy creatednear =0

Page 35: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Centrality Dependence

200/19.6

200/130

0

Changes in one rapidity region are correlatedwith particles in distant regions

Evolution of particle density with centrality is energy-independent

Page 36: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Available Energy

BRAHMS data suggests only75% “available energy”

Contradiction? Possibly.

SLD: Leading K± inss jets ~1.5 units fromend of rapidity range

Do we consider this to NOT bepart of the jet?

qq

Page 37: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Even More Similarities: p+p, e+e-

Limiting fragmentation is a general feature of strong radiation

May explain similarity of multiplicity & energy dependence

ln 1/ ~ beamx y y

Page 38: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Sizes & ShapesHBT correlations in A+Ashow similar information

at all beam energies

Rs ~ Ro ~ 6 fmReaction

plane studiesshow elliptical

shape

STARnucl-ex/0312009

PRL in press

Page 39: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Expansion Dynamics

kT(mT)-dependence probesradial expansion

Difficult for boost-invarianthydrodynamic calculations

Rs

Ro

Page 40: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Total Multiplicity vs. Models

Page 41: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Page 42: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Page 43: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Total Multiplicity in A+A

Page 44: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Coalescence at Moderate pT

Molnar

Page 45: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Two-Particle Correlations

200 GeV Au-Au data

STAR preliminary

peripheral

central

pt 0.15-2 GeV/c

pT correlations “Neck Formation” from minijets:Coupling of “hard” with “soft”, perhaps via energy loss

Trainor

Page 46: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Is the QGP Strongly Interacting?

McLerran

Page 47: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

T h e y t r y t o d e m o n s t r a t e t h a t t h e s a m e r e s u l t s o f t h e s t a t i s t i c a lT h e y t r y t o d e m o n s t r a t e t h a t t h e s a m e r e s u l t s o f t h e s t a t i s t i c a lm o d e l c a n b e o b t a i n e d s t a r t i n g f r o m d i f f e r e n t a s s u m p t i o n sm o d e l c a n b e o b t a i n e d s t a r t i n g f r o m d i f f e r e n t a s s u m p t i o n s

I s s t a t i s t i c a l p o p u l a t i o n t r i v i a l ?I s s t a t i s t i c a l p o p u l a t i o n t r i v i a l ?

,,,,, 21 3

21 2

22

21 mmmm

N

iiif

N

N

j j

Nj

NN pPMpdpd

N

JBR

j

j1

423

1

13

3 22!

)12(

)2(

1

,,,,,, 312121 IIII II

J . H o r m u z d i a r e t a l . , I n t . J . M o d . P h y s . E ( 2 0 0 3 ) 6 4 9 , n u c lJ . H o r m u z d i a r e t a l . , I n t . J . M o d . P h y s . E ( 2 0 0 3 ) 6 4 9 , n u c l -- t h 0 0 0 1 0 4 4t h 0 0 0 1 0 4 4 D . R i s c h k e , N u c l . P h y s . A 6 9 8 ( 2 0 0 1 ) 1 5 3 , t a l k a t Q M 2 0 0 1D . R i s c h k e , N u c l . P h y s . A 6 9 8 ( 2 0 0 1 ) 1 5 3 , t a l k a t Q M 2 0 0 1 V . K o c h , N u c l . P h y s . A 7 1 5 ( 2 0 0 3 ) 1 0 8 , n u c lV . K o c h , N u c l . P h y s . A 7 1 5 ( 2 0 0 3 ) 1 0 8 , n u c l -- t h 0 2 1 0 0 7 0 , t a l k g i v e n a t Q M 2 0 0 2t h 0 2 1 0 0 7 0 , t a l k g i v e n a t Q M 2 0 0 2

R e l a t i v i s t i c i n v a r i a n t : d e p e n d s o nR e l a t i v i s t i c i n v a r i a n t : d e p e n d s o na s w e l l a s o n a s w e l l a s o n

C o r r e c t , b u t n o t t r i v i a lC o r r e c t , b u t n o t t r i v i a l

Becattini

Page 48: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

T h e p e c u lia r p re d ic t io n o f th e s ta tis t ic a l m o d e lT h e p e c u lia r p re d ic t io n o f th e s ta tis t ic a l m o d e l

w h ic h c a n b e e a s ily s p o ile d b y m o s t w h ic h c a n b e e a s ily s p o ile d b y m o s t |M|M ifif || 22 if c h a n n e l if c h a n n e l c o n s ta n ts d e p e n d o n p a r t ic le c o n te n tc o n s ta n ts d e p e n d o n p a r t ic le c o n te n t

jM

jN

j

j

Ω

Ω

BR

BR

M

N

E x a m p leE x a m p le

Q u ite re s tr ic t iv e : o n ly a s in g le s c a le Q u ite re s tr ic t iv e : o n ly a s in g le s c a le a n d fa c to r iz a t io na n d fa c to r iz a t io n

N

iii

Nif IhmfMMM

1

342)()()(

jM

jN

j

j

Ω

Ω

BR

BR

M

N

Becattini

Page 49: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Transport & Coalescence

Molnar

Page 50: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Global Fits to Heavy Ion Data

T (GeV)

(fm/c)Even simple modelscan be extended to cover

a large variety of data

Renk

Page 51: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Hydro & Boost Invariance

Renk

Page 52: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Importance of Viscosity

41

3s

T s

Viscous effects do notsubstantially modify

ideal hydro

Teaney

Page 53: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Can We Observe A Phase Transition?

McLerran

Page 54: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Phase Transitions with v2

Particle Density + Hydro + EOS = Prediction for v2Hadronic cascades insufficient High-mass resonances?

P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C. C62 054909 (2000).

Page 55: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Marek’s Horn & Step

Clear value to the role of energy scan in pushingour understanding of central heavy ion collisions

Is this a smoking gun for a QCD phase transition?

Page 56: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Marek’s Kink

Are pions the only carriersof entropy?

PHOBOS “approach”:Trade in p+p for e+e-

Baryon density affectsglobal particle production

P. Steinberg, WW04

Page 57: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Klebanov: QCD vs. Gravity

String Theory in AdS

Stacked D-BranesOpen & Closed Strings

Black Holes GravitonsGravitinos

etc.

N=4 SYM lives on the surface

QuarksGluonsGluinos

Page 58: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Entropy Bound from AdS/CFT

AdS CFT

A calculationfor scattering

off a black hole…

…gives informationabout the dual

field theory

Page 59: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Gauge-String Duality & RHIC

Duality:

Strongly-Coupled QCD Weakly coupled strings

Weakly-Coupled QCD (pQCD) Strongly coupled strings

1000’s of papers working on strongly-coupled QCDs(unfortunately not “our” QCD)

Simple AdS equations Infinitely summed SYM diagrams

Will some general guides emerge?Possible way out of the paradoxes?

Page 60: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Limiting Fragmentation & CGC

Page 61: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Non-superposition

A+A is NOT a superposition of Npartx(p+p) collisions,or Npart blast waves… Need longer-range correlations

Page 62: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Dynamical Transport Models

UrQMD: Marcus Bleicher and Horst Stocker,arXiv:hep-ph/0006147

Snellings

Page 63: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Coincidence?: Shifted Gaussians in p+A?

Raw dN/dyRaw dN/dy dN/dydN/dyNNpartpart/2/2

dN/dy’dN/dy’NNpartpart/2/2

' lny y ln / 2s m

NA5 DeMarzo et al. (1984)NA5 DeMarzo et al. (1984)

PredictionPredictionFitFit

NormalizedNormalized

Page 64: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Thermal Yields in e+e- & A+A

Page 65: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

RHIC Experiments (to scale)

Two BIG Spectrometers:100’s-1000’s particles event

Particle ID, photons & leptons

Two small detectors:Forward particles,Particle multiplicity

PHENIX

STAR

BRAHMS

PHOBOS

Page 66: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

dN/dy Gaussians & WidthsE895 E895 E8953.0 GeV

Au+Au

BRAHMS

prel.

NA49 NA49

3.6 GeV Au+Au

4.1 GeV Au+Au

8.8 GeV Pb+Pb

17.3 GeV Pb+Pb 200 GeV Au+Au

In central events, pion rapidity distributions are Gaussian!No boost invariance in any region of phase space

Page 67: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Entropy in Strong Interactions

We believe we are making thermalized matterin heavy ion collisions

Energy in a Volume + EOS Entropy

N SCounting particles is accounting for entropy

New degrees of freedom should lead to“additional” particle production

/s T

S sV

Page 68: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

Energy & Geometry “Factorize”

62 GeV200 GeV

Page 69: Bulk Dynamics in  Heavy Ion Collisions

Peter Steinberg Bulk Dynamics

What Controls v2?

Particle density appears to be a control variable

Is there really a “hydro limit”?

NA49Phys.Rev. C68

(2003) 034903