39
Carbon Carbon 2008 2008 Budget Budget Budget08 Released on 17 November 2009 ppt version 11 May 2010 GCP-Global Carbon Budget Consortium

Budget08 Released on 17 November 2009 ppt … Released on 17 November 2009 ppt version 11 May 2010 GCP-Global Carbon Budget Consortium Artist Impression of the Human Perturbation of

  • Upload
    vancong

  • View
    214

  • Download
    1

Embed Size (px)

Citation preview

Carbon Carbon

20082008BudgetBudget

Budget08 Released on 17 November 2009ppt version 11 May 2010

GCP-Global Carbon Budget Consortium

Artist Impression of the Human Perturbation of the Carbon Cycle

Corinne Le QuéréSchool of Environment Sciences, University of East Anglia, Norwich, UK

British Antarctic Survey, Cambridge, UK Michael R. Raupach

Global Carbon Project, CSIRO Marine and Atmospheric Research, Canberra, Australia

Josep G. CanadellGlobal Carbon Project, CSIRO Marine and Atmospheric Research, Canberra,

Australia Gregg Marland

Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

Laurent BoppLaboratoire des Sciences du Climat et de l’Environnement, UMR 1572 CEA-

CNRS-UVSQ, France Philippe Ciais

Laboratoire des Sciences du Climat et de l’Environnement, UMR 1572 CEA-CNRS-UVSQ, France Thomas J. Conway

NOAA Earth System Research Laboratory, Boulder, Colorado, USA Scott C. Doney

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA Richard A. Feely

Pacific Marine Environmental Laboratory, Seattle, Washington, USA Pru Foster

QUEST, Department of Earth Sciences, University of Bristol, UK Pierre Friedlingstein

Laboratoire des Sciences du Climat et de l’Environnement, FranceQUEST, Department of Earth Sciences, University of Bristol, UK

Kevin GurneyDepartment of Earth and Atmospheric Sciences and Department of Agronomy,

Purdue University, Indiana, USA Richard A. Houghton

Woods Hole Research Center, Falmouth, Massachusetts, USA Joanna I. House

QUEST, Department of Earth Sciences, University of Bristol, UK Chris Huntingford

Centre for Ecology and Hydrology, Benson Lane, Wallingford, UK Peter E. Levy

Centre for Ecology and Hydrology, Bush Estate, Penicuik, UK

GCP-Carbon Budget2008 ConsortiumMark R. Lomas

Department of Animal and Plant Sciences, University of Sheffield, UJoseph Majkut

AOS Program, Princeton University, PO Box CN710, Princeton, New Jersey, USA

Nicolas MetzlLOCEAN-IPSL, CNRS, Institut Pierre Simon Laplace, Université Pierre et

Marie Curie, Paris, France Jean P. Ometto

Instituto Nacional de Pesquisas Espaciais, São José dos Campos-SP, Brazil Glen P. Peters

Center for International Climate and Environmental Research, Oslo, NorwayColin Prentice

QUEST, Department of Earth Sciences, University of Bristol, UK James T. Randerson

Department of Earth System Science, University of California, Irvine, California, USA

Steven W. RunningSchool of Forestry/Numerical Terradynamic Simulation Group, University of

Montana, Missoula, USA Jorge L. Sarmiento

Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, USA

Ute SchusterSchool of Environment Sciences, University of East Anglia, Norwich, UK

Stephen SitchSchool of Geography, University of Leeds, Leeds, UK

Taro TakahashiLamont-Doherty Earth Observatory of Columbia University, New York, USA

Nicolas ViovyLaboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-

UVSQ, FranceGuido R. van der Werf

Faculty of Earth and Life Sciences, VU University, Amsterdam 1081 HV, Netherlands

F. Ian WoodwardDepartment of Animal and Plant Sciences, University of Sheffield, Sheffield,

UK

Fossil Fuel Emissions and Cement Production

CO2

emiss

ions (

PgC

y-1)

9

8

7

6

1990 2000 2010

Growth rate: 1.0% per year

Growth rate: 3.4% per year

2008: Emissions: 8.7 PgCGrowth rate: 2.0%1990 levels: +41%

2000-2008Growth rate: 3.4%

Le Quéré et al. 2009, Nature Geoscience; CDIAC 2009

[1 Pg = 1 Petagram = 1 Billion metric tonnes = 1 Gigatonne = 1x1015g]

Le Quéré et al. 2009, Nature Geoscience; CDIAC 2009

CO2 Fossil Fuel Emissions

Annex B (Kyoto Protocol) Developed Nation

Developing Nations Non-Annex B

1990 2000 2010

5

4

3

2CO2

emiss

ions (

PgC

y-1) 55%

45%

1990 05 01 05 200807 99 0303Time

0

400

800

1200

1600

2000Ca

rbon

Emi

ssion

s per

year

(tons

x 1,0

00,00

0)China

USA

Japan

Russian Fed. India

Fossil Fuel Emissions: Top Emitters (>4% of Total)

Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009

1990 05 01 05 200807 99 0303

Time0

40

80

120

160 UK

Denmark

South Africa

Australia Spain

Canada

Brazil

Fossil Fuel Emissions: Profile Examples (1-4% of Total)

Carb

on E

miss

ions p

er ye

ar(to

ns x

1,000

,000)

Global Carbon Project 2009; Data: Gregg Marland, CDIAC 2009

Balance of Emissions Embodied in Trade (BEET)

Peters and Hertwich 2008, Environ, Sci & Tech., updated

MtCBEET

Warm colors Net exporters of embodied carbonCold colors Net importers of embodied carbon

Year 2004

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience; Data: Peters & Hetwich2009; Peters et al. 2008; Weber et al 2008; Guan et al. 2008; CDIAC 2009

Transport of Embodied Emissions

CO2 emissions (PgC y-1)

Annex B Developed Nations

Developing Nations Non-Annex B

1990 2000 2010

5

4

3

2

55%

45%

1990 2000 2010

5

25% of growth

Annex B Developed Nations

Developing Nations Non-Annex B

4

3

2

Number of Countries

Country Cumulative Fraction

China .232USA .419India .477Russia .530Japan .573Germany .599Canada .617UK .633 South Korea .652Iran .668Poland .800Belarus .941Moldova .992

1.00

Cumulative Fraction of Total FF Emissions 2008

Gregg Marland, CDIAC 2009

123456789102050 (2005)

100 (2005)

210

3 countries50% Global Emissions

10 countries2/3 Global Emissions

Top 5 + EU80% Global Emissions

Components of FF Emissions

Le Quéré et al. 2009, Nature Geoscience

CO2

emiss

ions (

PgC

y-1)

Oil

Coal

Gas

Cement

4

3

2

1

01990 2000 2010

40%

36%

Change in CO2 Emissions from Coal Emissions

CDIAC 2009; Global Carbon Project 2009

-50

0

50

100

150

200

250

300

China USIndia World

CO2

emiss

ions (

TgC

y-1)

90% of growth

2006-2008

Per Capita CO2 Emissions

Le Quéré et al. 2009, Nature Geoscience; CDIAC 2009

Per C

apita

Emi

ssion

s(tC

perso

n-1y-1

)

1990 1995 2000 2005 2010

1.3

1.2

1.1

Developed countries continue to lead with the highest emission per capita

Fossil Fuel Emissions: Actual vs. IPCC Scenarios

Raupach et al. 2007, PNAS, updated; Le Quéré et al. 2009, Nature Geoscience; International Monetary Fund 2009

1990 1995 2000 2005 2010 2015

Foss

il Fu

el E

mis

sion

(GtC

y-1)

5

6

7

8

9

10

A1BA1FIA1TA2B1B2

Carbon Dioxide Information Analysis CenterInternational Energy Agency

Averages

Full range of IPCC individual scenarios

Economic Crisis Impact on World GDP Growth

International Monetary Fund, October 2009

-1.1%

Fossil Fuel Emissions: Actual vs. IPCC Scenarios

Raupach et al. 2007, PNAS, updated; Le Quéré et al. 2009, Nature Geoscience; International Monetary Fund 2009

Projection 2009Emissions: -2.8%GDP: -1.1% C intensity: -1.7%

1990 1995 2000 2005 2010 2015

Foss

il Fu

el E

mis

sion

(GtC

y-1)

5

6

7

8

9

10

Projection

A1BA1FIA1TA2B1B2

Carbon Dioxide Information Analysis CenterInternational Energy Agency

Full range of IPCC individual scenarios

Averages

Modified from Le Quéré et al. 2009

Le Quéré et al. 2009, Nature Geoscience; Data: CDIAC, FAO, Woods Hole Research Center 2009

CO2 Emissions from Land Use Change

Fossil fuel

Land use change

10

8

6

4

2

1960 20101970 1990 20001980

CO2

emiss

ions (

PgC

y-1)

Net CO2 Emissions from LUC in Tropical Countries

2000-2005

0

100

200

300

400

500

600

Brazil

Indonesia

CO2

emiss

ions (

TgC

y-1)

RA Houghton 2009, unpublished; Based on FAO Global Forest Resource Assessment

60%

Venezuela

Rep.Dem.Congo

Nigeria

4-2%

Cameroon

Peru

Philippines

2-1%

Colombia

Nicaragua

Nepal

India

<1%

Canadell et al. 2009, Biogeosciences

Emissions from Land Use Change (2000-2005)

(Area)

van der Werf et al. 2006, Atmospheric Chemistry and Physics, updated

Fire Emissions from Deforestation Zones

Fire E

miss

ions f

rom

defor

estat

ion zo

nes (

TgC

y-1)

Global Fire Emissions Dataset (vs2)

Total Anthropogenic Emissions 2008

Fossil fuel

Land use change

10

8

6

4

2

1960 20101970 1990 20001980

CO2

emiss

ions (

PgC

y-1) 8.7

1.2

9.9 PgC

12% of total anthropogenic

emissions

Le Quéré et al. 2009, Nature Geoscience; Data: CDIAC, FAO, Woods Hole Research Center 2009

Atmospheric CO2 Concentration

Data Source: Pieter Tans and Thomas Conway, NOAA/ESRL

1970 – 1979: 1.3 ppm y-1

1980 – 1989: 1.6 ppm y1

1990 – 1999: 1.5 ppm y-1

2000 - 2008: 1.9 ppm y-1

2008 1.792007 2.122006 1.772005 2.412004 1.62 2003 2.222002 2.402001 1.852000 1.24

Year 2008385 ppm

38% above pre-industrial

Annual Mean Growth Rate

Total CO2 emissions

Atmosphere

Data: NOAA, CDIAC; Le Quéré et al. 2009, Nature Geoscience

CO2

Partit

ioning

(PgC

y-1)

1960 20101970 1990 20001980

10

8

6

4

2

Key Diagnostic of the Carbon CycleEvolution of the fraction of total emissions that remain in the atmosphere

Airb

orne

Fra

ction

1960 20101970 1990 20001980

1.0

0.8

0.6

0.4

0.2

Fraction of total CO2 emissions that remains in the atmosphereAirborne Fraction

Trend: 0.27±0.2 % y-1 (p=0.9)

40%45%

Le Quéré et al. 2009, Nature Geoscience; Canadell et al. 2007, PNAS; Raupach et al. 2008, Biogeosciences

Modelled Natural CO2 Sinks

Le Quéré et al. 2009, Nature Geoscience

outgas

uptake

Estimated Trends in Sea-Air pCO2

1981-2007

Le Quéré et al. 2009, Nature Geoscience

μatm y-1

Possible Reasons for a Positive Trend in Airborne Fraction

• Emissions are rising faster than the time scales regulating the rate of uptake by sinks.

• Sinks are becoming less efficient at high CO2– Land: saturation of the CO2 fertilization effect– Ocean: decrease in [carbonate] which buffers CO2

• Land and/or ocean sinks are responding to climate change and variability.

• We are missing sink processes in models that are contributing to the observed changes.

deforestationtropics

extra-tropics

CO2

flux (

Pg C

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

1.4

2000-2008PgC

fossil fuel emissions

deforestation

CO2

flux (

Pg C

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

7.7

1.4

2000-2008PgC

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

fossil fuel emissions

deforestation

CO2

flux (

Pg C

y-1)

Sink

Sour

ce

Time (y)

atmospheric CO2

Human Perturbation of the Global Carbon Budget

7.7

1.4

4.1

2000-2008PgC

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

atmospheric CO2

fossil fuel emissions

deforestation

ocean

CO2

flux (

Pg C

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

7.7

1.4

4.1

2.3 (4 models)

2000-2008PgC

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

atmospheric CO2

ocean

land

fossil fuel emissions

deforestation

7.7

1.4

4.1

3.0 (5 models)

2000-2008PgC

CO2

flux (

PgC

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

2.3 (4 models)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

atmospheric CO2

ocean

land

fossil fuel emissions

deforestation

7.7

1.4

4.1

3.0 (5 models)

2000-2008PgC

CO2

flux (

PgC

y-1)

Sink

Sour

ce

Time (y)

Human Perturbation of the Global Carbon Budget

0.3 Residual

2.3 (4 models)

Global Carbon Project 2009; Le Quéré et al. 2009, Nature Geoscience

Fate of Anthropogenic CO2 Emissions (2000-2008)

Le Quéré et al. 2009, Nature Geoscience; Canadell et al. 2007, PNAS, updated

1.4 PgC y-1

+7.7 PgC y-1

3.0 PgC y-1

29%

4.1 PgC y-1

45%

26%2.3 PgC y-1

Global Carbon Project 2009

• The efficiency of the natural sinks has being declining over the last 60 years, a trend not fully captured by climate models.

• The human perturbation of the carbon cycle continues to grow strongly and track the most carbon intensive scenarios of the IPCC. The economic crisis will likely have a transitional impact on the growth of CO2 emissions and a undetectable effect on the growth of atmospheric CO2 (because the much larger inter-annual variability of the natural sinks).

Conclusions

• Canadell JG, Raupach MR, Houghton RA (2009) Anthropogenic CO2 emissions in Africa. Biogeosciences 6: 463-468.

• International Monetary Fund (2009) World economic outlook. October 2009.• http://www.imf.org/external/pubs/ft/weo/2009/02/index.htm• Le Quéré C, Raupach MR, Canadell JG, Marland G et al. (2009) Trends in the

sources and sinks of carbon dioxide. Nature geosciences, doi: 10.1038/ngeo689.• Marland G, Hamal K, Jonas M (2009) How uncertain are estimates of CO2

emissions. Journal of Industrial Ecology 13: 4-7.• Peters GP, Hertwich E G (2008) CO2 embodied in international trade with implications for global

climate policy. Environmental Science and Technology 42, 1401-1407.• Raupach MR, Canadell JG, Le Quéré C (2008) Drivers of interannual to interdecadal

variability in atmospheric in atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5: 1601–1613.

• Sitch S, Huntigford C, Gedney N et al. (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14: 1–25, doi: 10.1111/j.1365-2486.2008.01626.x.

• van der Werf GR, Randerson JT, Giglio L, Collatz GL, Kasibhatla PS, Arellano AF, Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6: 3423–3441.

References cited in this ppt

www.globalcarbonproject.org