104
Founding Members Building Blocks for Small Aircraft APNT D3.1 NAVISAS Grant: 699387 Call: H2020-SESAR-2015-1 Topic: Sesar-08-2015 Communication, Navigation and Surveillance (CNS) Consortium coordinator: TEKEVER ASDS Edition date: 15 June 2017 Edition: 00.02.00 EXPLORATORY RESEARCH Ref. Ares(2017)3028540 - 16/06/2017

Building Blocks for Small Aircraft APNT · building blocks for small aircraft APNT (Months: 3-10) of NAVISAS. It provides an overview of the state of the art of navigation techniques

  • Upload
    others

  • View
    4

  • Download
    1

Embed Size (px)

Citation preview

  • Founding Members

    Building Blocks for SmallAircraftAPNT

    D3.1 NAVISAS Grant: 699387 Call: H2020-SESAR-2015-1

    Topic: Sesar-08-2015 Communication, Navigation andSurveillance(CNS) Consortiumcoordinator: TEKEVERASDS Editiondate: 15June2017 Edition: 00.02.00

    EXPLORATORYRESEARCHRef. Ares(2017)3028540 - 16/06/2017

  • EDITION[00.01.00]

    2

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    Authoring&Approval

    AuthorsofthedocumentName/Beneficiary Position/Title Date

    TEKEVERASDS Coordinator 04/01/2017

    CSEM Partner,WP3Leader 04/01/2017

    SHARK.AERO Partner 04/01/2017

    THALESAVIONICS Partner 04/01/2017

    ReviewersinternaltotheprojectName/Beneficiary Position/Title Date

    RicardoMendes/TEKEVERASDS COO 05/01/2017

    AndréOliveira/TEKEVERASDS BusinessDevelopmentManager 06/01/2017

    ApprovedforsubmissiontotheSJUBy—RepresentativesofbeneficiariesinvolvedintheprojectName/Beneficiary Position/Title Date

    AndréOliveira/TEKEVERASDS BusinessDevelopmentManager 06/01/2017

    RejectedBy-RepresentativesofbeneficiariesinvolvedintheprojectName/Beneficiary Position/Title Date

    DocumentHistory

    Edition Date Status Author Justification

    00.00.01 06/11/2016 Firstcontentinput TEKEVERASDS

    00.00.02 26/11/2016 IntegrationofcontentCSEM

    00.00.03 07/12/2016 IntegrationofcontentSHARK.AERO

    00.00.04 12/12/2016 IntegrationofcontentTEKEVERASDS

    00.00.05 04/01/2017 IntegrationofcontentTHALESAVIONICS

    00.00.06 05/01/2017 Finalharmonization AndréOliveira

    00.01.00 06/01/2017 Issued AndréOliveira

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 3

    Founding Members

    00.02.00 15/06/2017 Secondissue AndréOliveira AddressingremarksofSESARJU

  • EDITION[00.01.00]

    4

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    NAVISASNAVIGATIONOFAIRBORNEVEHICLEWITHINTEGRATEDSPACEANDATOMICSIGNALS

    ThisprojecthasreceivedfundingfromtheSingleEuropeanSkyATM(AirTrafficManagement)ResearchJointUndertakingundergrantagreementNo699387.

    Abstract

    ThisdocumentcomprisestheworkperformedunderWP3-State-of-the-artandanalysisofbuildingblocksforsmallaircraftAPNT(Months:3-10)ofNAVISAS.Itprovidesanoverviewofthestateoftheartofnavigationtechniques(includingthoseapplicabletosmallaircraft)andananalysisofthestateoftheartforatomicclocksandatomicgyros.Furthermore,itreportsontheexperimentscarriedouttoverifythattheNAVISASatomicgyroandatomicclockareinlinewiththecurrentstateoftheart.Atthisstageoftheproject,theconsortiumhasbeenableto achieve TRL2.5. Finally, the document proposes an operational concept for the use ofNAVISASbysmallaircraft.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 5

    Founding Members

    ExecutiveSummary

    TheobjectivesofthedeliverableD3.1aretoreportupontheworkcarriedoutunderWP3“State-of-the-artandanalysisofbuildingblocksforsmallaircraftAPNT”[Months:3-10]whichhasthefollowingobjectives:

    - Toclearlydefinethestate-of-the-artinnavigationtechniques,clocksandatomicgyrosatthetimeofprojectexecutionandinthelightoflatestSESARdevelopments.

    - Toclarifythestate-of-the-artonatomicgyrosandclocksthroughexperiments.

    - TocreateapoolofbuildingblocksthatareinlinewithWP2requirementsandwillserveasthesolutionworkspacesubsetthatwillbeusedinWP4fortheconceptdesign.

    Concerningthefirstsetofactivities,theconsortiumanalysedseveralnavigationtechniquesincludingthefollowing:

    • GlobalNavigationSatelliteSystem(GNSS)• SpaceBasedAugmentationSystem(SBAS)• GroundBasedAugmentationSystem(GBAS)• CombinationofGNSSwithInertialNavigationSystems(INS)• CombinationofINSwithradar• CombinationofINSwithimagery• Beaconbasednavigation

    o NonDirectionalBeacons(NDB)o VHFOmnidirectionalRadiorange(VOR)o DistanceMeasuringEquipment(DME)

    • SignalsofOpportunity(SoOP)basedono ReceivedSignalStrength(RSS)o AngleofArrival(AOA)o TimeDifferenceofArrival(TDOA)o Pseudorangemeasurement

    Notallofthetechniquesmentionedaboveapplytosmallaircraft.Theyhaveincludedintheanalysisnonethelessforcompleteness.Foralltechniques,theconsortiumdescribedtheprincipleofoperation,assessedthematurityofthetechnique(e.g.whilebeaconbasednavigationisstateofplay,SBASis

  • EDITION[00.01.00]

    6

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    stateoftheartandSoOPisstillininfantresearchphases),identifiedtheequipageandinfrastructureneedsanddescribedtheperformancesachievable.

    Relevantresearchactivitiesinthesedomainshavealsobeenidentifiedandreferenced.

    The consortium concluded themajority of small aircraft (GA,VLA,UL andUAVs as definedby theproject)relyonGNSSandthecombinationofGNSSwithINSfornavigation.MannedsmallaircrafttendtorelyonGNSSreceiversandmakeuseofbeaconbasednavigationmostlyforinstructionalpurposes.ThevastmajorityofunmannedaircraftrelypurelyonGNSSoronthecombinationofGNSSwithINSorothersensors(suchasradioaltimetersorimagery)tonavigateandperformautomaticapproachesand landings.ThecombinationofGNSSwith imagery isbeingexploitedmostlybyverysmallUAVsflyingindoors(outdoorflighttendstousethemoreversatileGNSS).SomesmallA/CalsomakeuseofSBASbuttoamuchsmallerextent.

    GBASisalmostsolelyusedbycommercialaircraftwhileSoOPtechniquesarenotmatureenoughatthemomentforregularuseinaerialnavigation.

    Concerning the state of the art analysis of atomic clocks (MAC) and atomic gyros (Spin NuclearMagnetic Resonance or SNMR), the consortium explained the principles of operation for eachtechnologyandperformedpatentsurveysonbothtechnologies.Commercialproductsonthemarketwere identified and assessed. In order tomake aMAC competitive, the performance in terms offrequencystabilityisessentialbuttheformfactorandthecostsareofkeyimportanceaswell.Thephysicspackageisacriticalelementneededtofulfillthesechallengesandsofarnosolutionexiststhatishighperformingandcompetitiveincost.Themainaspectsofthephysicspackageareitsformfactor,powerconsumptionandproductioncost.

    ThepatentsurveyonMAChasdemonstratedapeakinpatentapplicationsinthisareaaround2010(coincident with major DARPA work funding). The main players in the domain are Honeywell,MicrosemiandNorthropGrumman.AlthoughSeiko/Epsonisthetoprankingpatentapplicant, theyhaveneitheracorrespondingproductnorascientificdemonstratorofaMAC.Thehighnumberofpatentsisinpartduetoahighnumberofpatentfamilieswithonlyminordifferencesinthecontainedclaims.

    TheconsortiumthenexplainedtheapproachesusedbydifferentgroupstorealizeMACprototypes.Prototypepackagesdevelopedbythefollowinggroupshavebeenconsideredandpresented:

    - WestinghouseandNorthropGrumman- NationalInstituteforStandardsandTechnology(NIST)- Microsemi/Symmetricom/DraperLaboratory/SandiaNationalLabs- TeledyneScientific/RockwellCollins/AgilentTechnologies- Honeywell- Sarnoff/Princeton/FrequencyElectronics- MAC-TFCconsortiumandISIMACconsortium- SpectratimeOrolia- CSEM

    Withrespecttotheatomicgyrosstateoftheart,theconsortiumanalysedandexplainedthemaintechnicalaspectsbehindtheoperationanddesignofthesedevices.Theseinclude:

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 7

    Founding Members

    - Polarization,achievedthroughopticalpumping(threedifferenttechniquesarecurrentlyused);

    - Precession–applyinganoscillatingfieldtoinducecoherence;- Detectionoftheprecessingnuclearmagnetization,achievedthroughopticaldetectionbased

    ondifferenttechniqueso Dehmelttechniqueo Faradayrotationo Inductioncoilso Externalmagnetometers

    BenchmarkingofNMRgyrosbasedonavailablepublic informationwascarriedout (theresultsaresummarizedbelow).Afterwards, theconsortium identified themaindifferences in termsofdesignbetweentheNAVISASgyroandNorthropGrumman’s.Finally,thepossiblesharedblocksbetweentheSNMRgyroandtheMACforNAVISASwereidentified:

    • SametechnologytofabricateMEMScell• Pump/probelaser• Cellheating• Useoftheclockcelltostabilizepumplaserforgyro• SharingofRFmodulationoflaserfor(i)CPT(coherentpopulationtrapping)interrogationof

    clockand(ii)dual–frequencypumpingofgyro• Sharingofpartsofmagneticshielding

    InordertoprepareandsupporttheER/IRgateattheendoftheproject,aTRLroadmapwasdevelopedandTRLmilestoneswereintroducedintheprojectGanttchartintheProjectManagementPlan(PMP).Duringthisreportingperiod,theconsortiumhasmanagedtoachieveTRL2+throughthesuccessfulofthefirstthreestepsoftheTRLroadmap,asrepresentedinthetablebelow.TheconsortiumcarriedoutteststoverifytheTRLoftheNAVISASgyroconcept.Theexperimentalsetupandactualtestscarriedoutaswellastheirresultsarepresented.Someresultsoflaboratorytestsperformedtomeasurekeyparametersofinterestforthetechnologiesofinterestwereobtainedandthepartnersbelievethesecan validate some of the assumptions of the previous maturity level concerning aspects likeperformance.

    ThefinalactivityofWP3wastask3.4dedicatedtothecreationofapoolofbuildingblocksinlinewithWP2requirementsthatcanserveasthesubsetofthesolutionworkspaceforWP4andthebeginningofthedefinitionoftheoverallsystematconceptual level.Afterinternaldiscussion,theconsortiumconcluded thatat thecurrent stageofdevelopmentof theproject (whichhas fulfilled its foreseenobjectives) and given that a blockdiagramexplaining thedifferent blocks ofNAVISASwas alreadyproposedinWP2(refertoFigure41elsewhereinthisdocument)itwouldnotmakesensetocarryouttheseactivitiesastheteamwouldberepeatingworkfromWP2andunabletoprogressmoreonthedetailingoftheblocks.Alternatively,itwasagreedthatNAVISASwasmissinganoperationalconceptfor small A/C. Therefore, the consortium agreed to pursue the development of one or moreoperationalconceptsthatexplainhowtheconsortiumenvisagestheusageofNAVISASbythesmall

  • EDITION[00.01.00]

    8

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    A/Cuniverse.TheideabehindthisisfortheoperationalconceptstoprovideabiggerpictureonwhatvalueNAVISAScanbring to small aircraft andhelpunderstandwhat is achievableandunderwhatconditions. After this analysis is completed it will be possible to progress on the building blocksdetailingworkthatwasinitiallyplannedforWP3.4.

    Thediscussionsbetweenpartnershaveyieldedthefollowingpotentialoperationalconceptsbasedontheassumptionthatbaselinenavigationinsmallaircraft(GA,VLA,ULandUAVs)isperformedbyusingacombinationofINSandGNSS:

    - NAVISASMACcanbeusedtodetectGNSSspoofing-Thiscaseisapplicableinallflightphases,allflightrules(IFRandVFR)andrelevantforbothmannedandunmannedsmallaircraft;

    - AnINScomprisingasetof3NAVISASGyroscombinedwithaccelerometersandaKalmanfiltercanbeusedtoprovidenavigationincaseswhereGNSSsignalsarelost

    o UnderVFRconditions,NAVISAScanbeusedtoprovideconditionssimilartoIFRbutwithlessconstraints;

    o UnderIFRconditionsandwhenflyingen-route,asmallaircraftcanrelyontheNAVISASbasedINSto“buytime”andcoastuntilGNSSsignalsarereacquired.Ifafterapre-determinedperiodGNSSisstillnotavailabletheA/Cwillhavetoreverttoanemergencyprocedure;

    o UAVsmayusetheNAVISASgyrostocarryoutemergencyprocedures;o TheNAVISASbasedINSmaybeusedtoreacquireGNSSsignalsfaster;o ItmaybepossibletousetheNAVISASbasedINStostillgetGNSSsignalsunder

    jammingconditions;

    TheNAVISASsystemcomprisingtheGNSSplusMACplussetof3gyrosandaccelerometerscanbeusedtocarryoutauto-landoperationsforbothunmannedandmannedsmallaircraftaslongasanadditionalsensorisconsideredtoincreasetheverticalaccuracy(e.g.radioaltimetersorLIDAR).

    Finally,asetofoperationalconceptsforhowNAVISAStechnologiescouldbeusedinRPASandGA/VLA is presented. The relationship between NAVISAS technological blocks and the SESAR ATMmasterplan is established and a possible roadmap for developing an A-PNT based on NAVISAStechnologyispresented.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 9

    Founding Members

    TableofContents

    Abstract.......................................................................................................................................4

    ExecutiveSummary............................................................................................................5

    TableofContents...............................................................................................................9

    ListofTables....................................................................................................................11

    ListofFigures...................................................................................................................12

    ListofAcronyms...............................................................................................................15

    Introduction..............................................................................................................17

    ScopeandStructureofthedocument........................................................................................17

    StateoftheArtinnavigation....................................................................................19

    2.1 Beaconbasedtechniques...............................................................................................19

    2.2 GlobalNavigationSatelliteSystems(GNSS)....................................................................22

    2.3 SpaceBasedAugmentationSystem(SBAS).....................................................................25

    2.4 GroundBasedAugmentationSystem(GBAS)..................................................................28

    2.5 InertialNavigationSystems(INS)....................................................................................30

    2.6 GNSSplusINS.................................................................................................................32

    2.7 INSplusRadar................................................................................................................342.8 INSplusimagery.............................................................................................................36

    2.9 SignalsofOpportunity(SoOP)........................................................................................37

    2.10 NavigationinGA,VLAandUltra-Lights...........................................................................40

    2.11 NavigationinUAVsandDrones......................................................................................43

    2.12 CompatibilitywithSESARconcepts................................................................................44

    StateoftheArtreviewonclocksandatomicgyroscopes...........................................49

    3.1 Miniatureatomicclocks.................................................................................................49

  • EDITION[00.01.00]

    10

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    3.2 Miniatureatomicgyroscopes.........................................................................................60

    ExperimentstoclarifySoAoftechnologyonintegrationofclocksandatomicgyroscopes.......................................................................................................................77

    4.1 RelationwithTRLmanagementplan..............................................................................77

    4.2 Test1:MEMScellsfabricationandcharacterization.......................................................78

    4.3 Test2:Experimentalsetup.............................................................................................81

    4.4 Test3:Residualfieldsmeasurements.............................................................................85

    OperationalGainsofaNAVISASbasedA-PNT...........................................................88

    5.1 NAVISASOperationalConcepts......................................................................................88

    5.2 MethodappliedtodefineNAVISASvisionsandoperationalconcepts............................91

    5.3 NAVISASproposedtechnologies.....................................................................................91

    5.4 Foreseenoperations.......................................................................................................92

    5.5 WhatcanNAVISAScontribute........................................................................................94

    5.6 NAVISASrelationtotheSESARATMMasterPlan...........................................................96

    Conclusion...............................................................................................................103

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 11

    Founding Members

    ListofTables

    Table1–Acronymsandabbreviations.................................................................................................16

    Table2:TasksofWP3...........................................................................................................................17

    Table3:comparisonbetweensatellitenavigationandinertialnavigation..........................................33

    Table4–SummaryofalternateA-PNTtechnologies............................................................................48

    Table5:Comparisonofrelevantoscillatorsandclocks.ThelastcolumnalsopresentstheC-MACPPtargetspecifications......................................................................................................................52

    Table6:Performancerequirementsfordifferentclassesofgyroscopes.............................................62

    Table7-SummarytableofNMRGperformances................................................................................75

    Table8–ListofteststosupportNAVISASTRLprogression..................................................................78

    Table9–Outputpowercharacterizationofthecellheatingunit........................................................84

    Table10–Residualfields......................................................................................................................87

  • EDITION[00.01.00]

    12

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    ListofFigures

    Figure1-VOR/DMEbeacon..................................................................................................................21

    Figure2-ComparisonbetweentheconstellationsofseveralGNSS....................................................23

    Figure3-TypicalGeneralAviationgradereceiver(Garminaera796).................................................24

    Figure4-TypicalUAVreceiver(u-bloxLEA-M8T).................................................................................25

    Figure5-GlobalcoverageofseveralSBAS...........................................................................................27

    Figure6-ArchitectureofGBAS.............................................................................................................29

    Figure7-Twoexamplesof inertialplatforms.Left:abreakoutboardofthe InvensenseMPU-6050.Right:TheHoneywellHGU1930....................................................................................................32

    Figure8-TheTrimbleAP20,aGNSS+Inertialplatformwhichcanbeusedforairborneapplications34

    Figure9:LatestGarminG1000NXicockpit............................................................................................41

    Figure10:GarminG1000architecturediagram....................................................................................43

    Figure1.BlocdiagramofaMAC(i.e.apassiveatomicclock)..............................................................51

    Figure2:Left:NumberofpatentapplicationsforyearrelatedtoMACs.Right:Top19patentassigneesfocusingonMACPPs(#patentsfamiliesrelatedtoMACPPsperassignee)................................53

    Figure3:Westinghouse/NorthropGrummanPP................................................................................54

    Figure4:NISTPP...................................................................................................................................54

    Figure5:Microsemi/Symmetricon/DraperLab/SandiaNationalLabsPP.......................................55

    Figure6:Teledyne/RockwellCollins/AgilentPP.................................................................................56

    Figure7:HoneywellPP..........................................................................................................................57

    Figure8:Sarnoff/Princeton/frequencyElectronicsPP.......................................................................58

    Figure9:MAC-TFCPP............................................................................................................................58

    Figure10:SpectratimePP.....................................................................................................................59

    Figure11:CSEMPP...............................................................................................................................60

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 13

    Founding Members

    Figure12:Gyroscopesusedfornavigationandtheirperformances...................................................63

    Figure 13 – Left: ARWas a function of signal-noise ratio and relaxation time, Ref [39]. Right: biasinstabilityduetostraymagneticfieldsfordifferentnoblegasnuclei,Ref[39]...........................65

    Figure14-PrincipleofoperationofanNMRgyroscope,Ref[39]........................................................66

    Figure15-SchemeoftheLittongyroscope.FromRef[54]..................................................................70

    Figure16-Gyrointernalstructure,physicspackageofthelatestversion...........................................72

    Figure17-SchematicoftheNISTgyroscope.FromRef[58]................................................................74

    Figure18-Schematicdiagramoftheworkingprincipleofthedifferentialmagnetometer................74

    Figure19–NAVISASTRLroadmap........................................................................................................78

    Figure20-DescriptionoftheMEMScells.Left:wafershowingcellswithdifferentdiameters.Middle-Right:Computersimulationsofamountedcell............................................................................79

    Figure21–MEMScellsfabricationprocess..........................................................................................80

    Figure22–Simulatedabsorptionspectrum.........................................................................................81

    Figure23–Absorptionmeasurement..................................................................................................81

    Figure24-Schematicsandpictureofthesetupwithclosedshielding................................................82

    Figure25-a)Testsphericalcellwith3DprintedABS+resincellandferrulesmount.Toimproveheatingefficiency, black aluminium foil tape (Thorlabs AT205-1) is glued on the cell. b) MEMS cellmountedonmachinedTeflonholder,rotatingferruleholdersare3Dprintedwitharesin.c)18W,980nmdiode lasermountedonacoolingtower.d)Testsphericalcellmounted insidetheHemholtzcoilsandprobe-beammirrorssupportthatisslidinginsidetheshielding...................83

    Figure26–Left:Sphericaltestcell,Right:4mmØMEMScell.............................................................84

    Figure27–Testsphericalcellabsorptionspectra................................................................................85

    Figure28–MagneticfieldsaxisdefinitionwithnT/mAscales.............................................................85

    Figure29–Left:SignalmeasuredonPD1fordifferentpumppowers(probebeamremoved).Bzissweptat1Hz.Bx=0,50kHzRFoncoilY.Right:positionoftheRb87andRb85dipsasafunctionoftheBzfield...........................................................................................................................................86

    Figure30-Left:SignalmeasuredonPD1fordifferentpumppowers(probebeamremoved).Bxissweptat1Hzaroundzero.Bz=By=0.Right:positionofthemaximaasafunctionoftheBxfield..........87

    Figure41:PreliminaryNAVISASfunctionalblockdiagram(takenfromNAVISASD2.1).......................88

  • EDITION[00.01.00]

    14

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 15

    Founding Members

    ListofAcronyms

    Acronym /Abbreviation

    Meaning

    AM AmplitudeModulationANSP AirNavigationServiceProviderAoA AngleofArrivalAPNT AlternativePositioning,NavigationandTimingATM AirTrafficManagementCNS Communication,NavigationandSurveillanceCS CertificationSpecificationsDF DirectionFinderDGNSS DifferentialGNSSDME DistanceMeasuringEquipmentEASA EuropeanAviationSafetyAgencyEGNOS EuropeanGeo-stationaryNavigationOverlaySystemELT EmergencyLocatorTransmitterEPIRB EmergencyPositionIndicatingRadiobeaconEVS EnhancedVisionSystemFAA FederalAviationAuthorityFMS FlightManagementSystemFOG FibreOpticGyroGA GeneralAviationGAGAN GPSAidedGEOAugmentedNavigationGBAS GroundBasedAugmentationSystemGLS GBASLandingSystemGNSS GlobalNavigationSatelliteSystemHEO HighlyEllipticalOrbitIAOPA InternationalcouncilofAircraftOwnerandPilotAssociationsICAO InternationalCivilAviationOrganizationIFALPA InternationalFederationofAirLinePilots’AssociationsIFR InstrumentFlightRulesIFR InstrumentFlightRulesILS InstrumentLandingSystemIMG IndustryManagementGroup

  • EDITION[00.01.00]

    16

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    IMU InertialMeasurementUnitINS InertialNavigationSystemION InstituteofNavigationLIDAR LightDistanceandRangingLORAN LongRangeNavigationMAC MiniatureAtomicClockMAG MiniatureAtomicGyroscopeMEMS MicroElectroMechanicalSystemsMEO MediumEarthOrbitNDB NonDirectionalBeaconPBN PerformanceBasedNavigationPP PhysicsPackageRAIM ReceiverAutonomousIntegrityMonitoringRLG RingLaserGyroRNAV AreaNavigationRNP RequiredNavigationPerformanceRPAS RemotelyPilotedAircraftSystemRSS ReceivedSignalStrengthSBAS SpaceBasedAugmentationSystemSNMR SpinNuclearMagneticResonanceSoOP SignalsofOpportunityTBD ToBeDeterminedTDoA TimeDifferenceofArrivalTRL TechnologyReadinessLevelUAS UnmannedAerialSystemUAV UnmannedAerialVehicleUL UltraLightVDB VHFDataBroadcastVFR VisualFlightRulesVFR VisualFlightRulesVLA VeryLightAircraftVOR VHFOmnidirectionalRangeVSG VibratingStructureGyroWAAS WideAreaAugmentationSystemWAM WideAreaMultilaterationWP WorkPackage

    Table1–Acronymsandabbreviations.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 17

    Founding Members

    Introduction

    WP3aimedtoestablishthestateoftheartintermsofnavigationtechniquesspecificallyforsmallA/Casdefinedby theprojectandcommercialaviation ingeneraland in the fieldofatomicclocksandatomicgyros.ItwasalsoitsobjectivetodefineandcarryoutanumberofexperimentsdesignedtoclarifythestateoftheartontheintegrationofatomicclocksandatomicgyrosandtoprogresstheTRLofbothtechnologies.Finally, itaimedtoanalyseandproposedescriptionsofthebuildingblocksofNAVISAStobeusedforthedevelopmentofaAPNTsystemforsmallaircraft.TheWPwasdividedintofourtasksasrepresentedbelowinTable2.

    WP3Task

    Title Leaders

    T3.1 State-of-the-artinnavigation TEK,SHARK

    T3.2 State-of-the-artreviewonclocksandatomicgyros CSEM

    T3.3 Experiments to clarify state-of-the-art of technology on integration ofclocksandatomicgyroscopes

    CSEM,TEK

    T3.4 AnalysisofbuildingblocksforsmallaircraftAPNT TEK,TAV

    Table2:TasksofWP3.

    Thedocumentreportsontheworkcarriedoutunderthetasksaboveandprovidesdescriptionsandsummariesoftheanalysescarriedout.

    ScopeandStructureofthedocument

    ThescopeofthisdocumentistoclearlydefinethestateoftheartforthedomainsthataredirectlyrelatedtoNAVISASanditstechnologies, i.e.aircraftnavigationtechniquesandminiaturizedatomicclocksandminiaturizedatomicgyroscopes.Thestepstakenbytheconsortiumtoverifythetechnologyreadinessleveloftheproposedminiaturizedatomicgyroarealsodescribedandtheresultsobtainedbythelaboratoryexperimentsaregiven.Finally,afteridentifyingagapconcerningthepossibleusage

  • EDITION[00.01.00]

    18

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    of NAVISAS by small aircraft, the consortium presents the possible operational gains for an APNTsystembasedonNAVISASforsmallaircraft.

    Thedocumentisstructuredasfollows:

    Chapter2 Provides the stateof the art onnavigation techniques and current SESARworkonAPNTandpossibleapplicabilitytosmallaircraft.

    Chapter3 Presentsthestateoftheartanalysesforboththeminiaturizedatomicclocksandtheminiaturizedatomicgyros.

    Chapter4 Explains thesteps takentoassess thecurrentTRLof theNAVISASatomicgyroandpresents the experimental setup used by the consortium to implement the tests that enable theconclusionthatTRL2.5hasbeenachieved.

    Chapter5 Provides a rationale for not advancing further on the development of the buildingblocksofNAVISASandproposesasetoroperationalgainsforaNAVISASbasedAPNTsystem.

    Chapter6 Comprisestheconclusionsderivedfromthevariousactivitiescarriedout.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 19

    Founding Members

    StateoftheArtinnavigation

    ConcerningthefirstsetofactivitiesofWP3,theconsortiumanalysedseveralnavigationtechniquesincludingthefollowing:

    • GlobalNavigationSatelliteSystem(GNSS)• SpaceBasedAugmentationSystem(SBAS)• GroundBasedAugmentationSystem(GBAS)• CombinationofGNSSwithInertialNavigationSystems(INS)• CombinationofINSwithradar• CombinationofINSwithimagery• Beaconbasednavigation

    o NonDirectionalBeacons(NDB)o VHFOmnidirectionalRadiorange(VOR)o DistanceMeasuringEquipment(DME)

    • SignalsofOpportunity(SoOP)basedono ReceivedSignalStrength(RSS)o AngleofArrival(AOA)o TimeDifferenceofArrival(TDOA)o Pseudorangemeasurement

    Notallof the techniquesmentionedaboveapply tosmallaircraft.Theyhavebeen included in theanalysisnonethelessforcompleteness.Foralltechniques,theconsortiumdescribestheprincipleofoperation,assessesthematurityofthetechnique(e.g.whilebeaconbasednavigationisstateofplay,SBAS is state of the art and SoOP is still in infant research phases), identifies the equipage andinfrastructureneedsanddescribestheperformancesachievable.

    Relevantresearchactivitiesinthesedomainshavealsobeenidentifiedandreferenced.

    Afterwards,anoverviewofwhattechniquesarecurrently inusebysmallaircraft ispresented.TheconsortiumalsoaddressescurrentSESARR&DactivitiesconcerningAPNTandassess theirpossibleapplicabilitytosmallaircraft(GA,VLA,ULandUAVs).

    2.1 Beaconbasedtechniques

  • EDITION[00.01.00]

    20

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    2.1.1 Principleofoperation

    Theuseofradiobeaconsfornavigationhasbeentheprimaryformofnavigatinginaviationforyears.Groundstations,thelocationofwhichisgivenincharts,broadcastspecificsignalsthathelplocatetheaircraftinrelationtothestation.Thisrelativepositioncanbeknownintermsofheading,distance,orboth.

    2.1.1.1 NonDirectionalBeacons(NDB)NDB’sareaninexpensivewaytoimplementradiobeaconsfornavigation.Anomnidirectionalantennabroadcastsasignal,thefrequencyofwhichisknownandbetween200MHzand1.6GHz.Aboardtheaircraft,asystemwithadirectional,rotatingantennacantellinwhichthedirectionthesignalisthestrongest. Using that information, combinedwith the current heading of the aircraft, the pilot ornavigatorisabletoreducethepossiblepositionoftheaircrafttotwoopposedcones,centredonthebeacon,takingintoaccountinaccuraciesofthesystem.Usingtwoofthesemeasurements,thelocationoftheaircraftcanbededuced.

    2.1.1.2 VHFOmnidirectionalRange(VOR)TheVOR isusedtoknowtherelativepositionof theaircraft.UnlikeNDB’s, theaircraftequipmentrequiresnomovingparts.Thestationbroadcastsoneomnidirectionalsignalatalltimes(a30Hzsignalmodulated),andonerotatingsignalthatrotatesat30revolutionspersecond.Thephasedifferencebetweenthetwosignalsisthentheanglebetweenmagneticnorthatthestationandtheaircraft.Anindicatorintheinstrumentpanelshowsthisangle,whichisknownasaradial.

    2.1.1.3 DistanceMeasuringEquipment(DME)TheDMEisapulse-basedsystemthatallowsanaircrafttoknowitsdistancetoastation.Theaircraftinterrogates a stationwith a set of pulses. The ground beacon then retransmits the pulses to theaircraftinadifferentfrequency,afterasetdelayof50microseconds.Fromthetimedelay,thedistancetothestationcanbecalculated.Withthisinformation,theaircraftpositioncanbereducedtoatoroidregioncentredonthestation.DME’sarefrequentlycoupledwithVOR’stoproduceanestimateoftheexactaircraftposition.Eachbeaconisrequiredtohandleatleast50aircraftsimultaneously,however100isamoretypicalnumber.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 21

    Founding Members

    Figure1-VOR/DMEbeacon

    2.1.1.4 InstrumentLandingSystem(ILS)The ILS isabeaconbasednavigationsystemthat ismeant toassistwithapproachesand landings,especiallyinconditionsofpoorvisibility.ForeachILSinstallation,threetypesofsignalsareprovided:

    • Localizer–Attheendoftherunway,oppositeoftheapproachingdirection,twoAMsignals(at90and150Hz),slightlyoffsetfromtherunwaycentreline,arebroadcast.Aboardtheaircraft,theamplitudesofthetwosignalsarecompared.Iftheyarethesame,theaircraftishorizontallyalignedwiththerunwaycentreline.Thesesignalsprovidelateralguidance;

    • GlideSlope–Besidetherunway,anotherpairofAMsignalsworkinthesamewayastheLocalizer,butwiththeequal-amplituderegiononanoptimalglidepath,thusprovidingverticalguidance;

    • Markerbeacons–Placedatknowndistancesfromtherunway,thesealertpilotsoftheirprogressalongtheglidepath.

    2.1.2 Maturity

    These systems are fully developed and deployed. For commercial aircraft, the use of thesetechnologiesisbeingphasedoutinfavourofGNSSnavigation.Theyarestillused,forsomeapplication,suchasmarkingthelocationwhereanapproachorlandingusingILSistobeinitiated.

  • EDITION[00.01.00]

    22

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    They’restillusedforinstructionalpurposesingeneralaviation,buttheGNSSreceiversinthistypeofaircrafttypicallyofferdatabasesofthegroundbeacons,sotheycanbeusedforflightplanning,notnecessarilyusingthebeacons’signalstodeterminetheposition.

    ForUAVs,thistypeofequipmentdoesn’tposeasignificantadvantage,soit’sdisregardedinfavourofGNSS+Inertialnavigation.

    2.1.3 Equipageandinfrastructure

    Thistypeofnavigationisdependentonthegroundstationsontheground.Furthermore,requiredon-boardequipmentincludesantennasandreceivers/transmitterstocommunicatewiththebeacons,andmeans to display the location or make it useful, such as display panels or interfacing with FlightManagementSystems.

    2.1.4 Performance

    MinimumaccuracyforNDB’s,asdictatedbyICAO,isof±5°.At100NM,thisresultsinanaccuracyof8.72NM.

    ForVOR,thepredictableaccuracyisof±1.4°.At150NMawayfromthebeacon,thismeansthattheaccuracyisof±3.66NM.However,studiesshowthat99.94%ofthetime,theerrordoesnotexceed±0.35°.Atthesamedistanceof150NM,theaccuracyis±0.92NM.

    TheaccuracyofDMEis±185m.It’simportanttostatethatthisdistanceisinstraightlinefromthestationtotheaircraft,andtakesintoaccountthealtitudedifference.

    2.2 GlobalNavigationSatelliteSystems(GNSS)

    2.2.1 Principleofoperation

    NavigationthroughGNSSisbasedonsignalstransmittedbythesatellites.Thesetransmitparametersthatareusedtolocatethesatellitevehiclepreciselyonorbit,aswellasperiodicaltiminginformation.Bymeasuringthetraveltimeofthesignalspertainingtoseveralsatellites(whichcanbedistinguishedsincetheyhaveuniquesignatures),thereceiver’sposition,velocityandtime(PVT)canbedeterminedwith accuracy. This travel time is computed by differencing the arrival and departure time of thesignals,whicharecontaminatedwithclockerrorsfromboththereceiverandsatellite.Forthisreason,thisdistanceisknownasapseudorange.

    Whilethispositioningcanbedoneautonomously,itcanalsobecomplementedwithdatafromnearbybase stations, the location of which is known with a very high degree of accuracy. This type ofpositioningisknownasDifferentialGNSS,orDGNSS,andreliesonthefactthatfornearbyreceivers,thesignalpathisroughlythesame,andsoaretheatmosphericdelaysthatoccuronthetroposphere

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 23

    Founding Members

    andionosphere,whichcanbecancelledbydifferencingpseudoranges.Furthermore,thesatelliteandreceiverclockerrorscanbecancelledbysuccessivelydifferencingmeasurements,whichallowrelativepositioningtobedonewithahigherdegreeofaccuracythanthatofautonomouspositioning.

    2.2.2 Maturity

    AmultitudeofGNSSaredeployedandreadyforuse.TheUnitedStates’GlobalPositioningSystem(GPS) andRussianGLONASS are the systems that display the highest level ofmaturity, having fullconstellations operational. BothGPS andGLONASS exclusively use constellations inMediumEarthOrbits(MEO),withGPSusing6distinctorbitalplaneswithaninclinationof55degrees,andGLONASSusing3orbitalplaneswitha64.8degreeinclination.

    The People’s Republic of China is currently deploying the Beidou System,with an expected globalcoverageby2020.Itisexpectedtocontaingeostationary,inclinedgeosynchronousandmedium-earthorbitsatellites.Atthispoint,coverageisnotglobal,andstartedinthevicinityofChina,expandingwitheachsatellitelaunch.Thefullconstellationisexpectedtohave35satellites.

    TheEuropeanUnionhasalsolaunchedanefforttodeployaGNSS.CalledGalileo,anddevelopedbythe European Space Agency in conjunction with the European GNSS Agency. The system startedoperatinginDecember2016,initiallywith18satellitesinorbit.Thefullconstellationisexpectedtohave27activesatellitesand3spares,andtobeoperationalby2020.

    There are also regional satellite navigation systems, developed to be used autonomously or inconjunctionwithdatafromotherglobalsystems.IndiahastheNavigationIndianConstellation(NAVIC,formerlyIndianRegionalNavigationalSatelliteSystemorIRNSS),withsevensatellitevehicleswhichorbitabove the Indiansubcontinent,while Japan’sQuasi–ZenithSatelliteSystemconsistsof threesatellitesinHighlyEllipticalOrbits(HEO)andonegeostationarysatellite.

    Figure2-ComparisonbetweentheconstellationsofseveralGNSS

  • EDITION[00.01.00]

    24

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    2.2.3 Equipageandinfrastructure

    GlobalNavigationSatelliteSystemsaretypicallydividedintothreesegments:

    • The Space Segment consists of the satellite constellation, which, as mentioned before,regularlybroadcastsignalspertainingtothesatellitevehicle’spositionandtime.

    • TheControlorGroundSegmentconsistsofthestationornetworkofstationsthatmonitorsthehealthandorbitsof thesatellites, issuingcorrections,predictingtheorbitsandmakingsurethebroadcastinformationisaccurateanduptodate.

    • TheUser Segment ismade up of all the receivers that use the signals to determine theirposition, velocity and time. Since there is no communication from the receivers to thesatellites,thecapacityofthiskindofsystemsislimitless.

    Autonomous GNSS is used in hobby grade UAVs for mission planning and path following, but itsperformanceintermsofintegrityisnotsuitableforcivilaviation,inparticularforcriticalflightphasessuch as approach and landing. Thus, augmentation systems have been developed to increaseperformance.Thesecanbesatelliteorgroundbased.

    HobbygradeUAVsusuallyreceivelocationfromGPSreceiversusingtheNMEAstandard,offeredbymakerssuchasSiRFandu-blox.ForGeneralAviationuse,Garministhemostpopularmaker,andoffersa range of GPS units which feature databases of conventional waypoints, such as VOR and DMEbeacons,andnewerRNAVwaypoints.

    Figure3-TypicalGeneralAviationgradereceiver(Garminaera796)

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 25

    Founding Members

    Figure4-TypicalUAVreceiver(u-bloxLEA-M8T)

    2.2.4 Performance

    ThemainadvantageofGNSSpositioningistheabilitytoaccuratelydeterminethepositionandvelocityofavehicleinacontinuousway,regardlessofweatherconditionsandamountoftraffic.Commerciallyavailablereceiversareusuallyablecomputeposition informationwithanaccuracyof10metersorbetter.

    Despite the GPS having a good track record for availability, autonomous GNSS are not totallydependableandarenottobeusedasthesolemeansfornavigation.AlargeconcernwithGNSSisthatofintegrity,ortheabilityofthesystemtotellwhetheritshouldbeusedfornavigation.TocomplywithRNP, the receiver is required to feature Receiver Autonomous IntegrityMonitoring (RAIM),whichprovidesintegritytothesystembydetectingfailuresinsatellitesignalsanddisregardingthemfromthe position computation. Some installations have been certified for B-RNAVor RNAV 5 (accuratewithin+/-5NM95%oftime)underIFR.

    2.3 SpaceBasedAugmentationSystem(SBAS)

    2.3.1 Principleofoperation

    SatelliteBasedAugmentationSystems(SBAS)areatypeofsystemthatcomplementsGNSSsolutionsby improving accuracy, reliability or availability. Ground monitoring stations perform rangingmeasurementstoGNSSsatellitesanduploadcorrectiondatatosatellites.ThesatellitesthenbroadcastcorrectionparameterspertainingtotheGNSSvehicles(suchasfinerclockcorrectionsormoreaccurateephemerides)orthepropagationmedium(liketheionosphereandtroposphere).Thesecorrections

  • EDITION[00.01.00]

    26

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    can’t account for the receiver-related errors (such as multipath and the local characteristic oftroposphericeffects).Coverageofthesesystemsisusuallyreservedtoacontinentorregion.Apartfromthat,SBASvehiclescanbeusedasagenericGNSSvehicle,itspseudorangeaidingthepositioncomputation.ErrorsdetectedbySBASaretransmittedandcanbeusedbytheenduserwithinaslittleassixsecondsofamalfunction.

    2.3.2 Maturity

    There are a number of SBAS, their maturity ranging from deployed and ready to be used, todecommissionedinfavourofnewer,bettersystemsthatcoverthesamearea:

    • TheWide Area Augmentation System (WAAS) is developed by the United States’ FederalAviationAgency(FAA).Itconsistsofanetworkof38groundstationsinthecontinentalUnitedStates,Alaska,Hawaii, CanadaandMexico, three geostationary satellites, and its intendedareaofcoverageisNorthAmerica.ItonlysupportsGPS.

    • The European Geostationary Navigation Overlay Service (EGNOS) is developed by theEuropeanSpaceAgency,theEuropeanCommission,andEUROCONTROL.Thegroundnetworkconsistsof34ReceiverIntegrityMonitoringStations(RIMS),whichreceivetheGNSSsignals,4MasterControlCenters (MCC–oneactive,onehotbackup, and twocoldbackups),whichprocess the data, and 6 Navigation Land Earth Stations (NLES – two for each satellite forredundancyreasons),whichuploadthedatatothesatellites. Theconstellationconsistsofthree geostationary satellites, and its intended area of coverage is Europe. It providescorrectionsforGPS,GLONASSandGalileo.

    • Japan’sMTSATSatelliteAugmentationSystem(MSAS)isownedandoperatedbytheJapaneseMeteorological Agency and Japanese Ministry of Land, Infrastructure, and Transport. ItsupplementstheGPSinasimilarwaytotheformertwosystems.Fourgroundstationsreceivethesatellitesignals,whichareforwardedtotwoMasterControlStations(oneforeachsatelliteinorbit),whichprocessthemandcalculatethecorrectionsandsendthemtothesatellites.

    • India’sGPSAidedGeoAugmentedNavigationSystem(GAGAN)providesSBASserviceontheIndiansubcontinent.Itfeaturesthreegeostationarysatellites,maintainedbytwobasestationsthatprocessthedatafrom15referencestations.

    • TheRussian Federation is currently developing the System forDifferential Corrections andMonitoring(SDCM),tocomplementtheGPSandGLONASSsystemsinRussia.Threesatelliteshavebeenlaunched,whichbroadcastcorrectionsbasedondatacollectedby19stations inRussiaand5stationsabroad.OnecentralprocessingfacilityinMoscowprocessesanduploadsthedata,alongwithonereservefacility.

    • TheSatelliteNavigationAugmentationSystem(SNAS)isbeingdevelopedbyChina,althoughverylittlepublicinformationisknownatthemoment.

    • TheStarFiresystemhasbeendevelopedbytheJohnDeereCorporation,tobeusedwiththeirGPSreceivers,forfarmingandfieldsurveyingapplications.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 27

    Founding Members

    • Canada had theGPS Correction (GPS-C) service,whichwas deactivated since it required aseparatereceiver,makingitlesscosteffectivethanWAASorStarFire.

    Figure5-GlobalcoverageofseveralSBAS

    2.3.3 Equipageandinfrastructure

    SatelliteAugmentationofGNSS is relianton theconstellationandgroundcontrolnetworkofeachsystem,which is particular to each implementation. Furthermore, the GNSS receiver onboard theaircrafthastobecompatiblewithSBASmessages.Asexplainedbefore,theSBASsatellitescanbeusedasagenericGNSSvehicle,computingthepseudorangefromthesignal travel time,but itsgreatestadvantageare thecorrectionmessages thatallowthereceiver tocancelapartof thesatelliteandpropagationmedium-relatederrors.

    2.3.4 Performance

    Augmentationsystemsare,as statedbefore,notused independently,but instead improvealreadyavailableGNSS.Themainconcern,forairborneapplications,isthatofintegrity,ortheabilitytotellwhether the system should be used for navigation purposes. A secondary objective is to increaseprecision.AchievableSBASperformancerequirementsinclude:

    • En-routeRNP4(Oceanic/Continental),forahorizontalaccuracyof4NM(95%);• En-routeRNP2(Continental),forahorizontalaccuracyof2NM(95%);

  • EDITION[00.01.00]

    28

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    • En-routeRNP1(Terminal),forahorizontalaccuracyof1NM(95%);• Non-PrecisionApproach,forahorizontalaccuracyof220m(95%);• APV-I,forahorizontalaccuracyof16m,andverticalaccuracyof20m(95%);• APV-II,forahorizontalaccuracyof16m,andverticalaccuracyof8m(95%);• Category I precision approach, for a horizontal accuracy of 16 m, and a vertical accuracy

    between6and4m.

    2.4 GroundBasedAugmentationSystem(GBAS)

    2.4.1 Principleofoperation

    ManyoftheprinciplesthatSBASisbasedonapplytoGBAS.However,GBASisintendedtohaveamuchsmallerareaofcoverage,generallyinthevicinityofanairport.Thistypeofsystemwasdesignedtoaidintheapproachandlandingphasesofflight,providinganalternativetotheInstrumentLandingSystem(ILS).TheimplementationofGBAStoprovideapproachandlandingcapabilityiscalledGLS.SeveralGNSS receivers in the area forward the satellite signals to a base station, which computes thecorrectionsandbroadcaststhem.Themessagesstandardincludes,inadditiontotheGNSSdifferentialcorrectionsandintegrityinformation,GBASrelateddata,andinformationabouttheFinalApproachSegment,withsupportformoremessages.

    ThemainadvantageofGBAS/GLSoverILSisinthefactthatforoneairfield,onlyoneGBASequipmentisrequired,regardlessofthenumberofrunways.ForILS,onelocalizer/glideslopepairisneededforeachrunwayandheading. Italsofreesuptheelectromagneticspectrum,sinceoneGBASstationiscapableofbroadcastinginformationforupto48approachprocedures.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 29

    Founding Members

    Figure6-ArchitectureofGBAS

    2.4.2 Maturity

    SeveralairportsworldwidehaveapprovedsystemsinplaceforCategoryIprecisionapproaches.AsofFebruary2015,twolocationsintheUnitedStates(NewarkandHouston)andtwentyintherestoftheworld(includingfourinEuropeandfifteeninRussia)supportedtheGBASLandingSystem(GLS),withplanstoimplementthesysteminmorelocations.

    SeveralavionicsmanufacturersprovideaircraftequipmentthatisapprovedbytheregulatingbodiestobeusedforGBASapproaches,andarebeing installed innewcommercialaircraftbyBoeingandAirbus.Forsmallaircraft,itisatechnologywithinterestintheGeneralAviationcategory,sinceitoffersanalternativetotheILS.

    2.4.3 Equipageandinfrastructure

    SinceitaugmentsoneorseveralGNSS,thebasicequipmentforthesesystemsisrequiredonandoff-boardtheaircraft.Theseincludethesatellitesandgroundstationswhichmonitorthemandcontrolthem,andthebasicGNSSequipageaboard(receiver(s)andantennae).

    Furthermore,eachairfieldrequiresseveralGNSSreceiversandantennae,aunitthatretrievesthedatafrom the receivers and processes it, and a radio transmitter to broadcast the GBAS signal. ThesetransmissionshappenoverVHFDataBroadcast(VDB).

  • EDITION[00.01.00]

    30

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    2.4.4 Performance

    GBASiscurrentlyratedforCategoryIapproaches.Therequirementsinclude

    • Horizontalaccuracyof16m(95%);• Verticalaccuracybetween6and4m(95%);• ATime-to-alertof6seconds,incaseofmalfunction;• Availabilityof99%orbetter.

    2.5 InertialNavigationSystems(INS)

    2.5.1 Principleofoperation

    Inertial Navigation Systems allow the determination of vehicle position and attitude, by directlymeasuringtheaccelerationsandangularvelocitiestheaircraftissubjectedto.

    Thishasthreemainadvantages:

    • Thesensorshaveveryquickresponse,soveryhighdataratesandbandwidthscanbeachieved;• No external equipment is required, so the system is self contained and not vulnerable to

    jamming.It’salsonotdependantongroundstationsorsatellitevehicles;• Itprovidesveryaccuratemeasurementsofposition,groundspeed,azimuth,andvertical.

    Thereare,however,severaldisadvantages:

    • Thepositionaccuracydegradesovertime;• Highendapplicationsareexpensive,especiallyifwefactorthatmultiplesensorsofthesame

    typeareoftennecessaryforredundancyreasons;• Thesystemneedstobeinitiallyaligned.Itiscommonlydonewhentheaircraftisparked,since

    airfieldchartsoffercoordinatesforitsapronspacesorgates;• Theaccuracyofthesolutionisdependentonthemanoeuvresperformedbythevehicle.

    Inertialnavigationsystemsarealmostalwaystheconjunctionoftwotypesofsensors:

    • Accelerometers–measureaccelerationalongaparticularaxis.Accelerationisthenintegratedovertimeoncetodeductvelocity,andintegratedonemoretimetocomputedisplacementfrom original position. The basic concept is that of sensing the force applied on a looselysuspendedmass.Sincetheequipmentisrigidlyattachedtotheaircraftbody,thiscorrelatestotheaccelerationtheaircraftisexperiencing.

    • Gyroscopes–provideameasurementoftheattitudeoftheaircraft.Earlyimplementationswerespinningmassesorwheels,whichtendtoholdtheirposition,andassuchprovidethe

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 31

    Founding Members

    angular displacement from a nominal position. More sophisticated models usemicroelectromechanicalsystems(MEMS),ortakeadvantageoftheSagnaceffect(fiberopticgyroscope–FOG,andringlasergyroscope–RLG),ortheCorioliseffect(VibratingStructureGyroscope–VSG)

    Since these devices measure accelerations and angular velocities in one axis, three of each,perpendiculartoeachother,areneededtocompletelydefinetheaircraftorientationandposition.

    2.5.2 Maturity

    Thedevicesthatallowinertialnavigationtobeperformedareavailableonthemarket,itscostvaryingfrom a few Euros for a six axis Gyroscope + Accelerometer device (such as the MPU-6050 fromInvensense,frequentlyusedinhobbygradeUAVs)tohundredsofthousandsofEurosfornavigationgradeinertialnavigationsystems(suchastheHoneywellHG9900,usedincommercialaircraftwhichusually employmultiple units to average themeasurements and for redundancy purposes). Evenhigherendsolutions,suchasthoseformarineapplications,cancostintheneighbourhoodof1millionEuros.Apartfromthemoreaccuratemeasurement,higherenddevicessupporthighersamplerates,anddisplaylessdegradationovertime.

    2.5.3 Equipageandinfrastructure

    Inertialnavigationrequiresnoexternalequipment.Commercialproductscombineaccelerometersandgyroscopes for all three axes, and these communicate directly with the flight computer, be it amicrocontroller forhobbygradeUAVs, or a FlightManagement System. These systemsare also inchargeoftheinitialcalibrationoftheInertialNavigationSystem.

  • EDITION[00.01.00]

    32

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    Figure7-Twoexamplesofinertialplatforms.Left:abreakoutboardoftheInvensenseMPU-6050.Right:TheHoneywellHGU1930

    2.5.4 Performance

    Sinceweareonlyabletodirectlymeasureaccelerationsandangularvelocities,anyaccelerationerrorwill get amplified quadratically over time. For this reason, inertial measurements are never usedexclusively, since implementationscandivergeupseveral thousandkilometreswithinonehour forcheaperplatforms.Navigationgradeplatformswilltypicallydivergeafewkilometreswithinonehour,andthiscanbemitigatedbyusingseveralindependentsensorsandusingalgorithmssuchasKalmanFiltering.TheindependencethatINSdisplaysofotherexternalnavigationsaidsmadeitoptimalforuseinoceanicoperations,sincethenavigationalrequirementsintermsofaccuracywereof20nauticalmilesacrosstrack,and25nauticalmilesalongtrack.

    2.6 GNSSplusINS

    2.6.1 Principleofoperation

    CombiningGNSSandInertialNavigationbringsanumberofadvantages.FirstofalltheGNSSpositionsolutiondoesnotdrift, so it canbeused to tellwhether the inertialplatform isdrifting toomuch.Conversely, inertial platforms reach much higher sampling rates than GNSS, so they can providepositionbetweenGNSSupdates,orthesignalislost.Themeasurementsfromtheseveralsystemsareused by a Kalman Filter or Extended Kalman Filter to provide position and attitude updates. Thefollowingtablesummarizesthemaincharacteristicsofeachtechnique.

    Satellitenavigation Inertialnavigation–Absolutepositiondata –Driftinintegratedterms–Limitedresolution –Highresolution(rel.)–Slow –Fast(kHz)

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 33

    Founding Members

    –Worseatorientation –Bestatorientation–Easilydisturbed –Disturbance-free(noexternalref.)–BestatX&Y –BestatZ

    Table3:comparisonbetweensatellitenavigationandinertialnavigation

    2.6.2 Maturity

    GNSS+INSnavigationiscurrentlyavailableforcommercialapplicationsineverycategoryofaircraft.Forcommercialaircraft,itisthemainwayofnavigatingoceanicairspaceandcontinentalremoteareas.For small aircraft, UAVs use the combination of sensors for control and path following purposes;GeneralAviationusersutilizetheinertialplatformforcontroloftheaircraft,whileGNSSaugmentstheconventionalnavigationexperienceby implementingdatabasesofconventionalbeacons (e.g.VOR,NDB)andnewerRNAVwaypoints,withouttheneedtoresorttoflightcharts.

    2.6.3 Equipageandinfrastructure

    The inertial part of the system is, as stated before, self-contained and independent of externalnavigationaids.Itrequiresone(orseveral,forredundancy)InertialNavigationSystemsthatdeductthepositionandattitudedirectlyfromtheaccelerationsandangularvelocitiesoftheaircraft.

    TheGNSSpart requires specialized receiversaboard theaircraft, and isdependenton the satellitevehiclesandnetworkofgroundstationsthatmonitorthem.

    Using the two systems in tandem requires a third piece of equipment aboard the aircraft, whichreceives the data from theGNSS receivers and the inertial platforms and uses algorithms such asKalmanFilteringtooutputtheposition,velocityandattitudeof theaircraft.This isknownas flightmanagementsystem(FMS)andcanalsointerfacewithradionavigationsystems.

  • EDITION[00.01.00]

    34

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    Figure8-TheTrimbleAP20,aGNSS+Inertialplatformwhichcanbeusedforairborneapplications

    2.6.4 Performance

    Navigation using GNSS combined with inertial platforms is used in en-route operations, beingemployedforthefollowingtypesofPerformance-BasedNavigation(PBN):

    • En-routeRNP10(Oceanic/RemoteContinental),forahorizontalaccuracyof10NM(95%);• En-routeRNP4(Oceanic/RemoteContinental),forahorizontalaccuracyof4NM(95%);• En-routeRNP2(Continental),forahorizontalaccuracyof2NM(95%);• En-routeRNP1(Terminal),forahorizontalaccuracyof1NM(95%);• Non-PrecisionApproach,forahorizontalaccuracyof220m(95%);

    2.7 INSplusRadar

    2.7.1 Principleofoperation

    One other way that INS measurements might be augmented is by combining them with RadarObservations.Specifically,byusingseveralmicrowavesignalspointingindifferentdirections(atleastthreenoncoplanarbeamsarerequiredtodeterminevelocity,typicallyfourbeamsareused),andbymeasuring Doppler shifts, one can infer the aircraft velocity, which can be integrated to finddisplacementfromaknowninitial location.Thisplaystothetwosystems’strongpoints,asittakesadvantageofthesmalllong-termvelocityerroroftheDopplerradar,andthesmallshort-termvelocityerroroftheinertialplatforms,whichareknowntodivergeoverlongperiodsoftime.

    Thisconjunctionhasthefollowingadvantages:

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 35

    Founding Members

    • Velocity ismeasuredrelativetotheEarth’ssurface.Airdatasystemsmeasurevelocitywithrespecttotheairmass(whichisrelevantforaerodynamicpurposes),andmostterrestrialradionavigationsystemsmeasurevelocitybydifferencingsuccessivepositionmeasurements;

    • Itisaself-containedsystem,meaningitrequiresnoexternalequipmentorinfrastructure.Thisalsomeansthatitrequiresnointernationalagreements;

    • Airbornetransmittershavelowpowerrequirements,whichmakesthemlowweight,size,andcost.

    • Theradarbeamsarenarrowandpointedatsteepanglestowardstheground,whichmakestheaircrafthardtodetect;

    • Itworksineverytypeofweatherconditions,saveforextremeconditionsofrain;• Itcanoperateoverlandandwater(exceptforcompletelystillwaterbodies);• Itprovidesveryaccurateaveragevelocityinformation;• UsingDopplerradarisverysuitableformeasuringthree-dimensionalvelocityatlowspeeds,

    whichisrequiredwhenhelicopterandmulti-rotoraircraftarehovering.

    Itdoes,however,havesomedisadvantages:

    • Vertical reference information (such as that of an altimeter) is needed to convert velocityinformationintopositionalcoordinates;

    • Likestandaloneinertialnavigation,itsaccuracydegradesovertime;• Instantaneous or short-term velocity output is not as accurate as averaged or smoothed

    velocity;• Whileoperatingoverwater,accuracy isdegradedduetobackscatteringcharacteristicsand

    watermotion.

    2.7.2 Maturity

    Aswithmost technologies, airborne Doppler radar velocitymeasurement had its inception in themilitary.Itwasfirstusedforairbornemovingtargetindication,aswellasvelocitydeterminationbycombining itwithairspeed indicators. Inthe1960’s,thismigratedtocommercialaviation,where itbeganbeingusedprimarilyforoperationsinoceanicareas,byjoiningitwithinertialplatforms.

    By the 90’s, thebiggest useofDoppler radarwas inmilitary helicopters, for navigation aswell asoperationssuchashovering.TheywerealsodeployedinUAVsanddrones.

    Despitebeingafullydevelopedtechnology,theuseofDopplerradardidn’tbecomewidespreadsinceit suffers fromoneshortcoming thatalsoaffects inertialnavigation, i.e., its solutiondegradesovertime.Duetothis,thesesystemsareoftencoupledwithGNSS.GNSSsolvestheinitialisationproblems,while Doppler radar provides continuity when GNSS signal is lost, be it due to terrain, aggressivemanoeuvres,orjamming.

  • EDITION[00.01.00]

    36

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    2.7.3 Equipageandinfrastructure

    Sincethisisaself-containedsystem,noexternalequipmentisrequired.Theonlyon-boardequipmentneededistheinertialplatform,theradartransmitter/receiverequipment,andtheflightcomputerthatcouplesthetwomeasurements.

    2.7.4 Performance

    StandaloneDopplerradarhasatypicalvelocityaccuracyof0.06m/s±0.2%,whilehighperformanceimplementationsareusually a factorof twobetter. Forpositioningperformance, couplingwithaninertialplatformcanyieldanaccuracyofabout0.15%ofdistancetravelled.ItisimportanttomentionthatDopplerradarshaveaserviceceiling,whichistypicallyofatleast3000maboveterrain.

    Asstatedbefore,performanceispooreroverwater,sincethescatteringcoefficientvarieswiththeangleofincidence,whichcausesvelocitytobeunderestimated.Theseerrorscanbeaslargeas5%andevenlargeroververystillbodiesofwater.Oldersystemsprovidedtheuserwithtwoswitchablemodes,oneforuseoverland,andoneoverwater,whichcouldreduceresidualerrorstoaslittleas0.3%,whilenewersystemstypicallyuseadifferentbeamshape.

    2.8 INSplusimagery

    2.8.1 Principleofoperation

    Becauseofthequickdriftofstandaloneinertialsolutions,severaltechniqueshavebeendevelopedtogetaroundtheselimitations.Forindoorapplications,visiondatafromoneormorecamerascanbeused to complement the inertial system’smeasurements. These techniques use image processingalgorithms,whichtake intoaccountthewidthof fieldofview,aswellas theframerateandotherparameters,toaccuratelyestimatethechangeinorientationandpositionovertime,independentlyfromtheinertialplatform.ThiscanthenbefedintoaKalmanFilterwhichcombinesthemeasurementstoreturnasolutionforposition,velocityandorientation.

    2.8.2 Maturity

    Thistypeofnavigationhaslittleapplicabilityforoutdooraircraft,sinceseveralGNSSareavailableandtheirprecision isappropriate foralmostallphasesof flight,butadvancementsarebeingmade forindoorUAVs.Thisis,however,stillahighlyexperimentalfield.

    In his 2014 PhD thesis (http://www.diss.fu-berlin.de/diss/servlets/MCRFileNodeServlet/FUDISS_derivate_000000017227/Stereo-Vision-Aided_Inertial_Navigation.pdf), Grieβbach develops a navigation system based on inertial

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 37

    Founding Members

    measurementsandstereovision(dualcamerastosimulatethehumaneyesight).Theconclusionwasthatthemeasurementscomplementedeachotherquitewell,itsaccuracybeingasgoodas2%,oradeviationof74centimetresina310metrerun.

    2.8.3 Equipageandinfrastructure

    Thereisnoneedforoff-boardequipmentforthistypeofnavigation,allprocessingisdonebasedonphysicalvariablesdirectlyobservablebythesensors.

    However,itrequiresoneormoreInertialMeasuringUnits(IMUs),oneormorecameras,andaCPUthatiscapableofrunningtheimageprocessingalgorithms.

    2.8.4 Performance

    Giventherelativelylowlevelofmaturityofthesetechniquesitisriskytoadvancespecificvaluesfortheirperformance.Nevertheless,R&Dworksuchastheonementionedabovehasshowndeviationsof74centimetresovera310metrerun.

    2.9 SignalsofOpportunity(SoOP)

    2.9.1 Principleofoperation

    Thedesignation“SignalsofOpportunity”(SoOP)referstotheuseofsignalsthatarenotintendedfornavigationalpurposes.SignalsofOpportunityhaveseveraladvantagestotheuser:

    • Quantity–Therearemanysignalsavailable.TheseincludeanalogueanddigitalTVbroadcaststations,AMandFMradio,andBluetooth,Wi-Fi,andcellularnetworks;

    • Highpower–GNSStransmitterssuchasGPShavepowerconsumptionrestrictions,sotheirtransmittedpowerisquitelow.HighpowerSoOPtransmittersignalscanpenetratewalls,sotheycanbeusedforindoornavigation;

    • Noinfrastructurerequired–Thetransmitterinfrastructureisalreadyinplace,sincethesignalsarealreadybeingtransmittedforotherpurposes;

    • Technology is making it more feasible – The main advancement in this regard is that ofSoftware-DefinedRadio (SDR),where receivers canquickly switch frequencies and analyzedifferent typesof signals, resorting toacomputer thatcontrols the receiverandprocessesthesesignals.Usingseveralfrequenciesalloverthespectrumalsoreducesthepotentialforjamming.

  • EDITION[00.01.00]

    38

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    Theyare,however,notwithoutdrawbacks:

    • Notoptimizedfornavigation–Themaindisadvantageof this is timing. Inordertousethetraveltimeofthesignaltodeterminethedistancetothetransmitter,theexacttransmissiontimemustbeknown.Mostcommunicationsystemsdonotprovidesynchronizationtowithinafewnanoseconds(likeGPSdoes),andusuallyrequireanadditionalreferencereceiver.

    • Varyingavailability–Thetransmittersaremuchmorecommoninornearbyurbancenters,and rarer in remote or rural areas. Moreover, different countries might have differentfrequencyandprotocolstandards,whichcanmakeimplementationmorecomplex.

    • Transmitter locationsmustbe known– Likebeaconbasednavigation, the locationsof thetransmittersarenecessaryinformationtolocatethereceiver.Moreover,thereareoccasionswhere several transmitters are located closely together,which introduces a factor of poorgeometry,andmakesitsothatinpractice,onlyoneofthosetransmittersshouldbeused.

    • Challengesbuildingthenavigationequipment–despitetheadvancementinSDRtechnology,therearealotofconsiderationstohaveinmind.Awidebandantennaisneededsothatnopartofthespectrumistoodisregarded;highbandwidthandhighsampleratesareneeded,whichinturnrequiresprocessingpower.Thesesignalscanrangeinfrequencyfrom100KHz(AMradio)to5GHz(newerWi-Fisignals).

    ThereareseveralwaysthatSoOPcanbeusedtodetermineareceiver’spositionandvelocity:

    • ReceivedSignalStrength(RSS);• AngleofArrival(AoA);• TimeDifferenceofArrival(TDoA);• Pseudorangemeasurements

    2.9.1.1.1 ReceivedSignalStrength(RSS)Sincethereceivedsignalstrengthdecreaseswiththedistancetothetransmitter,thedistancetothetransmittercanbeinferredfromthereceivedpower.Thisisdependentonknowingthetransmittingandreceivingpowers,aswellashavingamodelforthepathloss.Thebiggestdrawbackofthismodelisthatit’snotadequateiftherearemanyobstaclesbetweenthetransmittingstationandthereceiver,whichisthecaseforindoorapplications.

    2.9.1.1.2 AngleofArrival(AoA)ThisworksinasimilarwaytoNon-DirectionalBeacons.Sincemostlong-range,broadcastingantennastransmitinanomnidirectionalpattern,arotating,directionalantennacanbeusedtofindtheheadingof the station. Combining twoof these allows the location of the receiver to be found, andmoremeasurementsincreasetheaccuracyofthesolution.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 39

    Founding Members

    2.9.1.1.3 TimeDifferenceofArrival(TDoA)This relies on a reference station relies onmeasuring the difference in arrival time between twodifferentreceivers.Ofcourse,it’sreliantontheclocksofbothstationsnotdivergingtoomuchfromeachother,butwithsignalsfromseveralsources,it’spossibletodeterminethepositionofamovingreceiver.

    2.9.1.1.4 PseudorangemeasurementsSimilarlytotheGNSSoperation,ifthetransmissionandreceptiontimesareknown,thedistancecanbededucedbydividingthetransittimebythepropagationvelocity.It’sdependentonthetransmittingstationhavingsomekindofsignalthatrepeatsreliablyataknowntimeandrate.Ifthisisthecase,thereceivercanuseGNSSsignalfromonlyonesatellitetoensureitsownclockdoesn’tdivergetoomuch,andmeasurethetransmissiontimestofindthedistance.

    2.9.2 Maturity

    Fromthetechniquesexplainedabove,themostattractivetouseasanactualnavigationaidisperhapsthatofTDoAusingAMradio.AMsignalshaverelativelylowfrequencies,thereforelongranges,soaquantityofsignalsareavailable,fromcommercialradiostationsthatstillbroadcast,toamateurradioenthusiasts. In his PhD Thesis(https://pdfs.semanticscholar.org/73c9/e528570e38637454875140a6d54f4668c8bc.pdf), Halldevelopsaradiolocationsystemusingthecarrierphaseofthesesignals.Makingsuretheantennaepositions are accurate, one can expect similar accuracy to that of GPS in open areas. The mainadvantage,however,isthatthesesignalsaremorepowerfulandhavelowerfrequencies,sotheyareabletobettertopassthroughbuildingsandcanposeanadvantageinheavilyforestedareas,whereskyviewisobstructedandGNSSstruggles.OnedisadvantageofthissolutionisthatAMstationsarerequiredbylawtodecreasetheiroutputpoweratnight(sincetherecanbeskywavepropagationwhichinterfereswithotherstations),sotherearenotasmanysignalsavailabletobeusedduringnighttime.

    Another implementation, from a 2005 paper titled “A New Positioning System Using TelevisionSynchronizationSignals”,writtenbyMatthewRabinowitz,usesdigitaltelevisionbroadcastsignalsforstandalonepositionortoaugmentGNSSpositioning.ThesesignalshavetheadvantageofsendingaSynchronizationSegmentwhichrepeatsataknownrate,andassuchtheydonotsufferofoneofthegreatestdisadvantagesofgeneral-purposesignals.TheyalsousemuchhigherfrequenciesthanAMradio,so they’renot limited inpoweratnight.And,sincethe frequenciesaren’tashighas thatofGNSS, the signals are able to penetrate buildings, allowing navigation in challenging urbanenvironmentsandevenindoors.

    2.9.3 Equipageandinfrastructure

  • EDITION[00.01.00]

    40

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    Theoff-boardequipmentisalreadydeployedandactive.Intermsofonboardequipment,theantennaandreceiverneedtobeasversatileastherangeofsignalsinuse.Foramorevariedspectrum,widerbandwidthandhigherqualityequipmentisnecessary.Thisalsoinfluencesthecomputationalpowernecessary,althoughthisisnolongeratapremium,withsingleboardcomputersbeingaffordableandcapableofrunningSDRprograms.

    2.9.4 Performance

    Hall’simplementation,evenifjustaproofofconcept,usesthecarrierphaseofAMsignals,andisableofattainingprecisionsbetterthan15meters,95%ofthetime,fordistancesunder35kilometresfromthereferencestation.Fordistancesunder10kilometres,theerrorwassmallerthan7meters,95%ofthetime.ThisworkwasdevelopedlittleafterGPSprecisionstoppedbeingdegradedpurposefullyforsecurityreasons,andreceiverswerestillrelativelyexpensive.So,therewasavoidforlowcost,semi-precise positioning. At this time, with the plethora of GNSS available, there is little danger of aworldwideshutdownofeveryGNSS,andreceiversareinexpensive,sothisvoidisalmostnon-existent.

    For the Rabinowitz system, accuracy of the system was similar to standalone GNSS in outdoorscenarios, andbetween4.4 and19.6metresof standarddeviation in indoorenvironments,whereGNSSisunabletolocateareceiver.ThissystemcancomplementGNSSsinceitperformswellinurbanenvironments,wheretransmittersaremorecommon,whileGNSSgenerallyperformsbetterinruralareas,whereDigitalTelevisiontransmittersarerarer.

    However,oneaspectwheresignalsofopportunitycanbeveryusefulistoconstrainthedriftofinertialsystemsusingtheDopplerdeviationfromthenominalfrequency.

    2.10 NavigationinGA,VLAandUltra-LightsManyGAaircraftarefittedwithavarietyofnavigationaids,suchasAutomaticdirectionfinder(ADF),inertialnavigation,compasses, radarnavigation,VHFomnidirectional range (VOR)andGNSS.Allofthesenavigationaidsmadehugeimprovements inaircraftnavigation.Today´stendency istomakenavigationeasier,morereliableandcosteffective.GNSScombinedwithcontinuouslyimprovedMEMSsensorsandnewadvancedtechniquesmighthavebigimpacttonavigationsystemsofsmallaircraft.ThemaintechnologicalevolutionsunderwaywithapplicationtoGAincludemostofthetechniquesmentionedinprevioussub-sections:

    • Augmentationofaglobalnavigationsatellitesystem(GNSS)• ApplicationofdualfrequencyGNSSreceivers(GPS-L1/L5)• UpcomingGalileoservices• ApplicationofMEMS(i.e.MicroElectroMechanicalSystems)inertialsensors• CombinationofInertiaandGNSStechniques(longtermprecisionforGNSS,dynamicand

    autonomyforinertia).Althoughthemostrecentlydesignedcockpitsforgeneralaviationencompassanumberofnoveltiesintermofsafetyorcapability(satelliteweatherstatus,syntheticvisionsystem,trafficalert,infraredcamera,touchscreen,wirelesstransferofflightplansbetweenamobiledeviceandtheavionics…)thenavigationsensorshavenotbeenfollowingthistrend.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 41

    Founding Members

    Figure9:LatestGarminG1000NXicockpit

    RelianceonGPS isnowastandard inGeneralAviationforVFRand IFRforseveralyears.All recentairborneGPSreceivers includeSBAScapabilityandarecompliant toTSOC145corTSOC146c.GPSpositionislargelyusedbytheavionicsandisfeedingallon-boardsystems(2Dmap,Syntheticvisionsystem,Trafficadvisory,ADS-B,..).BasicRNPcapabilitymayalsobeavailableonsomeaircraft.

    ThenewIFR-designedavionicsareLPVcapable(meaningthattwoGPS/SBASreceiversareembeddedforsafetyissue).AnumberofolderaircraftsarealsoretrofittedwithLPVtoincreasetheiroperationalcapability or keep it unchanged following the decommissioning of ILS beacons replaced with LPVapproaches.

    AlthoughintheUSorEuropegeneralaviationisallowedtoflyIFRequippedonlywithSBASreceiver(Title14→ChapterI→SubchapterF→Part91→SubpartC→§91.205)thiswillpreventthepilotfromflyingVORorNDBpublishedapproacheswhereoverlayisnotallowed.WithonlyGPS/SBASonboardthepilotwouldbelimitedtoRNAVandRNPIFRroutes.MoreoverincaseofGPSloss,VORorNDBremainasafebackupnavigationmean.That’swhyGeneralAviationavionicsusuallycomewithlegacyVORandNDBreceiversinadditiontotheGPS.GeneralAviationisusuallyneitherequippedwithDMEnorwithinertialunit(whichareacostlyandpowerconsumingdevice,andarenotrequiredbyregulation).

    NewGNSS constellationsarenotusedyetonboardaircraft. TheGLONASSmandate in force fromJanuary1stonlytargetsaircraftweightingmorethan12,500poundsandregisteredonanoperationalcertificate issuedbyRussia’scivilaviationauthority.Galileo initialcapability isstill toorecenttobeoperationallyusedonboardaircraft.

    2.10.1 Majorplayerslist

  • EDITION[00.01.00]

    42

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    The following is non-extensive list of the main manufacturers of navigation equipment for smallaircraft:

    • AELSistemas(BR)(displaysamongotheravionicssystemsforfixed,rotarywingandunmannedvehicles)

    • Aircraft Radio Corporation (US) (avionics and flight control system for GA aircraft such asCessna)

    • AstronicsMax-Viz(US)(suppliersofEVSanddisplays)• AvidyneCorporation(US)(integratedavionics,displaysandtrafficadvisorysystems)• CheltonFlightSystems(US)(syntheticvisionsystemsandavionics)• DynonAvionics(US)(non-certifiedelectronicsincludingtransponders,autopilotsanddisplays)• Furuno(JP)(GNSSreceiversusedinbothmannedandunmannedaircraft)• Garmin(US)(GNSSreceiversusedinbothmannedandunmannedaircraft)• Honeywell(US)(suppliersofsensorsandinertials)• JPInstruments(US)(flightinstrumentsandenginemanagementsystems)• L-tronics(US)(DF,ELTandEPIRBequipment)• RockwellCollins(US)(communicationsystemsandavionicsforalltypesofaircraft)• S-TECCorporation(US)(autopilotsforsmallandmid-sizeaircraft)• ThalesAvionics(FR)(avionicsfordifferentcategoriesofaircraft)• TlElektronic(CZ)(manufacturerofinstrumentsandon-boardsystems)• UniversalAvionics(US)(FMSandinstrumentdisplaysforprivateaircraft)

    ThevastmajorityofnewlydesignedglasscockpitforcertifiedaircraftuseaGarminintegratedavionicssuitefromtheG500(Piper),G1000(Cessna,Piper,Diamond,Cirrus,etc…),G1000NXi(KingAir),G2000(Cessna)orG3000(Socata)series.Thenavigationmeans(GPS,VOR)aredirectlyintegratedintotheavionics suite. Other avionicsmanufacturers target regional or business aircraft (Rockwell Collins,Honeywell),oronlyprovideGPSorVORreceivers thatcanbe included inanexistingavionics.ThefollowingfigureprovidesanexampleofaGarminsystemarchitecture.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 43

    Founding Members

    Figure10:GarminG1000architecturediagram

    2.11 NavigationinUAVsandDronesCurrently,navigationinUAVsordronesisfundamentallybasedonGNSS(namelyGPS).GPSisoftencomplementedwithothertechniquesdependingonthesizeofthedrone.Atthispointitisimportanttodifferentiatebetweensmalldrones(oraccordingtoEASA’sproposedregulation,CATA0–toysandmini-dronesbelow1KgandCATA1–smalldronesbelow4Kg)andlargerdronesabove20Kg.WhiletheformermaynotevenhaveGPS(thecaseoftoys)andcanrelyonvideofornavigation,thelarger

  • EDITION[00.01.00]

    44

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    dronesoften combineGPSwith some formof commercial grade inertial sensors (accelerometers),video (as mentioned previously) or radar. For example several manufacturers achieve autolandcapabilitiesbycombiningGPSwithradio-altimeters.

    Giventhatdroneshavenocockpitperse,instrumentsareprocuredbydronemanufacturersdirectlyto sensor, transducer orGNSS receiver suppliers. Themajority of sensor data is then representeddigitallyinGCS(GroundControlStations).ThemajorityofdronemanufacturerstendtodeveloptheirownGCSsothatdisplaysarethenprovideddirectlybytheplatformmanufacturer.Fromthelistofplayersabove,Garminisprobablythemostactiveinsupplyingthedronemarket.

    2.12 CompatibilitywithSESARconceptsASESARA-PNTstudyhasbeenstarted inthecourseoftheSESARprojectaddressingtheemergingneed of aircraft resilience to GPS outage. The work is currently continued in the frame of theSESAR2020project.AparallelactivityisconductedbyFAAintheframeofNextGenproject.In2016,the FAA released its PBN NAS (Performance Based Navigation Strategy 2016) describing itsPerformance Based Navigation roadmap including resiliency to GPS outage. The major steps aredetailedbelow:

    NEARTERM(2016–2020):Bytheendofthenearterm,theNASwillremainresilientwithPBNservicesthroughoutClassAairspaceprovidedbyphasing inDMERNAVcoveragedownto18,000 feetabovemeansea level (MSL).TheexceptionisareasintheWesternMountainousRegion,whereterrainseverelylimitsline-of-sightcoverageataltitudesbelow24,000feetMSL.DMEcoveragewillexistwithouttheneedforanIRU,thoughoperatorswithoutIRUmayneedtoconfirmcriticalDMEsarenotoutofserviceintheterminalarea.ClassAairspacewillrequireDME/DMEpositioningforoperatorsneedingtoaccesstheairspaceduringaGNSSservicedisruption.OperatorsequippedwithonlyasingleFMS,andthusonlyasingleDME/DMEnavigationsource,willbeallowedtouseVOR(non-RNAV)orTacticalAirNavigationasanauthorizedsecondformofnavigationtocontinuetodispatchduringthedisruption.[...]

    • Increasing situational awareness of GNSS disruption events and the ability to quicklycommunicateinformationtotheaffectedpartiesisanessentialcapabilityneededthroughouttheNAStoensureeffectiveandtimelyuseofresilientinfrastructure.Inthenearterm,theFAAwilldefinerequirementsforaSatelliteOperationsCoordinationConcept(SOCC)positionattheFAA’sAirTrafficControlSystemCommandCentertomanagerealtimeinformationontheNASnavigationstatus.

    MIDTERM(2021-2025)Bytheendofthemid-term,theresilienceoftheNASwillbeincreasedfurtherwiththefollowingFAAcommitments:

    • DME/DMEcoverage,providingRNAV1navigation,will beextendeddown toNSG1and2airports to facilitate a conventional approach, as required (for example, 1,500 feet heightaboveairport).ThiscoveragewillrequiretheinstallationofadditionalDMEfacilities.Notethatfordepartures,DME/DMEmaynotprovideneededcoveragetosupportallPBNdeparturesdue

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 45

    Founding Members

    totheaircraftcomputerprocessingdelaythatexistsafterreceivingDMEgroundtranspondersignals.TomaintainacceptabledepartureoperationsduringaGNSSdisruption,localfacilitieswill have to develop contingency plans. DME/DME equipment will be required for thoseoperatorsneedingtoaccesstheairspaceduringaGNSSservicedisruption;and

    • TheSOCCwillbeginoperationsinthemid-term,providingthereal-time,system-levelviewofNASnavigationresiliencyandcoordinatingmitigationtoservicedisruptions.

    TheprovisionofDME/DMERNAVcoverageinClassAairspace intheneartermandattheselectedairportsduringthemidtermwillconstitutearesilientpositionandnavigationservicefortheNAS.TheFAAwillcontinuetoevaluatealternativesforpositionandnavigationastechnologiesandcapabilitiesadvance.FARTERM(2026–2030)Inthefarterm,theFAAwillfocusonthecompletionoflegacyinfrastructuredivestment,makingPBNthestandardmethodofnavigation.Conventionalnavigationwillexisttoensuretheresiliencyofnon-DME/DME operations, low-visibility approaches and DoD requirements. The FAA will be able tocompleteprogramstorecapitalizeanddivestfromadditionalground-basedinfrastructure.Prioritiesforthe2026–2030timeframeinclude:[…]

    • ContinuingresearchintoAlternativePosition,NavigationandTiming(APNT)capabilities.

    BEYOND2030As the near- andmid-term solutions are implemented, DME and VORwill serve into the far-termtimeframe.During the far termandmovingout into the2030 timeframeandbeyond, theFAAwillcontinuetoresearchthebestmethodsforAPNT[…]TheEuropeanA-PNTconceptisunderdefinitionbutislikelytohaveasimilarapproach.

    One part of the SESARA-PNT study aimed at listing all the possible alternatives toGPS (future oralready existing) while the second part has been focusing on DME enhancement at ground or atairbornelevel.

    ThefollowingisasummaryofthestudiedalternativetechnologiesandtheirapplicabilitytoNAVISASproject.

    A-PNTTechnology

    Concept Applicability

    Generalaviation

    Ultra-light UAV

  • EDITION[00.01.00]

    46

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    Enhanced DME-FMS

    Existing on-board FMS andDME receiver alreadycompute a DME/DMEposition but do not provideintegrity. Updating the FMSsoftware with an integritycomputation capability(similar to the RAIMalgorithm)couldbesufficientto provide RNP 1 capabilitybasedonDMEonly. Furtherpopulating the current DMEnetwork will be needed toguarantee sufficientcoverage.

    Notapplicable

    DMEequipmentisrequired

    Wide AreaMultilateration(WAM)

    WAM is able to findaircraftpositions by time differenceof arrival measurementsbetween several groundstations. The system iscomposed by a number ofreceiver/interrogatorslocatedinpreciselysurveyedpositions, receiving modeA/C and Mode-S (and insome systems ADS-B also)replies.

    Yes Yes if equippedwithtransponder

    Yes if equippedwithtransponder

    Mode-N Mode N system ischaracterized by groundstations (synchronized intime) that transmit on asingle frequency theircoordinates. These periodictransmissionsarereferredtoasModeNsquitter.

    The main differencebetween DME and Mode Nusing is related to thenumber of useful groundstations: while DME islimited to a maximum offive sources per DMEinterrogator, a Mode Ntransceiver can utilize allMode N ground stations

    Notapplicable

    ModeNsquitterequipmentisrequired

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 47

    Founding Members

    within radio line of sight.SoModeNfunctionofthetransceiver is able toestimate the aircraftposition from Mode Nsquittersofdifferentgroundstations using timedifferencesofarrival.

    LDACS LDACS (L-band DigitalAeronauticalCommunication System) isthe future ground-basedcommunications link (960-1164 MHz) and is alreadyused by Aeronauticalnavigation services andAeronautical militarycommunicationssystems.

    Tocalculatecorrectairborneposition, it is necessary tomultilaterate the receivedsignals from at least fourgroundtransmitters.

    Notapplicable

    LDACSequipmentisrequired

    MosaicDME This solution consists of asingle conventional DMEtransponder and multiplepseudolites installed in thesame location. The DMEtransponder operatesaccording to the currentstandards on the basis of atwo-way ranging principle,while the pseudolitesbroadcast one-waycontinuoussignalsforcarrierphasemeasurements.

    Notapplicable

    DMEequipmentisrequired

    eLORAN Loran (LOng RAngeNavigation) is a ground-based radio-navigationsystem that preceded

    Notapplicable

    LORANequipmentisrequired

  • EDITION[00.01.00]

    48

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    satellite navigation. Loran isbased on the broadcast ofextremelyhighpowersignalsinthelowfrequencyportionof the radio spectrum(operating between 90 kHzand110kHz).

    An updated LORAN version(called Enhanced LORAN)provideschanges to the lastLORAN system to improveaccuracy, reliability,integrity, service availabilityand robustness against theinterference.

    Table4–SummaryofalternateA-PNTtechnologies

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 49

    Founding Members

    StateoftheArtreviewonclocksandatomicgyroscopes

    Here,aStateoftheArt(SoA)analysisonbothminiatureatomicgyroscopes(MAG)andatomicclocks(MAC) is presented with key performances, limitations and advantages compared with existingsolutionsforAPNTIMUsandGNSS,respectively.

    3.1 Miniatureatomicclocks

    3.1.1 Introduction

    Thecapabilitytomaintainaccuratetimingoverextendedperiodoftimewithcompactandlowpowerconsumptiondevicesisakeybenefitforanumberofapplications.

    InGNSS,frequencyspectrumcongestiongeneratesinterferencesthatrepresentakeychallengeforserviceintegrityandpersistence.Thankstoitssuperiortimingaccuracyoverextendedperiodoftime,miniatureatomicclocksguarantee fast re-acquisitionof thesignaland longcoherence integration,thereby improving service availability in adverse environment (provided the actual location isestimatedfrominertialnavigation).Whilethisisofobviousbenefitforhigh-endGNSSuserterminals,itisalsoofhighinterestforon-boardGNSSreceiversthatarebeingincreasinglyusedforgeostationarysatellitestationkeeping,especiallyinthehighlyoccupiedorbitalslots.

    AnumberofEarthobservationinstruments(radiometers,GNSSradiooccultation…)operatinginnon-coherentmodecould significantly improve their sensitivityand resolutionby integrating the signaloverlongerperiodoftime.Thankstoitscompactformfactorandlowpowerconsumption,aminiatureatomicclock(MAC)couldbedirectlyintegratedintheinstrumentandwouldnotrequirepower-hungryandbulkyreferenceoscillator.

    ThereishowevernoMACtechnologyavailableinEurope,thesoleworldwidesupplierbeingintheUS(MicrosemiCorporation).Whileoverthe lastdecade,someeffortshavebeendedicatedworldwideandalsoinEuropetothedevelopmentofMACsatthesystemlevel,thereiscurrentlyalackofactivitydedicatedtoahigh-performingphysicspackage.

  • EDITION[00.01.00]

    50

    ©-2016–NAVISASConsortium.Allrightsreserved.

    Founding Members

    3.1.2 Workingprinciples

    Aminiatureatomicclock(MAC)isanoscillatorprovidingasignalwithexquisitefrequencyandhencetiming stability. This frequency stability is derived from the intrinsically stable frequency of atoms(RubidiumorCesiumatomsforaMAC).AMACisbasicallyaquartzlocaloscillatorthatisfrequencylockedtoanatomicreferencetransition(so-calledpassiveatomicclock).Thegaseousphasereferenceatomsareenclosedinavaporcell.Inordertoaccessthehyperfineatomicreferencetransitionwhichisate.g.6.8GHzfortheisotope87ofRubidium,avertical-cavitysemiconductorlaser(VCSEL)hasitsinjectioncurrentmodulatedathalftheatomichyperfinefrequencyinordertogeneratesidebandsinwhichareresonantwiththeatomichyperfinefrequency,whilethewavelengthofthelaserisstabilizedtooneopticalatomicabsorptionline(typicallyat795nm).Intheseconditionsthereisaslightincreaseofthelighttransmissionthroughtheatomicvaporcell.ThiseffectcalledCoherentPopulationTrapping(CPT)isattheheartofaMAC.

    AtypicalMACarchitectureisdisplayedinFigure11.Thephysicspackage(PP)iscentraltotheclockandcontainstheMEMSatomicvaporcell,theVCSEL,somemicro-opticstopreparethelightemittedbythelaserthatinteractswiththeatoms,heatersandtemperaturesensorsfortheMEMScellandtheVCSEL,coils togenerateastraightmagnetic field (B field) for theatoms,andaphotodiode (PD) todetecttheatomicsignals.ThePPisdrivenwithelectronicsthathastoprovideDCinjectioncurrenttotheVCSEL,controlloopfortheVCSELtemperature,controllooptostabilizetheVCSELwavelengthonan atomic optical transition (laser lock), anRF synthesizer to generate the appropriatemicrowavesignalusedtointerrogatetheatomichyperfinefrequencyviathelaserandphaselockedloop(PLL)tophaselocktheclocklocaloscillator(typicallya10-MHzquartzoscillator).NotshowninFigure11butnecessarytocontrolthefullclock isamicrocontroller.Alsonotrepresented isamagneticshield inordertoisolatetheatomsfromexternalmagneticfields.

  • PROJECTMANAGEMENTPLAN

    ©-2016–NAVISASConsortium.Allrightsreserved. 51

    Founding Members

    Figure11.BlocdiagramofaMAC(i.e.apassiveatomicclock)

    3.1.3 Challenges

    InordertomakeaMACcompetitive,theperformanceintermsoffrequencystabilityisessentialbuttheformfactorandthecostsareofkeyimportanceaswell.ThePPisacriticalelementneededtofulfillthesechallengesandsofarnosolutionexiststhatishighperformingandcompetitiveincost.

    Theformfactoroftoday’sprototypesiscubicsincethedifferentknownPPsarerealizedwithastackofthecomponents.RecentR&Dactivitiestowardsaflatdesignareundertaken,e.g.atCSEM.

    ThepowerconsumptionofthePPisessentiallydrivenbythelaserandcellthermalmanagementwithtemperatures in the order of 80°C. Careful thermalmanagement and hermetically sealed vacuumencapsulation are essential at laser-package and cell-package interfaces to ensure high thermalresistivityandthusalsoimprovethermalstability.

    TheproductioncostofthePPisstronglydependentonthepackagingtechnique(assemblyprocess)and the technology selected for thepackage itself.Apart from thecost, yieldand reli