14
1 Building an Economical and Sustainable Lunar Infrastructure To Enable Lunar Science and Space Commerce Dr. Allison Zuniga, Mark Turner and Dr. Dan Rasky NASA Ames Research Center – Space Portal Office Mike Loucks, John Carrico and Lisa Policastri Space Exploration Engineering Corp. LEAG Meeting – Oct 11, 2017

Building an Economical and Sustainable Lunar Infrastructure ......Lunar Infrastructure Elements 5 Lunar Communication Towers •Expands comm links to areas that are not in direct line-of-sight

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    BuildinganEconomicalandSustainableLunarInfrastructureToEnableLunarScienceandSpaceCommerce

    Dr.AllisonZuniga,MarkTurnerandDr.DanRaskyNASAAmesResearchCenter– SpacePortalOffice

    MikeLoucks,JohnCarricoandLisaPolicastriSpaceExplorationEngineeringCorp.

    LEAGMeeting– Oct11,2017

  • Background

    • NASA’sCommercialOrbitalTransportationServices(COTS)programwasverysuccessfulindemonstratingISScargodeliverycapabilities.§ Resultedindevelopmentof2launchvehiclesandspacecraft(SpaceX’sFalcon9andOrbital’sAntareswithCygnus)

    § Public-privatepartnershipsapproachresultedinsignificantlylowerdevelopmentcosts,asmuchas10-to-1reductionincostsforSpace-X’sFalcon9development.

    • NASA’sLunarCATALYSTinitiativesponsoredbyNASA’sHEOMDAdvancedExplorationSystemdivisionhascompetitivelyselectedpartnersin2014todevelopcommerciallunarcargotransportationcapabilitiestothesurfaceoftheMoon.§ Establishedno-funds-exchangedSpaceActAgreementswith3U.S.companiesincludingAstrobotic,MastenSpaceSystemsandMoonExpress.

    § Commerciallunartransportationcapabilitiescouldsupportscienceandexplorationobjectives,suchassamplereturns,resourceprospectingandtechnologydemonstrations.

    • NASAhasrecentlyreleased2RFI’sforlunarpayloadsandlunarcargotransportationservicesandispresentlyconsideringissuingsolicitationsforthesecapabilitiesandservices.

    • LunarCOTSisaconceptstudyfocusingonthetechnicalandeconomicalfeasibilityofbuildinglunarinfrastructureaswellasthebenefitsandchallengesofusingaCOTS-likemodel.

  • LunarCommercialOperations&TransferServices(LCOTS)ConceptStudy

    GOALS• Developaffordableandcommercialcis-lunar

    andsurfacecapabilitiesinpartnershipwithindustry.

    • IncentivizeindustrytoestablisheconomicallunarinfrastructureservicestosupportNASAmissionsandLunarCommerce.

    • Encouragecreationofnewspacemarketsforeconomicgrowthandbenefit.

    Approach1. Use3-phaseapproachinpartnershipwithindustrytoincrementallydevelopcommercialcapabilitiesandservices.

    2. UseCOTSmodelapproachtopartnerwithindustrytosharecostandrisk.

    3. Beginwithlow-cost,commercial-enabledlunarmissionstodemonstratesmall-scalelunarinfrastructurecapabilities.

    3

  • LunarCOTSPhasedImplementation

    4

    Phase1:Low-Cost,Commercial-EnabledMissions

    Phase2:PilotScaleDemonstration Phase3:Long-TermContracts

    • Partnerwithindustrytodevelopcapabilitiestoenableanevolvablelunarinfrastructure;• Includeslunarcargodelivery,powerstations,communicationtowers,etc.

    • Assesspotentiallunarsitesforaccessibilitytolunarresourcesandeconomicviabilityforresourceextraction.

    • Demonstrateinfrastructureservicesonapilot-scaletosupportfutureNASAmissionsandcommercialactivities,suchas,lunarminingorresourceextraction.

    • Evaluatefeasibilityandeconomicsofscalingupproductiontofullscale.

    • NASAawardslong-termcontractsforinfrastructureservices,suchas,lunarcargodeliveryandpower/commservices.

    • NASAmayalsoawardlong-termcontractsforfull-scaleresourceextractionand/ordeliverytocis-lunardestination.

  • LunarInfrastructureElements

    5

    LunarCommunicationTowers• Expandscommlinkstoareasthatarenotindirectline-of-sightwithEarth,suchas,withincratersorcaves

    PowerStations• Enablespowergenerationandstoragecapabilitiesusingsolarpowerbatterysystem.

    • Extendslifeofroverstoseveralyearsbyprovidingre-chargingandthermalcontrolcapabilities

    LunarCargoDelivery• Performsprecise,softlandingstodeliversmall

    payloadstomultipledestinationsonthelunarsurface

    MultiplePowerTowers• Providecontinuouscommunicationscoverage withmultipletowers

    • Greateraccesstopowerrechargingandhibernationstations

    • Facilitatespreciselandingsthroughtriangularizationofnavigationaldata

  • 6

    NASALunarCOTSConcept(LCOTS)

    [PlayVideo]ConceptObjective:

    PartneringwithIndustrytoBuildanEconomicalInfrastructure

    LeadingthewaytotheFirstLunarIndustrialCity

    6

    LCOTSConceptofOperations

  • InfrastructureSystemReferenceDesign

    • Targetedlandeddrymassnottoexceed900-1000kg• Payloadmassrangesfrom350-450kgincl.power

    station,commtowerandrovers• 2meterDiametermodularhexBus• Landerlegsare<4meterdiafixed• 10metertallcommunicationtower

    – Mastistelescopicanddeploysafterlanding– Allowsforover1kmlineofsight– Expandscommcoveragetoareasthatarenotindirect

    line-of-sightofEarth• Solarpanels

    – Polarlander:bodymountedwithadditionaldeployablesolarpanelsasshown

    – EquatorialLander– horizontaldeployablesolarpanels• PowerStation

    – Consistsof24-36modulesoflithiumionbatteries– Provides800–1600Wofpowerinduringlunardayand

    40-70Wcontinuouspowerduringlunarnight– Re-chargesroversduringdaylightandprovideskeepalive

    powerandthermalcontrolofroverstosurvive14-daylunarnight

    7

    Landing Beacon, Transponder &

    Camera

    Radiator

    Body-Mounted

    Solar Panels

    Deployable Solar Panels

    Communication Tower

    • Extendsmissionlifetoseveralyears(6to8yearsdependingonbatterylife)• Addingmobilitysystemwillextendtraversedistancestohundredsofkilometers

    Power Station

    Lunar Rover Dock

    for Recharging

  • LaunchVehiclePayloadCapabilities

    8

    LaunchVehicles* LEO(mt) GTO(mt)PayloadtoLunar

    Surface(non-lander)(mt)

    AtlasV 18.8 8.9 0.5– 1.4

    Falcon9FT(FullThrust) 22.8 8.3 0.4- 1.1

    FalconHeavy 63.8 26.7 1.5- 3.9

    VulcanCentaur 22 11 0.7 – 1.8

    VulcanACES 35 17 1.0-2.7

    NewGlenn2-stagevehicle 45 13 0.8– 2.0

    NotesIsp ranges from 285 to 336 seconds for Lander system*Launch vehicle data obtained from publicly available websites.

  • • STKwasusedtoanalyzelunartrajectoriestoseveralequatorialandpolardestinations.– Adirectlunartrajectorywasselectedforbestperformance.– Sensitivityanalysiswasalsoperformed.

    • KeyParameterthatdriveslunarlandingmassisLanderspecificimpulse,Isp:– MMH/NTOBipropIsprangesfrom274-333sec– MasslandedontheMoondoublesoverthisrange– Off-the-shelfenginesinthisrange:

    » MoogBiprop~274-310sec» AerojetBiprop300-333sec

    • SensitivityanalysisshowedthatDeltaVdifferencebetweenpolarandequatorialsitesarenegligible(within~15m/sec)

    LunarTrajectoryAnalysis

    9

    FindingFuturedevelopmentshouldfocusonhighthrust/highISPlandersystemwhichhasgreatestimpacttolandingmassperformance.

  • Upper Stage

    Low Lunar Orbit (polar)

    TLI burn by Upper Stage(ΔV =3105 m/s )

    MOON

    EARTH

    LEO 300 km

    Lander

    Upper Stage

    Laun

    ch

    Vehi

    cle

    LOI by Lander(ΔV =835 m/s )

    Lunar Descent(ΔV=1822 m/s)

    DraftMissionObjectives• Demonstratelunarcargodeliverycapabilities.• Demonstratepowergenerationandstoragecapabilities

    usingsolarpowerbatterysystem.• Demonstratecommlinkcapabilitiesfromroverstoground

    stationsviahightowercommsystem.• Demonstrateautonomousoperationofroverswith

    commandsfromground.• Demonstratecapabilitytore-chargeroversduringlunar

    dayandcapabilitytohibernatewiththermalcontrolduringthe14-daylunarnight.

    DraftDesignReferenceMission

    LaunchVehicleCapabilities• Medium-classlaunchvehicles,suchasFalcon9orAtlasV,

    maydeliver1or2lunarlanderstolunarsurface.• Heavy-classlaunchvehicles,suchasFalconHeavyorNew

    Glenn,maydeliverupto4lunarlanderstomultiplelunardestinations.

  • 11

    DraftMissionTimeline

    Min MaxLaunch -15 -115 MinutesTLI 0 0 MinutesLOIBegins 4.5 5.5 DaysLOIEnds 6.5 7.5 Days

    DOI 7.5 14.5 DaysLanding 7.55 14.55 Days

    Note: Mission Timeline Ranges. TLI = 0

    1. Launch

    2. Trans-Lunar Injection (TLI)

    3. Trans-Lunar Coast Trajectory

    4. Lunar Orbit Insertion(LOI)

    5. Descent(DOI)

    6. Landing

  • DraftInstrumentationOptions

    12

    SampleInstrumentationOptions KeyMeasurements

    NeutronSpectrometerSystem(NSS) Senseshydrogen-bearingmaterials(eg.Ice) inthetopmeterofregolith.

    Near-InfraredVolatileSpectrometerSystem(NIRVSS)

    Identifyvolatiles,includingwaterform(e.g.icebound)intop20-30cmofregolith.Alsoprovidessurfacetemperaturesatscalesof

  • BenefitstoLunarIndustrialization

    Industry• Opportunitytobefirsttocorneraspace-basedmarket

    whichmaybeverylucrative(e.g.lunarcargodelivery,lunarmining,lunartourism,etc)

    • Estimatedprojectionsstatepotentialformulti-trilliondollareconomy.

    Public• Excitingnewadventuresforexplorersofallraces,genders

    andbackground!• Benefitshumanityinofferingexpandedopportunitiesand

    resources.

    Govt’sRole• NoonecompanycanindustrializetheMoonalone.

    Investmentstoentermarketaretoohugeandriskytoenteralone.

    • GovtcanplaykeyrolebyestablishingPublic-privatepartnershipstohelpaccelerateinfrastructuredevelopment.

    • Othergovtincentivesshouldbeexploredtolowerbarriersofentryandenablenewlunarindustriesandmarkets.

    13

    TheMooncanserveasaGatewaytotherestoftheSolarSystemandbeyond.

  • NextSteps

    1. Furtherdevelopmissionconceptoptionsfor3-PhaseapproachtoLunarCOTS.– Continuematuringdesignoptionsforpowergenerationand

    thermalcontroltoextendmissionlifetoseveralyears.– Addmobilityandsuspensionsystemtopowerstationto

    extendtraversedistancestohundredsofkilometers.– Useofimpactorsand/orpenetratorsthatcanbedeployedon

    descenttrajectory.– DevelopdesignoptionsforLunarDronestogatherdataover

    roughandsteepterrain.– Investigatelow-costscienceinstrumentoptions– DevelopdesignoptionsforSampleReturnMissions(include

    optionsforascentstage).– UseDeepLearningandAItechnologiestorapidlyoptimize

    solutionsforlandingsiteselection,resourceidentification,traverseandmissionplanning,etc.

    2. Conduct2-dayLunarIndustrializationWorkshopatAmesto:– Provideforumbetweencommercialspacecompaniesand

    NASAtechnicalexpertstoexchangeideasanddevelopplans.

    3. ExplorepartnershipopportunitieswithotherNASACentersandcommercialindustrytohelpadvanceLunarCOTSconcept.- Conductindustryinterviewstodetermineareasofinterestfor

    partnership;evaluatetechnicalandbusinessreadinesslevels.

    14

    Phase 1- Low-Cost Commercial-Enabled Missions

    Phase 2 –Pilot Plant Demo

    Phase 3 – Full-Scale Production