114
1 Proposed syllabus and Scheme of Examination for B.Sc. (Program) with Chemistry Submitted to University Grants Commission New Delhi Under Choice Based Credit System April 2015

B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Embed Size (px)

Citation preview

Page 1: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

1  

Proposed  syllabus  and  Scheme  of  Examination  

for  

B.Sc.  (Program)  with  Chemistry  

 

 

Submitted  

to  

 

 

University  Grants  Commission  

New  Delhi  

 

                           Under  

 

 

 

 

 

Choice  Based  Credit  System  

 

April 2015

Page 2: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

2  

Details of Courses Under Undergraduate Program (B.Sc.)

Course *Credits

===============================================================

Theory+ Practical Theory+Tutorials

I. Core Course 12×4= 48 12×5=60

(12 Papers)

04 Courses from each of the

03 disciplines of choice

Core Course Practical / Tutorial* 12×2=24 12×1=12

(12 Practical/ Tutorials*)

04 Courses from each of the

03 Disciplines of choice

II. Elective Course 6×4=24 6×5=30

(6 Papers)

Two papers from each discipline of choice

including paper of interdisciplinary nature.

Elective Course Practical / Tutorials* 6×2=12 6×1=6

(6 Practical / Tutorials*)

Two Papers from each discipline of choice

including paper of interdisciplinary nature

• Optional Dissertation or project work in place of one Discipline elective paper (6 credits) in 6th Semester

Page 3: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

3  

III. Ability Enhancement Courses

1. Ability Enhancement Compulsory 2×2=4 2×2=4

(2 Papers of 2 credits each)

Environmental Science

English/MIL Communication

2. Skill Enhancement Course 4×2=8 4×2=8

(Skill Based)

(4 Papers of 2 credits each)

__________________ _________________

Total credit= 120 Total credit= 120

Institute should evolve a system/policy about ECA/ General Interest/Hobby/Sports/NCC/NSS/related courses on its own.

*wherever there is practical there will be no tutorials and vice -versa

 

 

Proposed scheme for choice based credit system in B. Sc. Program

CORE

COURSE (12) Ability Enhancement Compulsory Course (AECC) (2)

Skill

Enhancement

Course (SEC) (2)

Discipline Specific

Elective DSE (6)

I DSC- 1 A (English/MIL

Communication)/

Environmental Science

Atomic

Structure,

Bonding,

General Organic

Chemistry &

Aliphatic

Page 4: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

4  

Hydrocarbons

DSC- 3 A

II

DSC- 1 B Environmental Science

/(English/MIL

Communication)

Chemical

Energetics,

Equilibria &

Functional

Group Organic

Chemistry-I

DSC- 3 B

III DSC- 1 C SEC-1

Solutions,

Phase

equilibrium,

Conductance,

Electrochemist

ry &

Functional

Group Organic

Chemistry-II

DSC- 3 C

IV DSC- 1 D SEC -2

Chemistry of

s- and p-block

Elements,

States of

Matter &

Chemical

Page 5: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

5  

Kinetics

DSC- 3 D

V SEC -3 DSE-1 A

DSE-2 A

DSE-3 A

VI SEC -4 DSE-1 B

DSE-2 B

DSE-3 B

 

 

Page 6: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

6  

SEMESTER COURSE OPTED COURSE NAME Credits I Ability Enhancement Compulsory

Course-I English/MIL communications/ Environmental Science

2

Core Course-I DSC 1A 6 Core Course-II Atomic Structure, Bonding, General

Organic Chemistry & Aliphatic Hydrocarbons

4

Core Course-II Practical/ Tutorial Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons Lab

2

Core Course-III DSC 3A 6 II Ability Enhancement Compulsory

Course-II English/MIL communications/ Environmental Science

2

Core Course-IV DSC 1B 6 Core Course-V Chemical Energetics, Equilibria &

Functional Group Organic Chemistry-I

4

Core Course-V Practical/ Tutorial Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I Lab

2

Core Course-VI DSC 3B 6 III Core Course-VII DSC 1C 6

Core Course-VIII Solutions, Phase Equilibria, Conductance, Electrochemistry & Functional Group Organic Chemistry-II

4

Core Course-VIII Practical/ Tutorial

Solutions, Phase Equilibria, Conductance, Electrochemistry & Functional Group Organic Chemistry-II Lab.

2

Core Course-IX DSC 3C 6 Skill Enhancement Course -1 SEC-1 2

IV

Core course-X DSC 1D 6 Core Course-XI Chemistry of s- and p-block

elements, States of matter & Chemical kinetics

4

Course-XI Practical/Tutorial Chemistry of s- and p-block elements, States of matter & Chemical kinetics Lab

2

Core Course-XII DSC 3D 6 Skill Enhancement Course -2 SEC -2 2

V Skill Enhancement Course -3 SEC -3 2 Discipline Specific Elective -1 DSE-1A 6

Page 7: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

7  

Discipline Specific Elective -2 DSE-2A 6 Discipline Specific Elective -3 DSE-3A 6

VI Skill Enhancement Course -4 SEC -4 2 Discipline Specific Elective -4 DSE-1B 6 Discipline Specific Elective -5 DSE-2B 6 Discipline Specific Elective-6 DSE-3B 6

Total Credits

120

B.Sc. Program with Chemistry Core papers Chemistry (Credit: 06 each) (CP 1-4):

1. Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons (4) + Lab (4)

2. Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I (4) + Lab (4)

3. Conductance, Electrochemistry & Functional Group Organic Chemistry-2 (4) + Lab (4)

4. Chemistry of s- and p-block elements, States of matter and Chemical Kinetics (4) + Lab (4)

Discipline Specific Elective papers (Credit: 06 each) (DSE 1, DSE 2): Choose 2 Chemistry

1. Applications of Computers in Chemistry (4) + Lab (4) 2. Analytical Methods in Chemistry (4) + Lab (4) 3. Molecular Modelling & Drug Design (4) + Lab (4) 4. Novel Inorganic Solids (4) + Lab (4) 5. Polymer Chemistry (4) + Lab (4) 6. Research Methodology for Chemistry (5) + Tutorials (1) 7. Green Chemistry (4) + Lab (4) 8. Industrial Chemicals & Environment (4) + Lab (4) 9. Inorganic Materials of Industrial Importance (4) + Lab (4) 10. Instrumental Methods of Analysis (4) + Lab (4)

11. Chemistry of d-block elements, Quantum Chemistry and Spectroscopy (4) + Lab (4)

12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy

13. Molecules of life (4) + Lab (4) 14. Dissertation

Note: Universities may include more options or delete some from this list

Skill Enhancement Course (any four) (Credit: 02 each)- SEC 1 to SEC 4

Page 8: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

8  

Chemistry

1. IT Skills for Chemists 2. Basic Analytical Chemistry 3. Chemical Technology & Society 4. Chemoinformatics 5. Business Skills for Chemists 6. Intellectual Property Rights 7. Analytical Clinical Biochemistry 8. Green Methods in Chemistry 9. Pharmaceutical Chemistry 10. Chemistry of Cosmetics & Perfumes 11. Pesticide Chemistry 12. Fuel Chemistry

Note: Universities may include more options or delete some from this list Important:

1. Each University/Institute should provide a brief write-up about each paper outlining the salient features, utility, learning objectives and prerequisites.

2. University can add/delete some experiments of similar nature in the Laboratory papers.

3. University can add to the list of reference books given at the end of each paper.

 

Page 9: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

9  

----------------------------------------------------------------------------------------------------- Semester I

----------------------------------------------------------------------------------------------------- CHEMISTRY-DSC 2A: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Section A: Inorganic Chemistry-1 (30 Periods)

Atomic Structure: Review of: Bohr’s theory and its limitations, dual behaviour of matter and radiation, de-Broglie’s relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure.

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms).

Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.

(14 Lectures)

Chemical Bonding and Molecular Structure

Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan’s rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.

Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear, trigonal planar, square planar, tetrahedral, trigonal bipyramidal and octahedral arrangements.

Concept of resonance and resonating structures in various inorganic and organic compounds.

Page 10: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

10  

MO Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO+. Comparison of VB and MO approaches.

(16 Lectures)

Section B: Organic Chemistry-1 (30 Periods)

Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis.

Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions and free radicals.

Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel’s rule.

(8 Lectures)

Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D and L; cis - trans nomenclature; CIP Rules: R/ S (for upto 2 chiral carbon atoms) and E / Z Nomenclature (for upto two C=C systems).

(10 Lectures)

Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Alkanes: (Upto 5 Carbons). Preparation: Catalytic hydrogenation, Wurtz reaction, Kolbe’s synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons) Preparation: Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff’s rule); cis alkenes (Partial catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions: cis-addition (alk. KMnO4) and trans-addition (bromine), Addition of HX (Markownikoff’s and anti-Markownikoff’s addition), Hydration, Ozonolysis, oxymecuration-demercuration, Hydroboration-oxidation.

Page 11: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

11  

Alkynes: (Upto 5 Carbons) Preparation: Acetylene from CaC2 and conversion into higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of vicinal-dihalides.

Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO4, ozonolysis and oxidation with hot alk. KMnO4.

(12 Lectures)

Reference Books: • J. D. Lee: A new Concise Inorganic Chemistry, E L. B. S. • F. A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley. • Douglas, McDaniel and Alexader: Concepts and Models in Inorganic Chemistry,

John Wiley. • James E. Huheey, Ellen Keiter and Richard Keiter: Inorganic Chemistry:

Principles of Structure and Reactivity, Pearson Publication. • T. W. Graham Solomon: Organic Chemistry, John Wiley and Sons. • Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient

Longman. • E. L. Eliel: Stereochemistry of Carbon Compounds, Tata McGraw Hill. • I. L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S. • R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall. • Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand

------------------------------------------------------------------------------------------------------- CHEMISTRY LAB: DSC 2A LAB: ATOMIC STRUCTURE, BONDING, GENERAL ORGANIC CHEMISTRY & ALIPHATIC HYDROCARBONS 60 Lectures Section A: Inorganic Chemistry - Volumetric Analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.

2. Estimation of oxalic acid by titrating it with KMnO4.

3. Estimation of water of crystallization in Mohr’s salt by titrating with KMnO4.

4. Estimation of Fe (II) ions by titrating it with K2Cr2O7 using internal indicator.

5. Estimation of Cu (II) ions iodometrically using Na2S2O3.

Section B: Organic Chemistry

1. Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing upto two extra elements)

Page 12: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

12  

2. Separation of mixtures by Chromatography: Measure the Rf value in each case (combination of two compounds to be given)

(a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography

(b) Identify and separate the sugars present in the given mixture by paper chromatography.

Reference Books: • Vogel’s Qualitative Inorganic Analysis, A.I. Vogel, Prentice Hall, 7th Edition. • Vogel’s Quantitative Chemical Analysis, A.I. Vogel, Prentice Hall, 6th Edition. • Textbook of Practical Organic Chemistry, A.I. Vogel , Prentice Hall, 5th edition. • Practical Organic Chemistry, F. G. Mann. & B. C. Saunders, Orient Longman,

1960.

----------------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------------------------------

Semester II ----------------------------------------------------------------------------------------------------- CHEMISTRY-DSC 2B: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Section A: Physical Chemistry-1 (30 Lectures)

Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.

Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature – Kirchhoff’s equation.

Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

(10 Lectures)

Chemical Equilibrium:

Page 13: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

13  

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between ΔG and ΔGo, Le Chatelier’s principle. Relationships between Kp, Kc and Kx for reactions involving ideal gases.

(8 Lectures)

Ionic Equilibria:

Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle.

(12 Lectures)

Section B: Organic Chemistry-2 (30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.

Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Friedel-Craft’s reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (upto 4 carbons on benzene).

(8 Lectures)

Alkyl and Aryl Halides

Alkyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution (SN1, SN2 and SNi) reactions.

Preparation: from alkenes and alcohols.

Reactions: hydrolysis, nitrite & nitro formation, nitrile & isonitrile formation. Williamson’s ether synthesis: Elimination vs substitution.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer & Gattermann reactions.

Reactions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3).

Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

Page 14: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

14  

(8 Lectures)

Alcohols, Phenols and Ethers (Upto 5 Carbons)

Alcohols: Preparation: Preparation of 1о, 2о and 3о alcohols: using Grignard reagent, Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.

Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk. KMnO4, acidic dichromate, conc. HNO3). Oppeneauer oxidation Diols: (Upto 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) Preparation: Cumene hydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. Reimer-Tiemann Reaction, Gattermann-Koch Reaction, Houben–Hoesch Condensation, Schotten – Baumann Reaction.

Ethers (aliphatic and aromatic): Cleavage of ethers with HI.

Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde)

Preparation: from acid chlorides and from nitriles.

Reactions – Reaction with HCN, ROH, NaHSO3, NH2-G derivatives. Iodoform test. Aldol Condensation, Cannizzaro’s reaction, Wittig reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley reduction.

(14 Lectures)

Reference Books: • T. W. Graham Solomons: Organic Chemistry, John Wiley and Sons. • Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient

Longman. • I.L. Finar: Organic Chemistry (Vol. I & II), E. L. B. S. • R. T. Morrison & R. N. Boyd: Organic Chemistry, Prentice Hall. • Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand. • G. M. Barrow: Physical Chemistry Tata McGraw-­‐Hill (2007). • G. W. Castellan: Physical Chemistry 4th Edn. Narosa (2004). • J. C. Kotz, P. M. Treichel & J. R. Townsend: General Chemistry Cengage Lening

India Pvt. Ltd., New Delhi (2009). • B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998). • R. H. Petrucci: General Chemistry 5th Ed. Macmillan Publishing Co.: New York

(1985).

----------------------------------------------------------------------------------------------------------- CHEMISTRY LAB- DSC 2B LAB: CHEMICAL ENERGETICS, EQUILIBRIA & FUNCTIONAL ORGANIC CHEMISTRY

Page 15: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

15  

60 Lectures Section A: Physical Chemistry Thermochemistry

1. Determination of heat capacity of calorimeter for different volumes. 2. Determination of enthalpy of neutralization of hydrochloric acid with sodium

hydroxide. 3. Determination of enthalpy of ionization of acetic acid. 4. Determination of integral enthalpy of solution of salts (KNO3, NH4Cl). 5. Determination of enthalpy of hydration of copper sulphate. 6. Study of the solubility of benzoic acid in water and determination of ΔH.

Ionic equilibria pH measurements

a) Measurement of pH of different solutions like aerated drinks, fruit juices, shampoos and soaps (use dilute solutions of soaps and shampoos to prevent damage to the glass electrode) using pH-meter.

b) Preparation of buffer solutions: (i) Sodium acetate-acetic acid (ii) Ammonium chloride-ammonium hydroxide

Measurement of the pH of buffer solutions and comparison of the values with theoretical values.

Section B: Organic Chemistry 1. Purification of organic compounds by crystallization (from water and alcohol) and

distillation. 2. Criteria of Purity: Determination of melting and boiling points. 3. Preparations: Mechanism of various reactions involved to be discussed.

Recrystallisation, determination of melting point and calculation of quantitative yields to be done.

(a) Bromination of Phenol/Aniline (b) Benzoylation of amines/phenols (c) Oxime and 2,4 dinitrophenylhydrazone of aldehyde/ketone

Reference Books

• A.I. Vogel: Textbook of Practical Organic Chemistry, 5th edition, Prentice-Hall. • F. G. Mann & B. C. Saunders, Practical Organic Chemistry, Orient Longman

(1960). • B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.

----------------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------------------------------

Semester III -----------------------------------------------------------------------------------------------------

Page 16: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

16  

CHEMISTRY-DSC 2C: SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCHEMISTRY & FUNCTIONAL GROUP ORGANIC CHEMISTRY-II (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Section A: Physical Chemistry-2 (30 Lectures)

Solutions

Thermodynamics of ideal solutions: Ideal solutions and Raoult’s law, deviations from Raoult’s law – non-ideal solutions. Vapour pressure-composition and temperature-composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes.

Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction.

Phase Equilibrium

Phases, components and degrees of freedom of a system, criteria of phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, FeCl3-H2O and Na-K only).

Conductance

Conductivity, equivalent and molar conductivity and their variation with dilution for weak and strong electrolytes. Kohlrausch law of independent migration of ions.

Transference number and its experimental determination using Hittorf and Moving boundary methods. Ionic mobility. Applications of conductance measurements: determination of degree of ionization of weak electrolyte, solubility and solubility products of sparingly soluble salts, ionic product of water, hydrolysis constant of a salt. Conductometric titrations (only acid-base).

Electrochemistry

Reversible and irreversible cells. Concept of EMF of a cell. Measurement of EMF of a cell. Nernst equation and its importance. Types of electrodes. Standard electrode potential. Electrochemical series. Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG, ΔH and ΔS from EMF data.

Calculation of equilibrium constant from EMF data. Concentration cells with transference and without transference. Liquid junction potential and salt bridge.

Page 17: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

17  

pH determination using hydrogen electrode and quinhydrone electrode.

Potentiometric titrations -qualitative treatment (acid-base and oxidation-reduction only).

Section B: Organic Chemistry-3 (30 Lectures)

Functional group approach for the following reactions (preparations & reactions) to be studied in context to their structure.

Carboxylic acids and their derivatives

Carboxylic acids (aliphatic and aromatic)

Preparation: Acidic and Alkaline hydrolysis of esters.

Reactions: Hell – Vohlard - Zelinsky Reaction.

Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)

Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion.

Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin condensation.

(6 Lectures)

Amines and Diazonium Salts

Amines (Aliphatic and Aromatic): (Upto 5 carbons)

Preparation: from alkyl halides, Gabriel’s Phthalimide synthesis, Hofmann Bromamide reaction.

Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO2, Schotten – Baumann Reaction. Electrophilic substitution (case aniline): nitration, bromination, sulphonation.

Diazonium salts: Preparation: from aromatic amines.

Reactions: conversion to benzene, phenol, dyes.

(6 Lectures)

Amino Acids, Peptides and Proteins:

Preparation of Amino Acids: Strecker synthesis using Gabriel’s phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis.

Page 18: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

18  

Reactions of Amino acids: ester of –COOH group, acetylation of –NH2 group, complexation with Cu2+ ions, ninhydrin test.

Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins.

Determination of Primary structure of Peptides by degradation Edmann degradation (N-terminal) and C–terminal (thiohydantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups and Merrifield solid-phase synthesis.

(10 Lectures)

Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Glucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation.

(8 Lectures)

Reference Books: • G. M. Barrow: Physical Chemistry Tata McGraw-­‐Hill (2007). • G. W. Castellan: Physical Chemistry 4th Ed. Narosa (2004). • J. C. Kotz, P. M. Treichel, J. R. Townsend, General Chemistry, Cengage

Learning India Pvt. Ltd.: New Delhi (2009). • B. H. Mahan: University Chemistry, 3rd Edn. Narosa (1998). • R. H. Petrucci, General Chemistry, 5th Edn., Macmillan Publishing Co.: New

York (1985). • Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India)

Pvt. Ltd. (Pearson Education). • Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd.

(Pearson Education). • Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd.

(Pearson Education). • Nelson, D. L. & Cox, M. M. Lehninger’s Principles of Biochemistry 7th Ed., W.

H. Freeman. • Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 7th Ed., W. H. Freeman

----------------------------------------------------------------------------------------------------------- CHEMISTRY LAB-DSC 2C LAB: SOLUTIONS, PHASE EQUILIBRIUM, CONDUCTANCE, ELECTROCHEMISTRY & BIOMOLECULES 60 Lectures Section A: Physical Chemistry

Distribution

Page 19: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

19  

Study of the equilibrium of one of the following reactions by the distribution method:

I2(aq) + I-(aq) ⇌ I3-(aq)

Cu2+(aq) + xNH2(aq) ⇌ [Cu(NH3)x]2+

Phase equilibria

a) Construction of the phase diagram of a binary system (simple eutectic) using cooling curves. b) Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it. c) Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.

Conductance

I. Determination of cell constant II. Determination of equivalent conductance, degree of dissociation and dissociation

constant of a weak acid. III. Perform the following conductometric titrations:

i. Strong acid vs. strong base ii. Weak acid vs. strong base

Potentiometry

Perform the following potentiometric titrations: i. Strong acid vs. strong base

ii. Weak acid vs. strong base iii. Potassium dichromate vs. Mohr's salt

Section B: Organic Chemistry

I Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

II

1. Separation of amino acids by paper chromatography 2. Determination of the concentration of glycine solution by formylation method. 3. Titration curve of glycine 4. Action of salivary amylase on starch 5. Effect of temperature on the action of salivary amylase on starch. 6. Differentiation between a reducing/nonreducing sugar.

Reference Books:

• A.I. Vogel: Textbook of Practical Organic Chemistry, Prentice Hall, 5th Edn. • F. G. Mann & B. C. Saunders: Practical Organic Chemistry, Orient Longman,

1960.

Page 20: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

20  

• B.D. Khosla: Senior Practical Physical Chemistry, R. Chand & Co. • Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry,

Universities Press. ----------------------------------------------------------------------------------------------------------- -----------------------------------------------------------------------------------------------------

Semester IV ----------------------------------------------------------------------------------------------------- CHEMISTRY-DSC 2D: CHEMISTRY OF S- AND P-BLOCK ELEMENTS, STATES OF MATTER & CHEMICAL KINETICS (Credits: Theory-04, Practicals-02) Theory: 60 Lectures General Principles of Metallurgy

Chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon as reducing agent.

Hydrometallurgy, Methods of purification of metals (Al, Pb, Ti, Fe, Cu, Ni, Zn): electrolytic, oxidative refining, Kroll process, Parting process, van Arkel-de Boer process and Mond’s process.

(4 Lectures)

s- and p-Block Elements

Periodicity in s- and p-block elements with respect to electronic configuration, atomic and ionic size, ionization enthalpy, electronegativity (Pauling, Mulliken, and Alfred-Rochow scales). Allotropy in C, S, and P.

Oxidation states with reference to elements in unusual and rare oxidation states like carbides and nitrides), inert pair effect, diagonal relationship and anomalous behaviour of first member of each group.

Compounds of s- and p-Block Elements

Hydrides and their classification (ionic, covalent and interstitial), structure and properties with respect to stability of hydrides of p- block elements.

Concept of multicentre bonding (diborane).

Structure, bonding and their important properties like oxidation/reduction, acidic/basic nature of the following compounds and their applications in industrial, organic and environmental chemistry.

Hydrides of nitrogen (NH3, N2H4, N3H, NH2OH)

Page 21: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

21  

Oxoacids of P, S and Cl.

Halides and oxohalides: PCl3, PCl5, SOCl2 and SO2Cl2

(26 Lectures)

Section B: Physical Chemistry-3 (30 Lectures)

Kinetic Theory of Gases

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation.

Deviation of real gases from ideal behaviour, compressibility factor, causes of deviation. van der Waals equation of state for real gases. Boyle temperature (derivation not required). Critical phenomena, critical constants and their calculation from van der Waals equation. Andrews isotherms of CO2.

Maxwell Boltzmann distribution laws of molecular velocities and molecular energies (graphic representation – derivation not required) and their importance.

Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation). Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)

Solids

Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X–Ray diffraction by crystals, Bragg’s law. Structures of NaCl, KCl and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals.

Chemical Kinetics

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction. Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half–life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation.

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

Page 22: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

22  

Reference Books: • G. M. Barrow: Physical Chemistry Tata McGraw-­‐Hill (2007). • G. W. Castellan: Physical Chemistry 4th Edn. Narosa (2004). • J. C. Kotz, P. M. Treichel & J. R. Townsend: General Chemistry Cengage Lening

India Pvt. Ltd., New Delhi (2009). • B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998). • R. H. Petrucci: General Chemistry 5th Ed. Macmillan Publishing Co.: New York

(1985). • J. D. Lee: A New Concise Inorganic Chemistry, E.L.B.S. • F.A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley. • D. F. Shriver and P. W. Atkins: Inorganic Chemistry, Oxford University Press. • Gary Wulfsberg: Inorganic Chemistry, Viva Books Pvt. Ltd.

-----------------------------------------------------------------------------------------------------------

CHEMISTRY LAB-DSC 2D LAB: CHEMISTRY OF S- AND P-BLOCK ELEMENTS, STATES OF MATTER & CHEMICAL KINETICS 60 Lectures Section A: Inorganic Chemistry

Semi-micro qualitative analysis using H2S of mixtures- not more than four ionic species (two anions and two cations and excluding insoluble salts) out of the following:

Cations : NH4+, Pb2+, Ag+, Bi3+, Cu2+, Cd2+, Sn2+, Fe3+, Al3+, Co2+, Cr3+, Ni2+, Mn2+, Zn2+, Ba2+, Sr2+, Ca2+, K+

Anions : CO32– , S2–, SO2–, S2O3

2–, NO3–, CH3COO–, Cl–, Br–, I–, NO3

–,SO42-, PO4

3-, BO3

3-, C2O42-, F-

(Spot tests should be carried out wherever feasible)

Section B: Physical Chemistry

(I) Surface tension measurement (use of organic solvents excluded).

a) Determination of the surface tension of a liquid or a dilute solution using a stalagmometer. b) Study of the variation of surface tension of a detergent solution with concentration.

(II) Viscosity measurement (use of organic solvents excluded).

a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald’s viscometer. b) Study of the variation of viscosity of an aqueous solution with concentration of solute.

Page 23: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

23  

(III) Chemical Kinetics

Study the kinetics of the following reactions. 1. Initial rate method: Iodide-persulphate reaction 2. Integrated rate method:

a. Acid hydrolysis of methyl acetate with hydrochloric acid. b. Saponification of ethyl acetate. c. Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of

methyl acetate

Reference Books: • A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn. • A.I. Vogel, Quantitative Chemical Analysis, Prentice Hall, 6th Edn. • B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.

----------------------------------------------------------------------------------------------------------- Discipline Specific Elective Select two papers ----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE I-IV (ELECTIVES) CHEMISTRY-DSE: APPLICATIONS OF COMPUTERS IN CHEMISTRY (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Basics: Constants, variables, bits, bytes, binary and ASCII formats, arithmetic expressions, hierarchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics. Compiled versus interpreted languages. Debugging. Simple programs using these concepts. Matrix addition and multiplication. Statistical analysis.

Numerical methods:

Roots of equations: Numerical methods for roots of equations: Quadratic formula, iterative method, Newton-Raphson method, Binary bisection and Regula-Falsi.

Differential calculus: Numerical differentiation.

Integral calculus: Numerical integration (Trapezoidal and Simpson’s rule), probability distributions and mean values.

Simultaneous equations: Matrix manipulation: addition, multiplication. Gauss-Siedal method.

Page 24: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

24  

Interpolation, extrapolation and curve fitting: Handling of experimental data.

Conceptual background of molecular modelling: Potential energy surfaces. Elementary ideas of molecular mechanics and practical MO methods.

Reference Books:

• Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5. • Levie, R. de, How to use Excel in analytical chemistry and in general scientific data

analysis, Cambridge Univ. Press (2001) 487 pages. • Noggle, J. H. Physical chemistry on a Microcomputer. Little Brown & Co. (1985). • Venit, S.M. Programming in BASIC: Problem solving with structure and style. Jaico

Publishing House: Delhi (1996). -----------------------------------------------------------------------------------------------------------

PRACTICAL-DSE LAB: APPLICATIONS OF COMPUTERS IN CHEMISTRY 60 Lectures Computer programs based on numerical methods for 1. Roots of equations: (e.g. volume of van der Waals gas and comparison with ideal gas, pH of a weak acid). 2. Numerical differentiation (e.g., change in pressure for small change in volume of a van der Waals gas, potentiometric titrations).

3. Numerical integration (e.g. entropy/ enthalpy change from heat capacity data), probability distributions (gas kinetic theory) and mean values.

4. Matrix operations. Application of Gauss-Siedel method in colourimetry. 5. Simple exercises using molecular visualization software. Reference Books:

• McQuarrie, D. A. Mathematics for Physical Chemistry University Science Books (2008).

• Mortimer, R. Mathematics for Physical Chemistry. 3rd Ed. Elsevier (2005). • Steiner, E. The Chemical Maths Book Oxford University Press (1996). • Yates, P. Chemical Calculations. 2nd Ed. CRC Press (2007). • Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5. • Levie, R. de, How to use Excel in analytical chemistry and in general scientific data

analysis, Cambridge Univ. Press (2001) 487 pages. • Noggle, J. H. Physical Chemistry on a Microcomputer. Little Brown & Co. (1985). • Venit, S.M. Programming in BASIC: Problem solving with structure and style. Jaico

Publishing House: Delhi (1996).

----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: ANALYTICAL METHODS IN CHEMISTRY (Credits: Theory-04, Practicals-02)

Page 25: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

25  

Theory: 60 Lectures

Unit I: Qualitative and quantitative aspects of analysis: Qualitative and quantitative aspects of analysis:

Sampling, evaluation of analytical data, errors, accuracy and precision, methods of their expression, normal law of distribution if indeterminate errors, statistical test of data; F, Q and t test, rejection of data, and confidence intervals.

(5 Lectures) Optical methods of analysis:

Origin of spectra, interaction of radiation with matter, fundamental laws of spectroscopy and selection rules, validity of Beer-Lambert’s law.

UV-Visible Spectrometry: Basic principles of instrumentation (choice of source, monochromator and detector) for single and double beam instrument;

Basic principles of quantitative analysis: estimation of metal ions from aqueous solution, geometrical isomers, keto-enol tautomers. Determination of composition of metal complexes using Job’s method of continuous variation and mole ratio method.

Infrared Spectrometry: Basic principles of instrumentation (choice of source, monochromator & detector) for single and double beam instrument; sampling techniques.

Structural illustration through interpretation of data, Effect and importance of isotope substitution.

Flame Atomic Absorption and Emission Spectrometry: Basic principles of instrumentation (choice of source, monochromator, detector, choice of flame and Burner designs. Techniques of atomization and sample introduction; Method of background correction, sources of chemical interferences and their method of removal. Techniques for the quantitative estimation of trace level of metal ions from water samples.

(25 Lectures) Thermal methods of analysis:

Theory of thermogravimetry (TG), basic principle of instrumentation.

Techniques for quantitative estimation of Ca and Mg from their mixture.

(5 Lectures) Electroanalytical methods:

Classification of electroanalytical methods, basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values.

(10 Lectures) Separation techniques:

Page 26: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

26  

Solvent extraction: Classification, principle and efficiency of the technique.

Mechanism of extraction: extraction by solvation and chelation.

Technique of extraction: batch, continuous and counter current extractions.

Qualitative and quantitative aspects of solvent extraction: extraction of metal ions from aqueous solution, extraction of organic species from the aqueous and nonaqueous media.

Chromatography: Classification, principle and efficiency of the technique.

Mechanism of separation: adsorption, partition & ion exchange.

Development of chromatograms: frontal, elution and displacement methods.

Qualitative and quantitative aspects of chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC.

Stereoisomeric separation and analysis: Measurement of optical rotation, calculation of Enantiomeric excess (ee)/ diastereomeric excess (de) ratios and determination of enantiomeric composition using NMR, Chiral solvents and chiral shift reagents. Chiral chromatographic techniques using chiral columns (GC and HPLC).

Role of computers in instrumental methods of analysis.

(15 Lectures) Reference Books:

• Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by G.H. Jeffery and others) 5th Ed. The English Language Book Society of Longman .

• Willard, Hobert H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth Publishing Company, Belmont, California, USA, 1988.

• Christian, Gary D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.

• Harris, Daniel C: Exploring Chemical Analysis, Ed. New York, W.H. Freeman, 2001.

• Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International Publisher, 2009.

• Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis, Thomson Asia Pvt. Ltd. Singapore.

• Mikes, O. & Chalmes, R.A. Laboratory Hand Book of Chromatographic & Allied Methods, Elles Harwood Ltd. London.

• Ditts, R.V. Analytical Chemistry – Methods of separation.

----------------------------------------------------------------------------------------------------------- PRACTICALS- DSE LAB: ANALYTICAL METHODS IN CHEMISTRY

Page 27: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

27  

60 Lectures I. Separation Techniques

1. Chromatography:

(a) Separation of mixtures

(i) Paper chromatographic separation of Fe3+, Al3+, and Cr3+.

(ii) Separation and identification of the monosaccharides present in the given mixture (glucose & fructose) by paper chromatography. Reporting the Rf values.

(b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and identify them on the basis of their Rf values.

(c) Chromatographic separation of the active ingredients of plants, flowers and juices by TLC

II. Solvent Extractions:

(i) To separate a mixture of Ni2+ & Fe2+

by complexation with DMG and extracting the

Ni2+-

DMG complex in chloroform, and determine its concentration by spectrophotometry.

(ii) Solvent extraction of zisconium with amberliti LA-1, separation from a mixture of irons and gallium.

3. Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.

4. Determination of Na, Ca, Li in cola drinks and fruit juices using fame photometric techniques.

5. Analysis of soil:

(i) Determination of pH of soil.

(ii) Total soluble salt

(iii) Estimation of calcium, magnesium, phosphate, nitrate

6. Ion exchange:

(i) Determination of exchange capacity of cation exchange resins and anion exchange resins.

(ii) Separation of metal ions from their binary mixture.

(iii) Separation of amino acids from organic acids by ion exchange chromatography.

III Spectrophotometry

Page 28: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

28  

1. Determination of pKa values of indicator using spectrophotometry.

2 Structural characterization of compounds by infrared spectroscopy. 3 Determination of dissolved oxygen in water. 4 Determination of chemical oxygen demand (COD). 5 Determination of Biological oxygen demand (BOD). 6 Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by Job’s method.

Reference Books: • Vogel, Arthur I: A Test book of Quantitative Inorganic Analysis (Rev. by G.H.

Jeffery and others) 5th Ed. The English Language Book Society of Longman . • Willard, Hobert H. et al.: Instrumental Methods of Analysis, 7th Ed. Wardsworth

Publishing Company, Belmont, California, USA, 1988. • Christian, Gary D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York,

2004. • Harris, Daniel C: Exploring Chemical Analysis, Ed. New York, W.H. Freeman,

2001. • Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International

Publisher, 2009. • Skoog, D.A. Holler F.J. and Nieman, T.A. Principles of Instrumental Analysis,

Thomson Asia Pvt. Ltd. Singapore. • Mikes, O. & Chalmes, R.A. Laboratory Hand Book of Chromatographic & Allied

Methods, Elles Harwood Ltd. London. • Ditts, R.V. Analytical Chemistry – Methods of separation.

----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: MOLECULAR MODELLING & DRUG DESIGN (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Introduction to Molecular Modelling:

Introduction. Useful Concepts in Molecular Modelling: Coordinate Systems. Potential Energy Surfaces. Molecular Graphics. Surfaces. Computer Hardware and Software. The Molecular Modelling Literature.

(10 Lectures)

Force Fields:

Fields. Bond Stretching. Angle Bending. Introduction to nonbonded interactions. Electrostatic interactions. van der Waals Interactions. Hydrogen bonding in Molecular Mechanics. Force Field Models for the Simulation of Liquid Water.

(14 Lectures)

Energy Minimization and Computer Simulation:

Page 29: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

29  

Minimization and related methods for exploring the energy surface. Non-derivative method, First and second order minimization methods. Computer simulation methods. Simple thermodynamic properties and Phase Space. Boundaries. Analyzing the results of a simulation and estimating Errors.

(12 Lectures)

Molecular Dynamics & Monte Carlo Simulation:

Molecular Dynamics Simulation Methods. Molecular Dynamics using simple models. Molecular Dynamics with continuous potentials. Molecular Dynamics at constant temperature and pressure. Metropolis method. Monte Carlo simulation of molecules. Models used in Monte Carlo simulations of polymers.

(12 Lectures)

Structure Prediction and Drug Design:

Structure prediction - Introduction to comparative Modeling. Sequence alignment. Constructing and evaluating a comparative model. Predicting protein structures by 'Threading’, Molecular docking. Structure based de novo ligand design,

Drug Discovery – Chemoinformatics – QSAR.

(12 Lectures) Reference Books:

• A.R. Leach, Molecular Modelling Principles and Application, Longman, 2001. • J.M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley

and Sons, 1997. • Satya Prakash Gupta, QSAR and Molecular Modeling, Springer - Anamaya

Publishers, 2008.

--------------------------------------------------------------------------------------------------------------- PRACTICAL- DSE LAB: MOLECULA MODELLING & DRUG DESIGN 60 Lectures

i. Compare the optimized C-C bond lengths in ethane, ethene, ethyne and benzene. Visualize the molecular orbitals of the ethane σ bonds and ethene, ethyne, benzene and pyridine π bonds.

ii. (a) Perform a conformational analysis of butane. (b) Determine the enthalpy of isomerization of cis and trans 2-butene.

iii. Visualize the electron density and electrostatic potential maps for LiH, HF, N2, NO and CO and comment. Relate to the dipole moments. Animate the vibrations of these molecules.

iv. (a) Relate the charge on the hydrogen atom in hydrogen halides with their acid character. (b) Compare the basicities of the nitrogen atoms in ammonia, methylamine, dimethylamine and trimethylamine.

v. (a) Compare the shapes of the molecules: 1-butanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol. Note the dipole moment of each molecule. (b)

Page 30: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

30  

Show how the shapes affect the trend in boiling points: (118 ºC, 100 ºC, 108 ºC, 82 ºC, respectively).

vi. Build and minimize organic compounds of your choice containing the following functional groups. Note the dipole moment of each compound: (a) alkyl halide (b) aldehyde (c) ketone (d) amine (e) ether (f) nitrile (g) thiol (h) carboxylic acid (i) ester (j) amide.

vii. (a) Determine the heat of hydration of ethylene. (b) Compute the resonance energy of benzene by comparison of its enthalpy of hydrogenation with that of cyclohexene.

viii. Arrange 1-hexene, 2-methyl-2-pentene, (E)-3-methyl-2-pentene, (Z)-3-methyl-2-pentene, and 2,3-dimethyl-2-butene in order of increasing stability.

ix. (a) Compare the optimized bond angles H2O, H2S, H2Se. (b) Compare the HAH bond angles for the second row dihydrides and compare with the results from qualitative MO theory.

Note: Software: ChemSketch, ArgusLab (www.planaria-software.com), TINKER 6.2 (dasher.wustl.edu/ffe), WebLab Viewer, Hyperchem, or any similar software.

Reference Books: • A.R. Leach, Molecular Modelling Principles and Application, Longman, 2001. • J.M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley

and Sons, 1997. • Satya Prakash Gupta, QSAR and Molecular Modeling, Springer - Anamaya Publishers, 2008.

----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: NOVEL INORGANIC SOLIDS (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Synthesis and modification of inorganic solids:

Conventional heat and beat methods, Co-precipitation method, Sol-gel methods, Hydrothermal method, Ion-exchange and Intercalation methods.

(10 Lectures)

Inorganic solids of technological importance:

Solid electrolytes – Cationic, anionic, mixed Inorganic pigments – coloured solids, white and black pigments.

Molecular material and fullerides, molecular materials & chemistry – one-dimensional metals, molecular magnets, inorganic liquid crystals.

(10 Lectures)

Nanomaterials:

Page 31: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

31  

Overview of nanostructures and nanomaterials: classification.

Preparation of gold and silver metallic nanoparticles, self-assembled nanostructures-control of nanoarchitecture-one dimensional control. Carbon nanotubes and inorganic nanowires. Bio-inorganic nanomaterials, DNA and nanomaterials, natural and antisical nanomaterials, bionano composites.

(10 Lectures)

Introduction to engineering materials for mechanical construction:

Composition, mechanical and fabricating characteristics and applications of various types of cast irons, plain carbon and alloy steels, copper, aluminum and their alloys like duralumin, brasses and bronzes cutting tool materials, super alloys thermoplastics, thermosets and composite materials.

(10 Lectures)

Composite materials:

Introduction, limitations of conventional engineering materials, role of matrix in composites, classification, matrix materials, reinforcements, metal-matrix composites, polymer-matrix composites, fibre-reinforced composites, environmental effects on composites, applications of composites.

(10 Lectures)

Speciality polymers:

Conducting polymers - Introduction, conduction mechanism, polyacetylene, polyparaphenylene and polypyrole, applications of conducting polymers, Ion-exchange resins and their applications. Ceramic & Refractory: Introduction, classification, properties, raw materials, manufacturing and applications.

(10 Lectures)

Reference Books: • Shriver & Atkins. Inorganic Chemistry, Peter Alkins, Tina Overton, Jonathan

Rourke, Mark Weller and Fraser Armstrong, 5th Edition, Oxford University Press (2011-2012)

• Adam, D.M. Inorganic Solids: An introduction to concepts in solid-state structural chemistry.

• Frank J. Ovens, Introduction to Nanotechnology

----------------------------------------------------------------------------------------------------------- CHEMISTRY PRACTICAL - DSE LAB: NOVEL INORGANIC SOLIDS 60 Lectures

Page 32: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

32  

1. Determination of cation exchange method 2. Determination of total difference of solids. 3. Synthesis of hydrogel by co-precipitation method. 4. Synthesis of silver and gold metal nanoparticles.

Reference Book: • Fahan, Materials Chemistry, Springer (2004).

----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: POLYMER CHEMISTRY (Credits: Theory-06, Practicals-02) Theory: 60 Lectures

Introduction and history of polymeric materials:

Different schemes of classification of polymers, Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.

(4 Lectures)

Functionality and its importance:

Criteria for synthetic polymer formation, classification of polymerization processes, Relationships between functionality, extent of reaction and degree of polymerization. Bi-functional systems, Poly-functional systems.

(8 Lectures)

Kinetics of Polymerization:

Mechanism and kinetics of step growth, radical chain growth, ionic chain (both cationic and anionic) and coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techniques.

(8 lectures)

Crystallization and crystallinity:

Determination of crystalline melting point and degree of crystallinity, Morphology of crystalline polymers, Factors affecting crystalline melting point.

(4 Lectures)

Nature and structure of polymers-Structure Property relationships.

(2 Lectures)

Page 33: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

33  

Determination of molecular weight of polymers (Mn, Mw, etc) by end group analysis, viscometry, light scattering and osmotic pressure methods. Molecular weight distribution and its significance.

Polydispersity index.

(8 Lectures)

Glass transition temperature (Tg) and determination of Tg, Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg).

(8 Lectures)

Polymer Solution – Criteria for polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory, Lower and Upper critical solution temperatures.

(8 Lectures)

Properties of Polymers (Physical, thermal, Flow & Mechanical Properties).

Brief introduction to preparation, structure, properties and application of the following polymers: polyolefins, polystyrene and styrene copolymers, poly(vinyl chloride) and related polymers, poly(vinyl acetate) and related polymers, acrylic polymers, fluoro polymers, polyamides and related polymers. Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes, silicone polymers, polydienes,

Polycarbonates, Conducting Polymers, [polyacetylene, polyaniline, poly(p-phenylene sulphide polypyrrole, polythiophene)].

(10 Lectures)

Reference Books: • Seymour’s Polymer Chemistry, Marcel Dekker, Inc. • G. Odian: Principles of Polymerization, John Wiley. • F.W. Billmeyer: Text Book of Polymer Science, John Wiley. • P. Ghosh: Polymer Science & Technology, Tata Mcgraw-Hill. • R.W. Lenz: Organic Chemistry of Synthetic High Polymers.

----------------------------------------------------------------------------------------------------------- CHEMISTRY PRACTICAL - DSE LAB: POLYMER CHEMISTRY 60 Lectures 1. Polymer synthesis

Page 34: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

34  

1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate (MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).

a. Purification of monomer b. Polymerization using benzoyl peroxide (BPO) / 2,2’-azo-bis-

isobutylonitrile (AIBN) 2. Preparation of nylon 66/6

1. Interfacial polymerization, preparation of polyester from isophthaloyl chloride (IPC) and phenolphthalein

a. Preparation of IPC b. Purification of IPC c. Interfacial polymerization

3. Redox polymerization of acrylamide 4. Precipitation polymerization of acrylonitrile 5. Preparation of urea-formaldehyde resin 6. Preparations of novalac resin/resold resin. 7. Microscale Emulsion Polymerization of Poly(methylacrylate).

Polymer characterization

1. Determination of molecular weight by viscometry: (a) Polyacrylamide-aq.NaNO2 solution (b) (Poly vinyl proplylidine (PVP) in water

2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol) (PVOH) and the fraction of “head-to-head” monomer linkages in the polymer.

3. Determination of molecular weight by end group analysis: Polyethylene glycol (PEG) (OH group).

4. Testing of mechanical properties of polymers. 5. Determination of hydroxyl number of a polymer using colorimetric method.

Polymer analysis

1. Estimation of the amount of HCHO in the given solution by sodium sulphite method

2. Instrumental Techniques 3. IR studies of polymers 4. DSC analysis of polymers 5. Preparation of polyacrylamide and its electrophoresis

*at least 7 experiments to be carried out.

Reference Books: • Malcohm P. Stevens, Polymer Chemistry: An Introduction, 3rd Ed. • Harry R. Allcock, Frederick W. Lampe and James E. Mark, Contemporary

Polymer Chemistry, 3rd ed. Prentice-Hall (2003) • Fred W. Billmeyer, Textbook of Polymer Science, 3rd ed. Wiley-Interscience

(1984) • Joel R. Fried, Polymer Science and Technology, 2nd ed. Prentice-Hall (2003)

Page 35: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

35  

• Petr Munk and Tejraj M. Aminabhavi, Introduction to Macromolecular Science, 2nd ed. John Wiley & Sons (2002)

• L. H. Sperling, Introduction to Physical Polymer Science, 4th ed. John Wiley & Sons (2005)

• Malcolm P. Stevens, Polymer Chemistry: An Introduction, 3rd ed. Oxford University Press (2005)

• Seymour/ Carraher’s Polymer Chemistry, 9th ed. by Charles E. Carraher, Jr. (2013).

-----------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: RESEARCH METHODOLOGY FOR CHEMISTRY (Credits: Theory-05, Tutorials-01) Theory: 75 Lectures Literature Survey:

Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples.

Digital: Web resources, E-journals, Journal access, TOC alerts, Hot articles, Citation index, Impact factor, H-index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities, Blogs, Preprint servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki- Databases, ChemSpider, Science Direct, SciFinder, Scopus.

Information Technology and Library Resources: The Internet and World Wide Web. Internet resources for chemistry. Finding and citing published information.

(20 Lectures)

Methods of Scientific Research and Writing Scientific Papers:

Reporting practical and project work. Writing literature surveys and reviews. Organizing a poster display. Giving an oral presentation.

Writing scientific papers – justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work. Writing ethics. Avoiding plagiarism.

(20 Lectures)

Chemical Safety and Ethical Handling of Chemicals:

Page 36: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

36  

Safe working procedure and protective environment, protective apparel, emergency procedure and first aid, laboratory ventilation. Safe storage and use of hazardous chemicals, procedure for working with substances that pose hazards, flammable or explosive hazards, procedures for working with gases at pressures above or below atmospheric – safe storage and disposal of waste chemicals, recovery, recycling and reuse of laboratory chemicals, procedure for laboratory disposal of explosives, identification, verification and segregation of laboratory waste, disposal of chemicals in the sanitary sewer system, incineration and transportation of hazardous chemicals.

(12 Lectures)

Data Analysis

The Investigative Approach: Making and Recording Measurements. SI Units and their use.Scientific method and design of experiments.

Analysis and Presentation of Data: Descriptive statistics. Choosing and using statistical tests. Chemometrics. Analysis of variance (ANOVA), Correlation and regression, Curve fitting, fitting of linear equations, simple linear cases, weighted linear case, analysis of residuals, General polynomial fitting, linearizing transformations, exponential function fit, r and its abuse. Basic aspects of multiple linear regression analysis.

(13 Lectures)

Electronics

Basic fundamentals of electronic circuits and their components used in circuits of common instruments like spectrophotometers, typical circuits involving operational amplifiers for electrochemical instruments. Elementary aspects of digital electronics.

(10 Lectures) Reference Books

• Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J. & Jones, A. (2011) Practical skills in chemistry. 2nd Ed. Prentice-Hall, Harlow.

• Hibbert, D. B. & Gooding, J. J. (2006) Data analysis for chemistry. Oxford University Press.

• Topping, J. (1984) Errors of observation and their treatment. Fourth Ed., Chapman Hall, London.

• Harris, D. C. Quantitative chemical analysis. 6th Ed., Freeman (2007) Chapters 3-5.

• Levie, R. de, How to use Excel in analytical chemistry and in general scientific data analysis. Cambridge Univ. Press (2001) 487 pages.

• Chemical safety matters – IUPAC – IPCS, Cambridge University Press, 1992. • OSU safety manual 1.01.

------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: GREEN CHEMISTRY (Credits: Theory-04, Practicals-02)

Page 37: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

37  

Theory: 60 Lectures Introduction to Green Chemistry What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry.

(4 Lectures) Principles of Green Chemistry and Designing a Chemical synthesis Twelve principles of Green Chemistry with their explanations and examples; Designing a Green Synthesis using these principles; Prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products (Atom Economy); prevention/ minimization of hazardous/ toxic products; designing safer chemicals – different basic approaches to do so; selection of appropriate auxiliary substances (solvents, separation agents), green solvents, solventless processes, immobilized solvents and ionic liquids; energy requirements for reactions - use of microwaves, ultrasonic energy; selection of starting materials; avoidance of unnecessary derivatization – careful use of blocking/protecting groups; use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; designing of biodegradable products; prevention of chemical accidents; strengthening/ development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

(24 Lectures) Examples of Green Synthesis/ Reactions 1. Green Synthesis of the following compounds: adipic acid, catechol, BHT, methyl methacrylate, urethane, aromatic amines (4-aminodiphenylamine), benzyl bromide, acetaldehyde, disodium iminodiacetate (alternative to Strecker synthesis), citral, ibuprofen, paracetamol, furfural. 2. Microwave assisted reactions in water: Hofmann Elimination, Hydrolysis (of benzyl chloride, benzamide, n-phenyl benzamide, methylbenzoate to benzole acid), Oxidation (of toluene, alcohols). Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Orthoester Claisen Rearrangement, Diels-Alder Reaction, Decarboxylation. Microwave assisted solid state reactions: Deacetylation, Deprotection. Saponification of esters, Alkylation of reactive methylene compounds, reductions, synthesis of nitriles from aldehydes; anhydrides from dicarboxylic acid; pyrimidine and pyridine derivatives; 1,2-dihydrotriazine derivatives; benzimidazoles. 3. Ultrasound assisted reactions: Esterification, saponification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction. 4. Selective methylation of active methylene group using dimethylcarbonate: Solid-state polymerization of amorphous polymers using diphenylcarbonate; Use of “Clayan”, a nonmetallic oxidative reagent for various reactions; Free Radical Bromination; Role of Tellurium in organic syntheses; Biocatalysis in organic syntheses.

(24 Lectures) Future Trends in Green Chemistry Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; oncovalent derivatization; Green chemistry in sustainable development.

(8 Lectures) Reference Books:

Page 38: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

38  

• V.K. Ahluwalia & M.R. Kidwai: New Trends in Green Chemistry, • Anamalaya Publishers (2005). • P.T. Anastas & J.K. Warner: Oxford Green Chemistry- Theory and Practical,

University Press (1998). • A.S. Matlack: Introduction to Green Chemistry, Marcel Dekker (2001). • M.C. Cann & M.E. Connely: Real-World cases in Green Chemistry, American

Chemical Society, Washington (2000). • M.A. Ryan & M. Tinnesand, Introduction to Green Chemistry, American

Chemical Society, Washington (2002).

------------------------------------------------------------------------------------------------------- CHEMISTRY PRACTICAL - DSE LAB: GREEN CHEMISTRY 60 Lectures 1. Safer starting materials

The Vitamin C clock reaction using Vitamin C tablets, tincture of iodine, hydrogen peroxide and liquid laundry starch.

! Effect of concentration on clock reaction ! Effect of temperature on clock reaction. (if possible)

2. Using renewable resources

Preparation of biodiesel from vegetable oil.

3. Avoiding waste

Principle of atom economy.

Use of molecular model kit to stimulate the reaction to investigate how the atom economy can illustrate Green Chemistry.

Preparation of propene by two methods can be studied

(I) Triethylamine ion + OH- → propene + trimethylpropene + water

(II) 1-propanol H2SO4/Δ

propene + water

The other types of reactions, like addition, elimination, substitution and rearrangement should also be studied for the calculation of atom economy.

4. Use of enzymes as catalysts

Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide Alternative Green solvents

Page 39: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

39  

5. Diels Alder reaction in water

Reaction between furan and maleic acid in water and at room temperature rather than in benzene and reflux.

6. Extraction of D-limonene from orange peel using liquid CO2 prepared form dry ice.

7. Mechanochemical solvent free synthesis of azomethines

8. Co-crystal controlled solid state synthesis (C2S3) of N-organophthalimide using phthalic anhydride and 3-aminobenzoic acid.

Alternative sources of energy

9. Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II).

10. Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books: • Anastas, P.T & Warner, J.C. Green Chemistry: Theory and Practice, Oxford

University Press (1998). • Kirchoff, M. & Ryan, M.A. Greener approaches to undergraduate chemistry

experiment. American Chemical Society, Washington DC (2002). • Ryan, M.A. Introduction to Green Chemistry, Tinnesand; (Ed), American

Chemical Society, Washington DC (2002). • Sharma, R.K.; Sidhwani, I.T. & Chaudhari, M.K. I.K. Green Chemistry

Experiment: A monograph International Publishing House Pvt Ltd. New Delhi. Bangalore CISBN 978-93-81141-55-7 (2013).

• Cann, M.C. & Connelly, M. E. Real world cases in Green Chemistry, American Chemical Society (2008).

• Cann, M. C. & Thomas, P. Real world cases in Green Chemistry, American Chemical Society (2008).

• Pavia, D. L. Lamponan, G. H. &Kriz, G.S. W B Introduction to organic laboratory

-------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: INDUSTRIAL CHEMICALS AND ENVIRONMENT (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Industrial Gases and Inorganic Chemicals

Page 40: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

40  

Industrial Gases: Large scale production, uses, storage and hazards in handling of the following gases: oxygen, nitrogen, argon, neon, helium, hydrogen, acetylene, carbon monoxide, chlorine, fluorine, sulphur dioxide and phosgene.

Inorganic Chemicals: Manufacture, application, analysis and hazards in handling the following chemicals: hydrochloric acid, nitric acid, sulphuric acid, caustic soda, common salt, borax, bleaching powder, sodium thiosulphate, hydrogen peroxide, potash alum, chrome alum, potassium dichromate and potassium permanganate.

(10 Lectures)

Industrial Metallurgy

Preparation of metals (ferrous and nonferrous) and ultrapure metals for semiconductor technology.

(4 Lectures)

Environment and its segments

Ecosystems. Biogeochemical cycles of carbon, nitrogen and sulphur.

Air Pollution: Major regions of atmosphere. Chemical and photochemical reactions in atmosphere. Air pollutants: types, sources, particle size and chemical nature; Photochemical smog: its constituents and photochemistry. Environmental effects of ozone, Major sources of air pollution.

Pollution by SO2, CO2, CO, NOx, H2S and other foul smelling gases. Methods of estimation of CO, NOx, SOx and control procedures.

Effects of air pollution on living organisms and vegetation. Greenhouse effect and Global warming, Ozone depletion by oxides of nitrogen, chlorofluorocarbons and Halogens, removal of sulphur from coal. Control of particulates.

Water Pollution: Hydrological cycle, water resources, aquatic ecosystems, Sources and nature of water pollutants, Techniques for measuring water pollution, Impacts of water pollution on hydrological and ecosystems.

Water purification methods. Effluent treatment plants (primary, secondary and tertiary treatment). Industrial effluents from the following industries and their treatment: electroplating, textile, tannery, dairy, petroleum and petrochemicals, agro, fertilizer, etc. Sludge disposal.

Industrial waste management, incineration of waste. Water treatment and purification (reverse osmosis, electro dialysis, ion exchange). Water quality parameters for waste water, industrial water and domestic water.

(30 Lectures)

Energy & Environment

Page 41: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

41  

Sources of energy: Coal, petrol and natural gas. Nuclear Fusion / Fission, Solar energy, Hydrogen, geothermal, Tidal and Hydel, etc.

Nuclear Pollution: Disposal of nuclear waste, nuclear disaster and its management.

(10 Lectures)

Biocatalysis

Introduction to biocatalysis: Importance in “Green Chemistry” and Chemical Industry.

(6 Lectures)

Reference Books:

• E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. • R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes,

Wiley Publishers, New Delhi. • J. A. Kent: Riegel’s Handbook of Industrial Chemistry, CBS Publishers, New

Delhi. • S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd.

New Delhi. • K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. • S. M. Khopkar, Environmental Pollution Analysis: Wiley Eastern Ltd, New Delhi. • S.E. Manahan, Environmental Chemistry, CRC Press (2005). • G.T. Miller, Environmental Science 11th edition. Brooks/ Cole (2006). • A. Mishra, Environmental Studies. Selective and Scientific Books, New Delhi

(2005). ------------------------------------------------------------------------------------------------------- CHEMISTRY PRACTICAL - DSE LAB: INDUSTRIAL CHEMICALS & ENVIRONMENT 60 Lectures 1. Determination of dissolved oxygen in water. 2. Determination of Chemical Oxygen Demand (COD) 3. Determination of Biological Oxygen Demand (BOD) 4. Percentage of available chlorine in bleaching powder. 5. Measurement of chloride, sulphate and salinity of water samples by simple titration method (AgNO3 and potassium chromate). 6. Estimation of total alkalinity of water samples (CO3

2-, HCO3-) using double titration

method. 7. Measurement of dissolved CO2. 8. Study of some of the common bio-indicators of pollution. 9. Estimation of SPM in air samples. 10. Preparation of borax/ boric acid. Reference Books:

• E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.

Page 42: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

42  

• R.M. Felder, R.W. Rousseau: Elementary Principles of Chemical Processes, Wiley Publishers, New Delhi.

• J. A. Kent: Riegel’s Handbook of Industrial Chemistry, CBS Publishers, New Delhi.

• S. S. Dara: A Textbook of Engineering Chemistry, S. Chand & Company Ltd. New Delhi.

• K. De, Environmental Chemistry: New Age International Pvt., Ltd, New Delhi. • S. M. Khopkar, Environmental Pollution Analysis: Wiley Eastern Ltd, New Delhi.

-------------------------------------------------------------------------------------------------------

CHEMISTRY-DSE: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Silicate Industries

Glass: Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of the following types of glasses: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate, coloured glass, photosensitive glass.

Ceramics: Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications, superconducting and semiconducting oxides, fullerenes carbon nanotubes and carbon fibre.

Cements: Classification of cement, ingredients and their role, Manufacture of cement and the setting process, quick setting cements.

(16 Lectures)

Fertilizers:

Different types of fertilizers. Manufacture of the following fertilizers: Urea, ammonium nitrate, calcium ammonium nitrate, ammonium phosphates; polyphosphate, superphosphate, compound and mixed fertilizers, potassium chloride, potassium sulphate.

(8 Lectures)

Surface Coatings:

Objectives of coatings surfaces, preliminary treatment of surface, classification of surface coatings. Paints and pigments-formulation, composition and related properties. Oil paint, Vehicle, modified oils, Pigments, toners and lakes pigments, Fillers, Thinners, Enamels, emulsifying agents. Special paints (Heat retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax polishing, Water and Oil paints, additives, Metallic coatings (electrolytic and electroless), metal spraying and anodizing.

(10 Lectures)

Page 43: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

43  

Batteries:

Primary and secondary batteries, battery components and their role, Characteristics of Battery. Working of following batteries: Pb acid, Li-Battery, Solid state electrolyte battery. Fuel cells, Solar cell and polymer cell.

(6 Lectures)

Alloys:

Classification of alloys, ferrous and non-ferrous alloys, Specific properties of elements in alloys. Manufacture of Steel (removal of silicon decarbonization, demanganization, desulphurization dephosphorisation) and surface treatment (argon treatment, heat treatment, nitriding, carburizing). Composition and properties of different types of steels.

(10 Lectures)

Catalysis:

General principles and properties of catalysts, homogenous catalysis (catalytic steps and examples) and heterogenous catalysis (catalytic steps and examples) and their industrial applications, Deactivation or regeneration of catalysts.

Phase transfer catalysts, application of zeolites as catalysts.

(6 Lectures)

Chemical explosives:

Origin of explosive properties in organic compounds, preparation and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket propellants.

(4 Lectures)

Reference Books: • E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. • R. M. Felder, R. W. Rousseau: Elementary Principles of Chemical Processes,

Wiley Publishers, New Delhi. • W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to Ceramics, Wiley

Publishers, New Delhi. • J. A. Kent: Riegel’s Handbook of Industrial Chemistry, CBS Publishers, New

Delhi. • P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi. • R. Gopalan, D. Venkappayya, S. Nagarajan: Engineering Chemistry, Vikas

Publications, New Delhi. • B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut

-------------------------------------------------------------------------------------------------------

Page 44: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

44  

PRACTICALS-DSE LAB: INORGANIC MATERIALS OF INDUSTRIAL IMPORTANCE

60 Lectures 1. Determination of free acidity in ammonium sulphate fertilizer. 2. Estimation of Calcium in Calcium ammonium nitrate fertilizer. 3. Estimation of phosphoric acid in superphosphate fertilizer. 4. Electroless metallic coatings on ceramic and plastic material. 5. Determination of composition of dolomite (by complexometric titration). 6. Analysis of (Cu, Ni); (Cu, Zn ) in alloy or synthetic samples. 7. Analysis of Cement. 8. Preparation of pigment (zinc oxide).

Reference Books: • E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK. • R. M. Felder, R. W. Rousseau: Elementary Principles of Chemical Processes,

Wiley Publishers, New Delhi. • W. D. Kingery, H. K. Bowen, D. R. Uhlmann: Introduction to Ceramics, Wiley

Publishers, New Delhi. • J. A. Kent: Riegel’s Handbook of Industrial Chemistry, CBS Publishers, New

Delhi. • P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi. • R. Gopalan, D. Venkappayya, S. Nagarajan: Engineering Chemistry, Vikas

Publications, New Delhi. • B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut

----------------------------------------------------------------------------------------------------------- CHEMISTRY-DSE: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS (Credits: Theory-04, Practicals-02) Theory: 60 Lectures

Introduction to spectroscopic methods of analysis:

Recap of the spectroscopic methods covered in detail in the core chemistry syllabus: Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Consideration of electromagnetic radiation.

(4 Lectures)

Molecular spectroscopy:

Infrared spectroscopy:

Interactions with molecules: absorption and scattering. Means of excitation (light sources), separation of spectrum (wavelength dispersion, time resolution), detection of the signal (heat, differential detection), interpretation of spectrum (qualitative, mixtures, resolution),

Page 45: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

45  

advantages of Fourier Transform (FTIR). Samples and results expected. Applications: Issues of quality assurance and quality control, Special problems for portable instrumentation and rapid detection.

UV-Visible/ Near IR – emission, absorption, fluorescence and photoaccoustic. Excitation sources (lasers, time resolution), wavelength dispersion (gratings, prisms, interference filters, laser, placement of sample relative to dispersion, resolution), Detection of signal (photocells, photomultipliers, diode arrays, sensitivity and S/N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoaccoustic, fluorescent tags).

(16 Lectures)

Separation techniques

Chromatography: Gas chromatography, liquid chromatography, supercritical fluids, Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further analysis (use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis.

Immunoassays and DNA techniques

Mass spectroscopy: Making the gaseous molecule into an ion (electron impact, chemical ionization), Making liquids and solids into ions (electrospray, electrical discharge, laser desorption, fast atom bombardment), Separation of ions on basis of mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Resolution, time and multiple separations, Detection and interpretation (how this is linked to excitation).

(16 Lectures)

Elemental analysis:

Mass spectrometry (electrical discharges).

Atomic spectroscopy: Atomic absorption, Atomic emission, and Atomic fluorescence.

Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix effects, other interferences).

(8 Lectures)

NMR spectroscopy: Principle, Instrumentation, Factors affecting chemical shift, Spin-coupling, Applications.

(4 Lectures)

Page 46: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

46  

Electroanalytical Methods: Potentiometry & Voltammetry (4 Lectures)

Radiochemical Methods (4 Lectures)

X-ray analysis and electron spectroscopy (surface analysis)

(4 Lectures) Reference books:

• Principles of Instrumental Analysis - 6th Edition by Douglas A. Skoog, F. James Holler, and Stanley Crouch (ISBN 0-495-01201-7).

• Instrumental Methods of Analysis, 7th ed, Willard, Merritt, Dean, Settle. • P.W. Atkins: Physical Chemistry. • G.W. Castellan: Physical Chemistry. • C.N. Banwell: Fundamentals of Molecular Spectroscopy. • Brian Smith: Infrared Spectral Interpretations: A Systematic Approach. • W.J. Moore: Physical Chemistry. PRACTICALS-DSE LAB: INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS 60 Lectures

1. Safety Practices in the Chemistry Laboratory 2. Determination of the isoelectric pH of a protein. 3. Titration curve of an amino acid. 4. Determination of the void volume of a gel filtration column. 5. Determination of a Mixture of Cobalt and Nickel (UV/Vis spec.) 6. Study of Electronic Transitions in Organic Molecules (i.e., acetone in water) 7. IR Absorption Spectra (Study of Aldehydes and Ketones) 8. Determination of Calcium, Iron, and Copper in Food by Atomic Absorption 9. Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and

carbon tetrachloride) 10. Separation of Carbohydrates by HPLC 11. Determination of Caffeine in Beverages by HPLC 12. Potentiometric Titration of a Chloride-Iodide Mixture 13. Cyclic Voltammetry of the Ferrocyanide/Ferricyanide Couple 14. Nuclear Magnetic Resonance 15. Use of fluorescence to do “presumptive tests” to identify blood or other body

fluids. 16. Use of “presumptive tests” for anthrax or cocaine 17. Collection, preservation, and control of blood evidence being used for DNA

testing 18. Use of capillary electrophoresis with laser fluorescence detection for nuclear

DNA (Y chromosome only or multiple chromosome) 19. Use of sequencing for the analysis of mitochondrial DNA

Page 47: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

47  

20. Laboratory analysis to confirm anthrax or cocaine 21. Detection in the field and confirmation in the laboratory of flammable accelerants

or explosives 22. Detection of illegal drugs or steroids in athletes 23. Detection of pollutants or illegal dumping 24. Fibre analysis

At least 10 experiments to be performed. Reference Books: • Principles of Instrumental Analysis - 6th Edition by Douglas A. Skoog, F. James

Holler, and Stanley Crouch (ISBN 0-495-01201-7). • Instrumental Methods of Analysis, 7th ed, Willard, Merritt, Dean, Settle.

----------------------------------------------------------------------------------------------------- DSE: CHEMISTRY OF D-BLOCK ELEMENTS, QUANTUM CHEMISTRY & SPECTROSCOPY (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Section A: Inorganic Chemistry-3 (30 Lectures)

Transition Elements (3d series)

General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu.

Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).

(12 Lectures)

Coordination Chemistry

Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). Structural and stereoisomerism in complexes with coordination numbers 4 and 6.

Drawbacks of VBT. IUPAC system of nomenclature.

(8 Lectures)

Crystal Field Theory

Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors affecting the magnitude of D. Spectrochemical series. Comparison of CFSE for Oh and Td complexes, Tetragonal distortion of octahedral geometry.

Page 48: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

48  

Jahn-Teller distortion, Square planar coordination.

(10 Lectures)

Section B: Physical Chemistry-4 (30 Lectures)

Quantum Chemistry & Spectroscopy

Spectroscopy and its importance in chemistry. Wave-particle duality. Link between spectroscopy and quantum chemistry. Electromagnetic radiation and its interaction with matter. Types of spectroscopy. Difference between atomic and molecular spectra. Born-Oppenheimer approximation: Separation of molecular energies into translational, rotational, vibrational and electronic components.

Postulates of quantum mechanics, quantum mechanical operators.

Free particle. Particle in a 1-D box (complete solution), quantization, normalization of wavefunctions, concept of zero-point energy.

Rotational Motion: Schrödinger equation of a rigid rotator and brief discussion of its results (solution not required). Quantization of rotational energy levels.

Microwave (pure rotational) spectra of diatomic molecules. Selection rules. Structural information derived from rotational spectroscopy.

Vibrational Motion: Schrödinger equation of a linear harmonic oscillator and brief discussion of its results (solution not required). Quantization of vibrational energy levels. Selection rules, IR spectra of diatomic molecules. Structural information derived from vibrational spectra. Vibrations of polyatomic molecules. Group frequencies. Effect of hydrogen bonding (inter- and intramolecular) and substitution on vibrational frequencies.

Electronic Spectroscopy: Electronic excited states. Free Electron model and its application to electronic spectra of polyenes. Colour and constitution, chromophores, auxochromes, bathochromic and hypsochromic shifts.

(24 Lectures)

Photochemistry

Laws of photochemistry. Lambert-Beer’s law. Fluorescence and phosphorescence. Quantum efficiency and reasons for high and low quantum yields. Primary and secondary processes in photochemical reactions. Photochemical and thermal reactions. Photoelectric cells.

(6 Lectures)

Reference Books: • G. M. Barrow: Physical Chemistry Tata McGraw-­‐Hill (2007). • G. W. Castellan: Physical Chemistry 4th Edn. Narosa (2004).

Page 49: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

49  

• J. C. Kotz, P. M. Treichel & J. R. Townsend: General Chemistry, Cengage Lening India Pvt. Ltd., New Delhi (2009).

• B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998). • R. H. Petrucci: General Chemistry 5th Ed. Macmillan Publishing Co.: New York

(1985). • J. D. Lee: A New Concise Inorganic Chemistry, E.L.B.S. • F.A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley. • D. F. Shriver and P. W. Atkins: Inorganic Chemistry, Oxford University Press. • Gary Wulfsberg: Inorganic Chemistry, Viva Books Pvt. Ltd.

DSE LAB 60 Lectures Section A: Inorganic Chemistry

1. Estimation of the amount of nickel present in a given solution as bis(dimethylglyoximato) nickel(II) or aluminium as oxinate in a given solution gravimetrically.

2. Estimation of (i) Mg2+ or (ii) Zn2+ by complexometric titrations using EDTA.

3. Estimation of total hardness of a given sample of water by complexometric titration.

4. To draw calibration curve (absorbance at λmax vs. concentration) for various concentrations of a given coloured compound and estimate the concentration of the same in a given solution.

5. Determination of the composition of the Fe3+ - salicylic acid complex / Fe2+ - phenanthroline complex in solution by Job’s method.

6. Determination of concentration of Na+ and K+ using Flame Photometry.

Section B: Physical Chemistry

UV/Visible spectroscopy

I. Study the 200-500 nm absorbance spectra of KMnO4 and K2Cr2O7 (in 0.1 M H2SO4) and determine the λmax values. Calculate the energies of the two transitions in different units (J molecule-1, kJ mol-1, cm-1, eV).

II. Study the pH-dependence of the UV-Vis spectrum (200-500 nm) of K2Cr2O7. III. Record the 200-350 nm UV spectra of the given compounds (acetone,

acetaldehyde, 2-propanol, acetic acid) in water. Comment on the effect of structure on the UV spectra of organic compounds.

Colourimetry

I. Verify Lambert-Beer’s law and determine the concentration of CuSO4/KMnO4/K2Cr2O7 in a solution of unknown concentration

II. Analyse the given vibration-rotation spectrum of HCl(g)

Reference Books:

• A.I. Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.

Page 50: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

50  

• A.I. Vogel, Quantitative Chemical Analysis, Prentice Hall, 6th Edn. • B.D. Khosla, Senior Practical Physical Chemistry, R. Chand & Co.

----------------------------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------------- DSE: ORGANOMETALLICS, BIOINORGANIC CHEMISTRY, POLYNUCLEAR HYDROCARBONS AND UV, IR SPECTROSCOPY (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Section A: Inorganic Chemistry-4 (30 Lectures)

Chemistry of 3d metals

Oxidation states displayed by Cr, Fe, Co, Ni and Co.

A study of the following compounds (including preparation and important properties);

Peroxo compounds of Cr, K2Cr2O7, KMnO4, K4[Fe(CN)6], sodium nitroprusside, [Co(NH3)6]Cl3, Na3[Co(NO2)6].

(6 Lectures)

Organometallic Compounds

Definition and Classification with appropriate examples based on nature of metal-carbon bond (ionic, s, p and multicentre bonds). Structures of methyl lithium, Zeiss salt and ferrocene. EAN rule as applied to carbonyls. Preparation, structure, bonding and properties of mononuclear and polynuclear carbonyls of 3d metals. p-acceptor behaviour of carbon monoxide. Synergic effects (VB approach)- (MO diagram of CO can be referred to for synergic effect to IR frequencies).

(12 Lectures)

Bio-Inorganic Chemistry

A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to Na+, K+ and Mg2+ ions: Na/K pump; Role of Mg2+ ions in energy production and chlorophyll. Role of Ca2+ in blood clotting, stabilization of protein structures and structural role (bones).

(12 Lectures)

Section B: Organic Chemistry-4 (30 Lectures)

Polynuclear and heteronuclear aromatic compounds:

Page 51: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

51  

Properties of the following compounds with reference to electrophilic and nucleophilic substitution: Naphthalene, Anthracene , Furan, Pyrrole, Thiophene, and Pyridine.

(6 Lectures)

Active methylene compounds:

Preparation: Claisen ester condensation. Keto-enol tautomerism.

Reactions: Synthetic uses of ethylacetoacetate (preparation of non-heteromolecules having upto 6 carbon).

(6 Lectures)

Application of Spectroscopy to Simple Organic Molecules

Application of visible, ultraviolet and Infrared spectroscopy in organic molecules. Electromagnetic radiations, electronic transitions, λmax & εmax, chromophore, auxochrome, bathochromic and hypsochromic shifts. Application of electronic spectroscopy and Woodward rules for calculating l max of conjugated dienes and α,β – unsaturated compounds.

Infrared radiation and types of molecular vibrations, functional group and fingerprint region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of substitution on >C=O stretching absorptions).

(18 Lectures)

Reference Books: • James E. Huheey, Ellen Keiter & Richard Keiter: Inorganic Chemistry: Principles

of Structure and Reactivity, Pearson Publication. • G.L. Miessler & Donald A. Tarr: Inorganic Chemistry, Pearson Publication. • J.D. Lee: A New Concise Inorganic Chemistry, E.L.B.S. • F.A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley & Sons. • I.L. Finar: Organic Chemistry (Vol. I & II), E.L.B.S. • John R. Dyer: Applications of Absorption Spectroscopy of Organic Compounds,

Prentice Hall. • R.M. Silverstein, G.C. Bassler & T.C. Morrill: Spectroscopic Identification of

Organic Compounds, John Wiley & Sons. • R.T. Morrison & R.N. Boyd: Organic Chemistry, Prentice Hall. • Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient

Longman. • Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.

DSE LAB 60 Lectures Section A: Inorganic Chemistry

Page 52: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

52  

1. Separation of mixtures by chromatography: Measure the Rf value in each case. (Combination of two ions to be given)

Paper chromatographic separation of Fe3+, A13+ and Cr3+ or

Paper chromatographic separation of Ni2+, Co2+, Mn2+ and Zn2+

2. Preparation of any two of the following complexes and measurement of their conductivity:

(i) tetraamminecarbonatocobalt (III) nitrate

(ii) tetraamminecopper (II) sulphate

(iii) potassium trioxalatoferrate (III) trihydrate

Compare the conductance of the complexes with that of M/1000 solution of NaCl, MgCl2 and LiCl3.

Section B: Organic Chemistry

Systematic Qualitative Organic Analysis of Organic Compounds possessing monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.

Reference Books: • A.I. Vogel: Qualitative Inorganic Analysis, Prentice Hall, 7th Edn. • A.I. Vogel: Quantitative Chemical Analysis, Prentice Hall, 6th Edn. • A.I. Vogel: Textbook of Practical Organic Chemistry, Prentice Hall, 5th Edn. • F. G. Mann & B. C. Saunders: Practical Organic Chemistry, Orient Longman

(1960).

----------------------------------------------------------------------------------------------------------- DSE: MOLECULES OF LIFE (Credits: Theory-04, Practicals-02) Theory: 60 Lectures Unit 1: Carbohydrates (10 Periods) Classification of carbohydrates, reducing and non reducing sugars, General Properties of Glucose and Fructose, their open chain structure. Epimers, mutarotation and anomers. Determination of configuration of Glucose (Fischer proof). Cyclic structure of glucose. Haworth projections. Cyclic structure of fructose. Linkage between monosachharides, structure of disacharrides (sucrose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. Unit 2: Amino Acids, Peptides and Proteins (12 Periods)

Page 53: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

53  

Classification of Amino Acids, Zwitterion structure and Isoelectric point. Overview of Primary, Secondary, Tertiary and Quaternary structure of proteins. Determination of primary structure of peptides, determination of N-terminal amino acid (by DNFB and Edman method) and C–terminal amino acid (by thiohydantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N-protection (t-butyloxycarbonyl and phthaloyl) & C-activating groups and Merrifield solid phase synthesis. Unit 3: Enzymes and correlation with drug action (12 Periods) Mechanism of enzyme action, factors affecting enzyme action, Coenzymes and cofactors and their role in biological reactions, Specificity of enzyme action(Including stereospecifity) , Enzyme inhibitors and their importance, phenomenon of inhibition(Competitive and Non competitive inhibition including allosteric inhibtion ). Drug action-receptor theory. Structure –activity relationships of drug molecules, binding role of –OH group,-NH2 group, double bond and aromatic ring, Unit 4: Nucleic Acids (10 Periods) Components of Nucleic acids: Adenine, guanine, thymine and Cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA(types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. Unit 5: Lipids (8 Periods) Introduction to lipids, classification. Oils and fats: Common fatty acids present in oils and fats, Omega fatty acids, Trans fats, Hydrogenation, Saponification value, Iodine number. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). Unit 6: Concept of Energy in Biosystems (8 Periods) Calorific value of food. Standard caloric content of carbohydrates, proteins and fats. Oxidation of foodstuff (organic molecules) as a source of energy for cells. Introduction to Metabolism (catabolism, anabolism), ATP: the universal currency of cellular energy, ATP hydrolysis and free energy change. Conversion of food into energy. Outline of catabolic pathways of Carbohydrate- Glycolysis, Fermentation, Krebs Cycle. Overview of catabolic pathways of Fats and Proteins. Interrelationships in the metabolic pathways of Proteins, Fats and Carbohydrates. Recommended Texts:

• Morrison, R. T. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

• Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

Page 54: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

54  

• Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).

• Nelson, D. L. & Cox, M. M. Lehninger’s Principles of Biochemistry 7th Ed., W. H. Freeman.

• Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 7th Ed., W. H. Freeman.

DSE LAB 60 Lectures

1. Separation of amino acids by paper chromatography 2. To determine the concentration of glycine solution by formylation method. 3. Study of titration curve of glycine 4. Action of salivary amylase on starch 5. Effect of temperature on the action of salivary amylase on starch. 6. To determine the saponification value of an oil/fat. 7. To determine the iodine value of an oil/fat 8. Differentiate between a reducing/ nonreducing sugar. 9. Extraction of DNA from onion/cauliflower 10. To synthesise aspirin by acetylation of salicylic acid and compare it with the

ingredient of an aspirin tablet by TLC. Recommended Texts:

• Furniss, B.S.; Hannaford, A.J.; Rogers, V.; Smith, P.W.G.; Tatchell, A.R. Vogel’s Textbook of Practical Organic Chemistry, ELBS.

• Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry, Universities Press.

-----------------------------------------------------------------------------------------------------------

Page 55: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

55  

Skill Enhancement Course (any four) (Credit: 02 each)- SEC1 to SEC4 Chemistry IT SKILLS FOR CHEMISTS (Credits: 02) 30 Lectures Mathematics

Fundamentals, mathematical functions, polynomial expressions, logarithms, the exponential function, units of a measurement, interconversion of units, constants and variables, equation of a straight line, plotting graphs.

Uncertainty in experimental techniques: Displaying uncertainties, measurements in chemistry, decimal places, significant figures, combining quantities.

Uncertainty in measurement: types of uncertainties, combining uncertainties. Statistical treatment. Mean, standard deviation, relative error. Data reduction and the propagation of errors. Graphical and numerical data reduction. Numerical curve fitting: the method of least squares (regression).

Algebraic operations on real scalar variables (e.g. manipulation of van der Waals equation in different forms).Roots of quadratic equations analytically and iteratively (e.g. pH of a weak acid). Numerical methods of finding roots (Newton-Raphson, binary –bisection, e.g. pH of a weak acid not ignoring the ionization of water, volume of a van der Waals gas, equilibrium constant expressions).

Differential calculus: The tangent line and the derivative of a function, numerical differentiation (e.g., change in pressure for small change in volume of a van der Waals gas, potentiometric titrations).

Numerical integration (Trapezoidal and Simpson’s rule, e.g. entropy/enthalpy change from heat capacity data).

Computer programming:

Constants, variables, bits, bytes, binary and ASCII formats, arithmetic expressions, hierarchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics. Compiled versus interpreted languages. Debugging. Simple programs using these concepts. Matrix addition and multiplication. Statistical analysis.

BASIC programs for curve fitting, numerical differentiation and integration (Trapezoidal rule, Simpson’s rule), finding roots (quadratic formula, iterative, Newton-Raphson method).

Page 56: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

56  

HANDS ON

Introductory writing activities: Introduction to word processor and structure drawing (ChemSketch) software. Incorporating chemical structures, chemical equations, expressions from chemistry (e.g. Maxwell-Boltzmann distribution law, Bragg’s law, van der Waals equation, etc.) into word processing documents.

Handling numeric data: Spreadsheet software (Excel), creating a spreadsheet, entering and formatting information, basic functions and formulae, creating charts, tables and graphs. Incorporating tables and graphs into word processing documents. Simple calculations, plotting graphs using a spreadsheet (Planck’s distribution law, radial distribution curves for hydrogenic orbitals, gas kinetic theory- Maxwell-Boltzmann distribution curves as function of temperature and molecular weight), spectral data, pressure-volume curves of van der Waals gas (van der Waals isotherms), data from phase equilibria studies. Graphical solution of equations.

Numeric modelling: Simulation of pH metric titration curves. Excel functions LINEST and Least Squares. Numerical curve fitting, linear regression (rate constants from concentration-time data, molar extinction coefficients from absorbance data), numerical differentiation (e.g. handling data from potentiometric and pH metric titrations, pKa of weak acid), integration (e.g. entropy/enthalpy change from heat capacity data).

Statistical analysis: Gaussian distribution and Errors in measurements and their effect on data sets. Descriptive statistics using Excel. Statistical significance testing: The t test. The F test.

Presentation: Presentation graphics Reference Books:

• McQuarrie, D. A. Mathematics for Physical Chemistry University Science Books (2008).

• Mortimer, R. Mathematics for Physical Chemistry. 3rd

Ed. Elsevier (2005). • Steiner, E. The Chemical Maths Book Oxford University Press (1996). • Yates, P. Chemical calculations. 2

ndEd. CRC Press (2007).

• Harris, D. C. Quantitative Chemical Analysis. 6th Ed., Freeman (2007) Chapters 3-5. • Levie, R. de, How to use Excel in analytical chemistry and in general scientific data

analysis, Cambridge Univ. Press (2001) 487 pages. • Noggle, J. H. Physical chemistry on a Microcomputer. Little Brown & Co.

(1985). • Venit, S.M. Programming in BASIC: Problem solving with structure and style.

Jaico Publishing House: Delhi (1996).

------------------------------------------------------------------------------------------------------- BASIC ANALYTICAL CHEMISTRY (Credits: 02) 30 Lectures

Page 57: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

57  

Introduction: Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling. Importance of accuracy, precision and sources of error in analytical measurements. Presentation of experimental data and results, from the point of view of significant figures.

Analysis of soil: Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators

a. Determination of pH of soil samples. b. Estimation of Calcium and Magnesium ions as Calcium carbonate by complexometric

titration.

Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods.

a. Determination of pH, acidity and alkalinity of a water sample. b. Determination of dissolved oxygen (DO) of a water sample.

Analysis of food products: Nutritional value of foods, idea about food processing and food preservations and adulteration.

a. Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc.

b. Analysis of preservatives and colouring matter.

Chromatography: Definition, general introduction on principles of chromatography, paper chromatography, TLC etc.

a. Paper chromatographic separation of mixture of metal ion (Fe3+ and Al3+). b. To compare paint samples by TLC method.

Ion-exchange: Column, ion-exchange chromatography etc. Determination of ion exchange capacity of anion / cation exchange resin (using batch procedure if use of column is not feasible).

Analysis of cosmetics: Major and minor constituents and their function

a. Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate. b. Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, Zinc

oxide and Calcium carbonate by complexometric titration.

Suggested Applications (Any one):

a. To study the use of phenolphthalein in trap cases. b. To analyze arson accelerants. c. To carry out analysis of gasoline.

Suggested Instrumental demonstrations:

a. Estimation of macro nutrients: Potassium, Calcium, Magnesium in soil samples by flame photometry.

Page 58: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

58  

b. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets. c. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in

Soft Drink.

Reference Books: 1. Willard, H. H. Instrumental Methods of Analysis, CBS Publishers. 2. Skoog & Lerry. Instrumental Methods of Analysis, Saunders College Publications,

New York. 3. Skoog, D.A.; West, D.M. & Holler, F.J. Fundamentals of Analytical Chemistry 6th

Ed., Saunders College Publishing, Fort Worth (1992). 4. Harris, D. C. Quantitative Chemical Analysis, W. H. Freeman. 5. Dean, J. A. Analytical Chemistry Notebook, McGraw Hill. 6. Day, R. A. & Underwood, A. L. Quantitative Analysis, Prentice Hall of India. 7. Freifelder, D. Physical Biochemistry 2nd Ed., W.H. Freeman and Co., N.Y. USA

(1982). 8. Cooper, T.G. The Tools of Biochemistry, John Wiley and Sons, N.Y. USA. 16

(1977). 9. Vogel, A. I. Vogel’s Qualitative Inorganic Analysis 7th Ed., Prentice Hall. 10. Vogel, A. I. Vogel’s Quantitative Chemical Analysis 6th Ed., Prentice Hall. 11. Robinson, J.W. Undergraduate Instrumental Analysis 5th Ed., Marcel Dekker, Inc., New

York (1995). ------------------------------------------------------------------------------------------------------- CHEMICAL TECHNOLOGY & SOCIETY (Credits: 02) Theory: 30 Lectures Chemical Technology

Basic principles of distillation, solvent extraction, solid-liquid leaching and liquid-liquid extraction, separation by absorption and adsorption. An introduction into the scope of different types of equipment needed in chemical technology, including reactors, distillation columns, extruders, pumps, mills, emulgators. Scaling up operations in chemical industry. Introduction to clean technology.

Society

Exploration of societal and technological issues from a chemical perspective. Chemical and scientific literacy as a means to better understand topics like air and water (and the trace materials found in them that are referred to as pollutants); energy from natural sources (i.e. solar and renewable forms), from fossil fuels and from nuclear fission; materials like plastics and polymers and their natural analogues, proteins and nucleic acids, and molecular reactivity and interconversions from simple examples like combustion to complex instances like genetic engineering and the manufacture of drugs.

Reference Book:

Page 59: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

59  

John W. Hill, Terry W. McCreary & Doris K. Kolb, Chemistry for changing times 13th Ed.

------------------------------------------------------------------------------------------------------- CHEMOINFORMATICS (Credits: 02) Theory: 30 Lectures Introduction to Chemoinformatics: History and evolution of chemoinformatics, Use of chemoinformatics, Prospects of chemoinformatics, Molecular Modelling and Structure elucidation.

Representation of molecules and chemical reactions: Nomenclature, Different types of notations, SMILES coding, Matrix representations, Structure of Molfiles and Sdfiles, Libraries and toolkits, Different electronic effects, Reaction classification.

Searching chemical structures: Full structure search, sub-structure search, basic ideas, similarity search, three dimensional search methods, basics of computation of physical and chemical data and structure descriptors, data visualization.

Applications: Prediction of Properties of Compounds; Linear Free Energy Relations; Quantitative Structure-Property Relations; Descriptor Analysis; Model Building; Modeling Toxicity; Structure-Spectra correlations; Prediction of NMR, IR and Mass spectra; Computer Assisted Structure elucidations; Computer Assisted Synthesis Design, Introduction to drug design; Target Identification and Validation; Lead Finding and Optimization; Analysis of HTS data; Virtual Screening; Design of Combinatorial Libraries; Ligand-Based and Structure Based Drug design; Application of Chemoinformatics in Drug Design.

Hands-on Exercises

Reference Books: • Andrew R. Leach & Valerie, J. Gillet (2007) An introduction to

Chemoinformatics. Springer: The Netherlands. • Gasteiger, J. & Engel, T. (2003) Chemoinformatics: A text-book. Wiley-VCH. • Gupta, S. P. (2011) QSAR & Molecular Modeling. Anamaya Pub.: New Delhi.

------------------------------------------------------------------------------------------------------- BUSINESS SKILLS FOR CHEMISTS (Credits: 02) Theory: 30 Lectures

Business Basics

Page 60: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

60  

Key business concepts: Business plans, market need, project management and routes to market.

Chemistry in Industry

Current challenges and opportunities for the chemistry-using industries, role of chemistry in India and global economies.

Making money

Financial aspects of business with case studies

Intellectual property

Concept of intellectual property, patents.

Reference

www.rsc.org

------------------------------------------------------------------------------------------------------- INTELLECTUAL PROPERTY RIGHTS (IPR) (Credits: 02) Theory: 30 Lectures In this era of liberalization and globalization, the perception about science and its practices has undergone dramatic change. The importance of protecting the scientific discoveries, with commercial potential or the intellectual property rights is being discussed at all levels – statutory, administrative, and judicial. With India ratifying the WTO agreement, it has become obligatory on its part to follow a minimum acceptable standard for protection and enforcement of intellectual property rights. The purpose of this course is to apprise the students about the multifaceted dimensions of this issue. Introduction to Intellectual Property:

Historical Perspective, Different Types of IP, Importance of protecting IP.

Copyrights

Introduction, How to obtain, Differences from Patents.

Trade Marks

Introduction, How to obtain, Different types of marks – Collective marks, certification marks, service marks, Trade names, etc.

Differences from Designs.

Patents

Page 61: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

61  

Historical Perspective, Basic and associated right, WIPO, PCT system, Traditional Knowledge, Patents and Healthcare – balancing promoting innovation with public health, Software patents and their importance for India.

Geographical Indications

Definition, rules for registration, prevention of illegal exploitation, importance to India.

Industrial Designs

Definition, How to obtain, features, International design registration.

Layout design of integrated circuits

Circuit Boards, Integrated Chips, Importance for electronic industry.

Trade Secrets

Introduction and Historical Perspectives, Scope of Protection, Risks involved and legal aspects of Trade Secret Protection.

Different International agreements

(a) Word Trade Organization (WTO):

(i) General Agreement on Tariffs & Trade (GATT), Trade

Related Intellectual Property Rights (TRIPS) agreement

(ii) General Agreement on Trade related Services (GATS)

(iii) Madrid Protocol

(iv) Berne Convention

(v) Budapest Treaty

(b) Paris Convention

WIPO and TRIPS, IPR and Plant Breeders Rights, IPR and Biodiversity

IP Infringement issue and enforcement – Role of Judiciary, Role of law enforcement agencies – Police, Customs etc. Economic Value of Intellectual Property – Intangible assets and their valuation, Intellectual Property in the Indian Context – Various laws in India Licensing and technology transfer.

Reference Books:

• N.K. Acharya: Textbook on intellectual property rights, Asia Law House (2001).

Page 62: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

62  

• Manjula Guru & M.B. Rao, Understanding Trips: Managing Knowledge in Developing Countries, Sage Publications (2003).

• P. Ganguli, Intellectual Property Rights: Unleashing the Knowledge Economy, Tata McGraw-Hill (2001).

• Arthur Raphael Miller, Micheal H.Davis; Intellectual Property: Patents, Trademarks and Copyright in a Nutshell, West Group Publishers (2000).

• Jayashree Watal, Intellectual property rights in the WTO and developing countries, Oxford University Press, Oxford.

------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- ANALYTICAL CLINICAL BIOCHEMISTRY (Credits: 02) THEORY: 30 Lectures Basic understanding of the structures, properties and functions of carbohydrates, lipids and proteins:

Review of concepts studied in the core course:

Carbohydrates: Biological importance of carbohydrates, Metabolism, Cellular currency of energy (ATP), Glycolysis, Alcoholic and Lactic acid fermentations, Krebs cycle.

Isolation and characterization of polysachharides.

Proteins: Classification, biological importance; Primary and secondary and tertiary structures of proteins: α-helix and β- pleated sheets, Isolation, characterization, denaturation of proteins.

Enzymes: Nomenclature, Characteristics (mention of Ribozymes), Classification; Active site, Mechanism of enzyme action, Stereospecificity of enzymes, Coenzymes and cofactors, Enzyme inhibitors, Introduction to Biocatalysis: Importance in “Green Chemistry” and Chemical Industry.

Lipids: Classification. Biological importance of triglycerides and phosphoglycerides and cholesterol; Lipid membrane, Liposomes and their biological functions and underlying applications.

Lipoproteins.

Properties, functions and biochemical functions of steroid hormones.

Biochemistry of peptide hormones.

Structure of DNA (Watson-Crick model) and RNA, Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation, Introduction to Gene therapy.

Enzymes: Nomenclature, classification, effect of pH, temperature on enzyme activity, enzyme inhibition.

Page 63: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

63  

Biochemistry of disease: A diagnostic approach by blood/ urine analysis. Blood: Composition and functions of blood, blood coagulation. Blood collection and preservation of samples. Anaemia, Regulation, estimation and interpretation of data for blood sugar, urea, creatinine, cholesterol and bilirubin. Urine: Collection and preservation of samples. 6. Formation of urine. Composition and estimation of constituents of normal and pathological urine. Practicals Identification and estimation of the following: 1. Carbohydrates – qualitative and quantitative. 2. Lipids – qualitative. 3. Determination of the iodine number of oil. 4. Determination of the saponification number of oil. 5. Determination of cholesterol using Liebermann- Burchard reaction. 6. Proteins – qualitative. 7. Isolation of protein. 8. Determination of protein by the Biuret reaction. 9. Determination of nucleic acids

Reference Books:

• T.G. Cooper: Tool of Biochemistry. • Keith Wilson and John Walker: Practical Biochemistry. • Alan H Gowenlock: Varley’s Practical Clinical Biochemistry. • Thomas M. Devlin: Textbook of Biochemistry. • Jeremy M. Berg, John L Tymoczko, Lubert Stryer: Biochemistry. • G. P. Talwar and M Srivastava: Textbook of Biochemistry and Human Biology. • A.L. Lehninger: Biochemistry. • O. Mikes, R.A. Chalmers: Laboratory Handbook of Chromatographic Methods.

------------------------------------------------------------------------------------------------------- GREEN METHODS IN CHEMISTRY (Credits: 02) Theory: 30 Lectures Tools of Green chemistry, Twelve principles of Green Chemistry, with examples.

The following Real world Cases in Green Chemistry should be discussed:

1 A green synthesis of ibuprofen which creates less waste and fewer byproducts (Atom economy).

2 Surfactants for Carbon Dioxide – replacing smog producing and ozone depleting solvents with CO2 for precision cleaning and dry cleaning of garments.

3 Environmentally safe antifoulant. 4 CO2 as an environmentally friendly blowing agent for the polystyrene foam sheet

packaging market.

Page 64: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

64  

5 Using a catalyst to improve the delignifying (bleaching) activity of hydrogen peroxide.

6 A new generation of environmentally advanced preservative: getting the chromium and arsenic out of pressure treated wood.

7 Rightfit pigment: synthetic azopigments to replace toxic organic and inorganic pigments.

8 Development of a fully recyclable carpet: cradle to cradle carpeting.

Reference Books:

1. Manahan S.E. (2005) Environmental Chemistry, CRC Press 2. Miller, G.T. (2006) Environmental Science 11th edition. Brooks/Cole 3. Mishra, A. (2005) Environmental Studies. Selective and Scientific Books,

New

------------------------------------------------------------------------------------------------------- PHARMACEUTICAL CHEMISTRY (Credits: 02) Theory: 30 Lectures Drugs & Pharmaceuticals Drug discovery, design and development; Basic Retrosynthetic approach. Synthesis of the representative drugs of the following classes: analgesics agents, antipyretic agents, anti-inflammatory agents (Aspirin, paracetamol, lbuprofen); antibiotics (Chloramphenicol); antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol, Sulphacetamide, Trimethoprim); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital, Diazepam),Cardiovascular (Glyceryl trinitrate), antilaprosy (Dapsone), HIV-AIDS related drugs (AZT- Zidovudine). Fermentation Aerobic and anaerobic fermentation. Production of (i) Ethyl alcohol and citric acid, (ii) Antibiotics; Penicillin, Cephalosporin, Chloromycetin and Streptomycin, (iii) Lysine, Glutamic acid, Vitamin B2, Vitamin B12 and Vitamin C.

Practicals 1. Preparation of Aspirin and its analysis. 2. Preparation of magnesium bisilicate (Antacid). Reference Books:

• G.L. Patrick: Introduction to Medicinal Chemistry, Oxford University Press, UK. • Hakishan, V.K. Kapoor: Medicinal and Pharmaceutical Chemistry, Vallabh

Prakashan, Pitampura, New Delhi. • William O. Foye, Thomas L., Lemke , David A. William: Principles of Medicinal

Chemistry, B.I. Waverly Pvt. Ltd. New Delhi.

-------------------------------------------------------------------------------------

CHEMISTRY OF COSMETICS & PERFUMES (Credits: 02)

Page 65: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

65  

30 Lectures A general study including preparation and uses of the following: Hair dye, hair spray, shampoo, suntan lotions, face powder, lipsticks, talcum powder, nail enamel, creams (cold, vanishing and shaving creams), antiperspirants and artificial flavours. Essential oils and their importance in cosmetic industries with reference to Eugenol, Geraniol, sandalwood oil, eucalyptus, rose oil, 2-phenyl ethyl alcohol, Jasmone, Civetone, Muscone.

Practicals 1. Preparation of talcum powder. 2. Preparation of shampoo. 3. Preparation of enamels. 4. Preparation of hair remover. 5. Preparation of face cream. 6. Preparation of nail polish and nail polish remover.

Reference Books:

• E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK. • P.C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi. • B.K. Sharma: Industrial Chemistry, Goel Publishing House, Meerut.

-----------------------------------------------------------------------------------------

PESTICIDE CHEMISTRY (Credits: 02) 30 Lectures General introduction to pesticides (natural and synthetic), benefits and adverse effects, changing concepts of pesticides, structure activity relationship, synthesis and technical manufacture and uses of representative pesticides in the following classes: Organochlorines (DDT, Gammexene,); Organophosphates (Malathion, Parathion ); Carbamates (Carbofuran and carbaryl); Quinones ( Chloranil), Anilides (Alachlor and Butachlor).

Practicals 2 To calculate acidity/alkalinity in given sample of pesticide formulations as per

BIS specifications. 3 Preparation of simple organophosphates, phosphonates and thiophosphates

Reference Book: • R. Cremlyn: Pesticides, John Wiley.

-----------------------------------------------------------------------------------------

FUEL CHEMISTRY (Credits: 02)

Page 66: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

66  

30 Lectures Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value.

Coal: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal.Coal gas, producer gas and water gas—composition and uses. Fractionation of coal tar, uses of coal tar bases chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining.

Petroleum and Petrochemical Industry: Composition of crude petroleum, Refining and different types of petroleum products and their applications.

Fractional Distillation (Principle and process), Cracking (Thermal and catalytic cracking), Reforming Petroleum and non-petroleum fuels (LPG, CNG, LNG, bio-gas, fuels derived from biomass), fuel from waste, synthetic fuels (gaseous and liquids), clean fuels. Petrochemicals: Vinyl acetate, Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylene.

Lubricants: Classification of lubricants, lubricating oils (conducting and non-conducting) Solid and semisolid lubricants, synthetic lubricants.

Properties of lubricants (viscosity index, cloud point, pore point) and their determination.

Reference Books: • E. Stocchi: Industrial Chemistry, Vol -I, Ellis Horwood Ltd. UK. • P.C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi. • B.K. Sharma: Industrial Chemistry, Goel Publishing House, Meerut.

-----------------------------------------------------------------------------------------

Page 67: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Chemistry Syllabus

Semester wise to be effective from 2010-2011

Note:

1. In all 72 credits are to be completed in M.Sc. out of which18 credits shall be taken by the student

in one semester.

2. In semester III and IV the student will opt one branch out of three branches i.e. Inorganic,

Organic and Physical according to the availability of faculty in the department. The student will

also take 18 credits in III and IV semesters out of which 9 credits i.e. two core courses will be

compulsory and rest of 9 credits will be from elective courses.

M.S.c. I

Semester I Course MM Credits

1. Inorganic Chemistry I C001 100 3

2. Organic Chemistry I C002 100 3

3. Physical Chemistry I C003 100 3

4. Group Theory & Spectroscopy C004 100 3

5. Laboratory Course IA C005 100 3

6. Laboratory Course IB C006 100 3

Semester II Course MM Credits

1. Inorganic Chemistry II C007 100 3

2. Organic Chemistry II C008 100 3

3. Physical Chemistry II C009 100 3

4. Spectroscopy & Separation C010 100 3

Methods

5. Laboratory Course IIA C011 100 3

6. Laboratory Course IIB C012 100 3

M.S.c. II

Semester III Course MM Credits

[A] Inorganic Chemistry

1. Laboratory Course Inorganic IIIA C013 100 3

2. Laboratory Course Inorganic IIIB C014 100 3

3. Organometallic Chemistry C015 100 3

4. Spectroscopy, X-ray & Solid E001 100 3

State

5. Bioinorganic, Bioorganic, E002 100 3

Biophysical I

6. Bioinorganic & Supramolecular E003 100 3

Chemistry I

7. Analytical Chemistry E004 100 3

[B] Organic Chemistry

1. Laboratory course- Organic IIIA C016 100 3

2. Laboratory course- Organic IIIB C017 100 3

3. Organic Synthesis & Photochem. C018 100 3

4. Bioorganic, Bioorganic & Bio. E002 100 3

Physical Chemistry I

5. Spectroscopy & Solid State E005 100 3

6. Organometallic reagents and E006 100 3

Organic Synthesis

7. Medicinal E007 100 3

Chemistry

1

Page 68: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

[C] Physical Chemistry

1. Laboratory Course C019 100 3

Physical IIIA

2. Laboratory Course C020 100 3

Physical IIIB

3. Chemistry of Materials C021 100 3

4. Spectroscopy, X-ray & E001 100 3

Solid State

5. Bioinorganic, Bioorganic E002 100 3

and Biophysical Chemistry I

6. Analytical Chemistry E004 100 3

7. Liquid State E008 100 3

M.Sc. II

Semester IV Course MM Credits

[A] Inorganic Chemistry

1. Laboratory Course Inorganic IVA C022 100 3

2. Laboratory Course Inorganic IVA C023 100 3

3. Inorganic Polymers C024 100 3

4. Spectroscopy E009 100 3

5. Bioinorganic, Bioorganic E010 100 3

and Biophysical Chemistry II

6. Photoinorganic Chemistry E011 100 3

7. Environmental Chemistry E012 100 3

[B]Organic Chemistry]

1. Laboratory Course Organic IVA C025 100 3

2. Laboratory Course Organic IVB C026 100 3

3. Natural Products C027 100 3

4. Spectroscopy E009 100 3

5. Bioinorganic, Bioorganic and E010 100 3

Biophysical Chemistry II

6. Environmental Chemistry E012 100 3

7. Heterocyclic Chemistry E013 100 3

[C]Physical Chemistry]

1. Laboratory Course Physical IVA C028 100 3

2. Laboratory Course Physical IVB C029 100 3

3. Advanced Quantum Chemistry C030 100 3

4. Spectroscopy E009 100 3

5. Bioinorganic, Bioorganic and E010 100 3

Biophysical Chemistry II

6. Environmental Chemistry E012 100 3

7. Polymers E014 100 3

Self Study Courses

1. Computer for Chemists S001 100 3

2. Mathematics for Chemists S002 100 3

3. Nanoscience and Nanotechnology S003 100 3

2

Page 69: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

S.No. Paper Category Paper

Code

L T P C

1 Inorganic Chemistry - I Core SOS/C001 3 0 0 3

2 Organic Chemistry - I Core SOS/C002 3 0 0 3

3 Physical Chemistry - I Core SOS/C003 3 0 0 3

4 Group Theory & Spectroscopy Core SOS/C004 3 0 0 3

5 Laboratory Course-IA Core SOS/C005 0 0 9 3

6 Laboratory Course-IB Core SOS/C006 0 0 9 3

7 Inorganic Chemistry - II Core SOS/C007 3 0 0 3

8 Organic Chemistry - II Core SOS/C008 3 0 0 3

9 Physical Chemistry II Core SOS/C009 3 0 0 3

10 Spectroscopy and Separation Methods Core SOS/C010 3 0 0 3

11 Laboratory Course-IIA Core SOS/C011 0 0 9 3

12 Laboratory Course-IIB Core SOS/C012 0 0 9 3

13 Laboratory Course- Inorganic IIIA Core SOS/C013 0 0 9 3

14 Laboratory Course- Inorganic IIIB Core SOS/C014 0 0 9 3

15 Organometallic Chemistry Core SOS/C015 3 0 0 3

16 Spectroscopy, X-ray and Solid State Elective SOS/E001 3 0 0 3

17 Bioinorganic, Bioorganic Biophysical Chemistry-I

Elective SOS/E002 3 0 0 3

18 Bioinorganic and Supramolecular Chemistry Elective SOS/E003 3 0 0 3

19 Analytical Chemistry Elective SOS/E004 3 0 0 3

20 Laboratory Course-Org IIIA Core SOS/C016 0 0 9 3

21 Laboratory Course-Org IIIB Core SOS/C017 0 0 9 3

22 Organic Synthesis and Photochemistry Core SOS/C018 3 0 0 3

23 Spectroscopy and Solid State Elective SOS/E005 3 0 0 3

24 Organometallic Reagents and Organic Synthesis Elective SOS/E006 3 0 0 3

25 Medicinal Chemistry Elective SOS/E007 3 0 0 3

26 Laboratory Course Phy.-IIIA Core SOS/C019 0 0 9 3

27 Laboratory Course Phy.-IIIB Core SOS/C020 0 0 9 3

28 Chemistry of Materials Core SOS/C021 3 0 0 3

29 Liquid State Elective SOS/E008 3 0 0 3

30 Laboratory Course-Inorg. IVA Core SOS/C022 0 0 9 3

31 Laboratory Course-Inorg. IVB Core SOS/C023 0 0 9 3

32 Inorganic Polymers Core SOS/C024 3 0 0 3

33 Spectroscopy Elective SOS/E009 3 0 0 3

34 Bioinorganic, Bioorganic, Biophysical Chemistry-II Elective SOS/E010 3 0 0 3

35 Photoinorganic Chemistry Elective SOS/E011 3 0 0 3

36 Environmental Chemistry Elective SOS/E012 3 0 0 3

37 Laboratory Course Org.-IVA Core SOS/C025 0 0 9 3

38 Laboratory Course Org.-IVB Core SOS/C026 0 0 9 3

39 Natural Products Core SOS/C027 3 0 0 3

40 Heterocyclic Chemistry Elective SOS/E013 3 0 0 3

41 Laboratory Course Phy.-IVA Core SOS/C028 0 0 9 3

42 Laboratory Course Phy.-IVB Core SOS/C029 0 0 9 3

43 Advanced Quantum Chemistry Core SOS/C030 0 0 0 3

44 Polymers Elective SOS/E014 3 0 0 3

3

Page 70: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Semester- I

SOS/C001 Inorganic

Chemistry - I

L T P C MM

3 0 0 3 100

Unit I

Stereochemistry and Bonding in Main Group Compounds

VSEPR, Walsh diagrams (tri-atomic molecules), dπ-pπ bonds, Bent rule and energetics of hybridization,

some simple reactions of covalently bonded molecules.

Unit II

Metal- Ligand Equilibria in Solution

Stepwise and overall formation constants and their interaction, trends in stepwise constants, factors

affecting the stability of metal complexes with reference to the nature of metal ion and ligand, chelate

effect and its thermodynamic origin, determination of binary formation constants by pH-metry and

spectroscopy.

Unit III

Reaction Mechanism of Transition Metal Complexes

Energy profile of a reaction, reactivity of metal complexes, inert and labile complexes, kinetic

application of valence bond and crystal field theories, kinetics of octahedral substitution, acid

hydrolysis, factors affecting acid hydrolysis, base hydrolysis, conjugate base mechanism, direct and

indirect evidences in favour of conjugate mechanism, anation reactions without metal ligand bond

cleavage. Substitution reactions in square planar complexes, the trans effect, mechanism of the

substitution reaction. Redox reactions, electron transfer reactions, mechanism of one electron transfer

reactions, outer and inner sphere type reactions.

Unit IV

Metal- Ligand Bonding

Limitations of crystal field theory. Jahn-Teller distortion. Evidence of covalent character in Metal-

Ligand bonding. Molecular orbital theory as applied to octahedral, tetrahedral and square planar

complexes.

Books suggested th

1. Advanced Inorganic Chemistry 6 Ed., F.A. Cotton and Wilkinson, John Wiley, (1999). th

2. Inorganic Chemistry, 4 Ed., J.E. Huheey, Harper & Row (2000). nd

3. Chemistry of the Elements, 2 Ed., N.N. Greenwood and A. Earnshow, Butterworth. Heinenann

(1997). nd

4. Inorganic Electronic Spectroscopy, 2 Ed., A.B.P. Lever, Elsevier (1986).

5. Magnetochemistry, R.L. Carlin, Springer Verlag, (1986).

6. Comprehensive Coordination Chemistry Eds., G. Wilkinson, J.A.. Gillar and J.A. McCleverty,

Oxford (1987). th

7. Concise Inorganic Chemistry, J.D. Lee, 5 Ed., Chapman & Hall (1996). rd

8. Inorganic Chemistry, 3 Ed., Shriver & Atkins. Oxford (1999). rd

9. Inorganic Chemistry, 3 Ed., Alan G. Sharpe, Addison-Wesley (1992).

4

Page 71: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/C002 Organic

Chemistry - I

L T P C MM

3 0 0 3 100

Unit I

Nature of Bonding in Organic Molecules

Hyperconjugation, bonding in fullerenes, tautomerism.

Aromaticity in benzenoid and non benzenoid compounds, alternant and non alternant hydrocarbons.

Huckel’s rule, energy level of π-molecular orbitals, annulenes, antiaromaticity, homo-aromaticity, PMO

approach.

Bonds weaker than covalent, crown ether complexes and cryptands, inclusion compounds, cyclodextrin,

catenanes and rotaxanes.

Unit II

Stereochemistry

Conformational analysis of cycloalkane, decalins, effect of conformation on reactivity, conformation of

sugars, steric strain due to unavoidable crowding, optical purity, enantiotopic and diastereotopic atoms,

groups and faces, stereospecific and stereoselective synthesis. Asymmetric synthesis, chirality due to

helical shape. Stereochemistry of the compounds containing nitrogen, sulphur and phosphorus.

Unit III

Reaction Mechanism : Structure and Reactivity

Types of mechanisms, types of reactions, thermodynamic and kinetic requirements, kinetic and

thermodynamic control, Hammond’s postulate, Curtin-Hammett principle. Potential energy diagrams,

transition states and intermediates, methods of determining mechanisms, isotope effects.

Effect of structure on reactivity – resonance and field effects, steric effect, quantitative treatments.

Hammett equation and linear free energy relationship, substituent and reaction constants. Taft equation.

Unit IV

Aliphatic Nucleophilic Substitution

SN1, SN2 and mixed SN1 and SN2 mechanism. The neighbouring group mechanism, neighbouring group

participation (by π- and σ bonds). Anchimeric assistance. SN1 mechanism- Nucleophilic substitution at

an allylic, aliphatic trigonal and vinylic carbon. Reactivity effects of substrate structure, attacking

nucleophilic group, leaving group and reaction medium, ambident nucleophile.

Unit V

Aliphatic Electrophilic Substitution

Bimolecular mechanism- SE2 and SEi. The SE1 mechanism, electrophilic substitution accompanied by

double bond shift. Effect of substrates, leaving group and the solvent polarity on the reactivity.

Books suggested th

1. Advanced Organic Chemistry, Reaction, Mechanism and Structure, Jerry March, 6 Ed., John

Wiley.

2. Advanced Organic Chemistry, Carey and Sundberg, Springer Verlag, Germany.

3. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes.

5

Page 72: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

4. Structure and Mechanism in Organic Chemistry, C.K. Ingold, Cornell University Press.

5. Organic Chemistry, Boyd and Morrison, Prentice Hall of India.

6. Modern Organic Reactions, H.O. House, Benjamin.

7. Principles of Organic Synthesis, Norman and Coxon, Blackwell.

8. Reaction Mechanism in Organic Chemistry, Mukherji and Singh, Macmillan.

9. Stereochemistry of Organic Compounds, D. Nasipuri, New Age International.

10. Stereochemistry of Organic Compounds, P.S. Kalsi, New Age International.

SOS/C003 Physical Chemistry - I L T P C MM

3 0 0 3 100

Unit I

Quantum Chemistry

A. Introduction to Exact Quantum Mechanical Results

The Schrodinger equation and the postulates of quantum mechanics. Discussion of solutions of the

Schrodinger equation to some model systems viz. particle in a box, the harmonic oscillator, the rigid

rotor, the hydrogen atom.

B. Approximate Methods

The variation theorem, linear variation principle, perturbation theory (first order and nondegenerate).

Applications of variation method and perturbation theory to the Helium atom.

C. Angular Momentum

Ordinary angular momentum, generalized angular momentum, eigenfunctions for angular momentum,

eigenvalues of angular momentum, operator using ladder operators, addition of angular momenta, spin,

antisymmetry and Pauli exclusion principle.

D. Electronic Structure of Atoms

Electronic configuration, Russell-Saunders terms and coupling schemes, Slater-Condon parameters, π π

term separation energies of the p configuration, term separation energies for the d configurations,

magnetic effects: spin-orbit coupling and Zeeman splitting, introduction to the methods of self-

consistent field, the viral theorem.

Thermodynamics

A. Classical Thermodynamics

Brief resume of concepts of laws thermodynamics, free energy, chemical potential and entropies. Partial

molar properties: partial molar free energy, partial molar volume and partial molar heat content and their

significance. Determination of these quantities.

Concept of fugacity and determination of fugacity.

Non-ideal systems: Excess functions for non-ideal solutions. Activity, activity coefficient.

Debye-Huckel theory for activity coefficient of electrolytic solutions, determination of activity and

activity coefficients, ionic strength. Application of phase rule to three component systems, second order

phase transitions.

6

Page 73: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Unit II

Surface Chemistry

A. Adsorption

Surface tension, capillary actions, pressure difference across curved surface (Laplace equation), vapour

pressure of droplets (Kelvin equation), Gibbs adsorption isotherm, estimation of surface area (BET

equation), surface films on liquids (Electro-kinetic phenomenon), catalytic activity at surfaces.

B. Micelles

Surface active agents, classification of surface active agents, micellization, hydrophobic interaction,

critical micellar concentration (CMC), factors affecting the CMC of surfactants, counter ion binding to

micelles, thermodynamics of micellization-phase separation and mass action models, solubilization,

micro emulsion, reverse micelles.

C. Macromolecules

Polymer-definition, types of polymers, electrically conducting, fire resistant, liquid crystal polymers,

kinetics of polymerization, mechanism of polymerization. Molecular mass, number and mass average

molecular mass, molecular mass determination (osmometry, viscometry, diffusion and, light scattering

methods sedimentation), chain configuration of macromolecules, calculation of average dimensions of

various chain structures.

Books suggested

1. Physical Chemistry, P.W. Atkins, ELBS.

2. Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill.

3. Quantum Chemistry, Ira N. Levine, Prentice Hall.

4. Coulson’s Valence, R. McWeeny, ELBS.

5. Micelles: Theoretical and Applied Aspects, V. Moroi, Plenum.

6. Introduction to Polymer Science, V.R. Gowarikar, N.V. Vishwanathan and J, Sridhar, Wiley

Eastern.

7. Chemical Kinetics, K.J. Laidler, McGraw Hill.

8. Kinetics and Mechanisms of Chemical Transformations, J. Rajaraman and J.Kuriacose, MacMillan.

SOS/C004 Group Theory

& Spectroscopy

L T P C MM

3 0 0 3 100

Unit I

Symmetry and Group Theory in Chemistry

Symmetry elements and symmetry operation, definitions of group, subgroup, relation between orders of

a finite group and its subgroups, conjugacy relation and classes. Point symmetry group, Schonflies

symbols, representations of groups by matrices (representation for the Cn, Cnv, Cnh, Dnh etc. group to be

worked out explicitly). Character of a representation. The great orthogonalilty theorem (without proof)

and its importance. Character tables and their use in spectroscopy.

Unit II

Unifying Principles

Electromagnetic radiation, interacton of electromagnetic radiation with matter. Absorption, emission,

transmission, reflection, refraction, dispersion, polarization and scattering. Uncertainty relation and

7

Page 74: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

natural line width and natural line broadening, transition probability, result of the time dependent

perturbation theory, transition moment, selection rules, intensity of special lines, Born-oppenheimer

approximation, rotational, and electronic energy levels.

Unit III

Atomic Electronic Spectroscopy

Energies of atomic orbitals, vector representation of momenta and vector coupling, spectra of hydrogen

atom and alkali metal atoms.

Unit IV

Microwave Spectroscopy

Classification of molecules, rigid rotor model, effect of isotopic substitution on the transition

frequencies, intensities, non-rigid rotor, Stark effect, nuclear and electron spin interaction and effect of

external field. Applications.

Unit V

Infrared Spectroscopy

Review of linear harmonic oscillator, vibrational energies of diatomic molecules, Zero point energy,

force constant and bond strengths; anharmonicity, Morse potential energy diagram, virbration-rotation

spectroscopy; P,Q,R branches. Selection rules, normal modes of vibration, group frequencies, overtones,

hot bands, factors affecting the band positions and intensities, far IR region., metal-ligand vibrations.

Books Suggested

1. Modern Spectroscopy, J.M. Hollas, John Wiley.

2. Physical Methods for Chemistry, R.S. Drago, Saunders Company.

3. Chemical Applications of Group Theory, F.A. Cotton.

4. Introduction of Molecular Spectroscopy, G.M. Barrow, McGraw Hill.

5. Basic Principles of Spectroscopy, R. Chang, McGraw Hill.

6. Symmetry and Spectroscopy of Molecules, K. Veera Reddy, New Age International.

SOS/C005 Laboratory

Course-IA

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of 20

marks each from Inorganic, Organic and Physical sections. Each exercise will be 20 marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Inorganic Chemistry

Qualitative Analysis

Qualitative analysis of mixture by semi-micro method containing not more than six cations and anions

including:

(i). Rare-earth elements

(ii). Anions, which have not been done in under graduate practical.

(iii). Insolubles.

8

Page 75: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Organic Chemistry

Qualitative Analysis

Separation, purification and identification of compounds of binary mixture (solid-solid or liquid and

solid) using TLC and Paper Chromatography, chemical tests and spectroscopic analysis.

Physical Chemistry

Chemical Kinetics

1. Determination of the effect of (a) Change of temperature (b) Change of concentration of reactants

and catalyst and (c) ionic strength of the media on the velocity constant of hydrolysis of an

ester/ionic reactions.

2. Determination of the velocity constant of hydrolysis of an ester.

3. Determination of the rate constant for the oxidation of iodide ions by hydrogen peroxide studying

the kinetics of the reaction.

4. Flowing clock reactions (Ref: Experiments in Physical Chemistry by Showmaker).

5. Determination of the primary salt effect on the kinetics of ionic reactions and testing of the Bronsted

relationship (iodide ion is oxidized by persulphate ion).

SOS/C006 Laboratory

Course-IB

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical each

from Inorganic, Organic and Physical sections. Each exercise will be 20 marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Inorganic Chemistry

Chromatography

Separation of cations and anions by-

Paper Chromatography

Thin Layer Chromatography

Ion Exchange Chromatography

Organic Chemistry

Organic Synthesis

Acetylation: Acetylation

Oxidation: Adipic acid by chromic acid oxidation of cyclohexanol.

Grignard reaction: Synthesis of triphenylmethanol from benzoic acid.

Sandmeyer reaction: p-Chlorotoluene from p-toluene

9

Page 76: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Physical Chemistry

Electrochemistry

Conductometry

1. Determination of the velocity constant, order of the reaction and energy of activation for

saponification of ethyl acetate by sodium hydroxide conductometrically.

2. Determination of solubility and solubility product of sparingly soluble salts (e.g., PbSO4, BaSO4)

conductometrically.

3. Determination of the strength of strong and weak acids in a given mixture conductometrically.

4. To study the effect of solvent on the conductance of AgNO3/CH3COOH and to determine the degree

of dissociation and equilibrium constant in different solvents and in their mixtures (DMSO, DMF,

dioxane, acetone, water) and to test the validity of Debye-Huckel-Onsager theory.

5. Determination of the activity coefficient of zinc ions in the solution of 0.002 M zinc sulphate using

Debye Huckel’s limiting law.

Semester- II

SOS/C007 Inorganic

Chemistry - II

L T P C MM

3 0 0 3 100

Unit I

Electronic Spectra & Magnetic Properties of Transaction Metal Complexes

Energy levels in an atom. Determination of ground state terms. Hund’s rules. Hole formulation. Laporte 1 9

Orbital selection rule, splitting of electronic energy levels and spectroscopic states (d -d states), Orgel

and Tanabe-Sugano diagrams. Calculations of Dq, B and Beta parameters. Charge transfer spectra.

Magnetic moments, magnetic exchange coupling and spin crossover.

Unit II

Metal-π-Complexes

Important reactions, preparation, bonding and structure of metal carbonyls, metal nitrosyls and

dinitrogen complexes. Vibrational spectra of metal carbonyls and nitrosyls for bonding and structure

elucidation.

Tertiary phosphine as ligand.

Unit III

Metal Clusters

Higher boranes, structure and bonding in boranes. Wade’s rules. Reations of boranes. Polyhedral borane

anions and carboranes. Metal complexes of carboranes and boranes. Metal carbonyl and halide clusters.

Metal carbonyl hydrides.

Unit IV

Silicates

Classification and structure. Asbestos and zeolites. Silicates in technology.

Books suggested th

1 Advanced Inorganic Chemistry 6 Ed., F.A. Cotton and Wilkinson, John Wiley, (1999). th

2 Inorganic Chemistry, 4 Ed., J.E. Huheey, Harper & Row (2000).

10

Page 77: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

nd3 Chemistry of the Elements, 2 Ed., N.N. Greenwood and A. Earnshaw, Butterworth. Heinemann

(1997). nd

4 Inorganic Electronic Spectroscopy, 2 Ed., A.B.P. Lever, Elsevier (1986).

5 Magnetochemistry, R.L. Carlin, Springer Verlag (1986).

6 Comprehensive Coordination Chemistry Eds., G. Wilkinson, R.D. Gillars and J.A. McCleverty,

Pergamon (1987). th

7 Concise Inorganic Chemistry, J.D. Lee, 5 Ed., Chapman & Hall (1996). rd

8 Inorganic Chemistry, 3 Ed., Shriver & Atkins, Oxford (1999). rd

9 Inorganic Chemistry, 3 Ed., Alan G. Sharpe, Addison-Wesley (1992).

SOS/C008 Organic

Chemistry - II

L T P C MM

3 0 0 3 100

Unit I

Aromatic Electrophilic Substitution

Orientation and reactivity, energy profile diagrams. The ortho/para ratio, ipso attack, orientation in other

ring systems. Quantitative treatment of reactivity in substrate and electrophiles. Diazonium coupling,

Vilsmeir Haak reaction, Gattermann-Koch reaction.

Unit II

Aromatic Nuecleophilic Substitution

The SNAr, SN1, benzyne and SRN1 mechanisms. Reactivity- effect of substrate structure, leaving group

and attacking nucleopile. The von Rictor, Sommelet-Hauser, and Smiles rearrangements.

Unit III

Free Radical Reactions

Types of free radical reactions, free radical substitution mechanism, mechanism of an aromatic

substrate, neighboring group assistance. Reactivity for aliphatic and aromatic substrates at a bridgehead.

Reactivity in the attacking radicals. The effect of solvents on reactivity.

Allylic halogenation (NBS), oxidation of aldehydes to carboxylic acids, auto-oxidation, coupling of

alkynes and arylation of aromatic compounds by diazonium salts. Sandmeyer reaction. Free radical

rearrangement. Hunsdiecker reaction.

Unit IV

Addition to Carbon-Carbon Multiple Bonds

Mechanism and stereochemical aspects of addition reactions involving electrophiles, nucleophiles and

free radicals, regio- and chemoselectivity, orientation and reactivity. Addition to cyclopropane ring.

Hydrogenation of double and triple bonds, hydrogenation of aromatic rings. Hydroboration. Michael

reaction. Sharpless asymmetric epoxidation.

Unit V

Addition to Carbon-Hetero Multiple Bonds

Mechanism of metal hydride reduction of saturated and unsaturated carbonyl compounds, acids, esters

and nitriles. Wittig reaction.

Mechanism of condensation reactions involving enolates- Knoevenagel, Claisen, Mannich Benzoin,

Perkin and Stobbe reactions.

Hydrolysis of esters and amides, ammonolysis of esters.

11

Page 78: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Unit VI

Elimination Reactions

The E2, E1 and E1cB mechanisms and their stereochemistry. Orientation of the double bond.

Reactivity- effects of substrate structures, attacking base, the leaving group and the medium.

Mechanism and orientation in pyrolytic elimination.

Unit VII

Pericyclic Reactions

Molecular orbital symmetry, Frontier orbitals of ethylene, 1, 3-butadiene, 1, 3, 5-hexatriene and allyl

system. Classification of pericyclic reactions. Woodward-Hoffmann.

Correlation diagrams. FMO and PMO approach. Electrocyclic reactions-conrotatory and suprafacial

additions, 4n, and 4n+2 systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2

systems, 2+2 addition of ketenes, 1, 3 dipolar cycloadditions and cheleotropic reactions. Sigmatropic

rearrangements- suprafacial and antarafacial shiffs of H, sigmatropic shifts involving carbon moieties,

3,3- and 5,5- sigmatropic rearrangements. Claisen, Cope and aza- Cope rearrangements. Fluxional

tautomerism. Ene reaction.

Books suggested

1. Advanced Organic Chemistry- Reaction, Mechanism and Structure, Jerry March, John Wiley.

2. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Plenum.

3. A Guide Book to Mechanism in Organic Chemistry, Peter Sykes, Longman.

4. Structure and Mechanism in Organic Chemistry, C.K. Ingold, Cornell University Press.

5. Organic Chemistry, R.T. Morrison and R.N. Boyd, Prentice-Hall.

6. Modern Organic Reactions, H.O. House, Benjamin.

7. Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackwell.

8. Pericyclic Reactions, S.M. Mukherji, Macmillan, India.

9. Reaction Mechanism in Organic Chemistry, S.M. Mukherji and S.P. Singh, Macmillan.

10. Stereochemistry of Organic Compounds, D. Nasipuri, New Age International.

11. Stereochemistry of Organic Compounds, P.S. Kalsi, New Age International.

SOS/C009 Physical

Chemistry II

L T P C MM

3 0 0 3 100

Unit I

Chemical Dynamics

Methods of determining rate laws, collision theory of reaction rates, steric factor, activated complex

theory, Arrhenius equation and the activated complex theory; ionic reactions, kinetic salt effects, steady

state kinetics, kinetic and thermodynamic control of reactions, treatment of unimolecular reactions.

Dynamic chain (hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane),

photochemical (hydrogen-bromine and hydrogen-chlorine reactions) and oscillatory reactions

(Belousov-Zhabotinsky reaction), homogeneous catalysis, kinetics of enzymes reactions, general

features of fast reactions, study of fast reactions by flow method, relaxation method, flash photolysis and

the nuclear magnetic resonance method.

Dynamics of molecular motions, probing the transition state, dynamics of barrierless chemical reactions

in solution, dynamics of unimolecular reactions (Lindemann-Hinshelwood and Rice-Ramsperger-

Kassel-Marcus [RRKM] theories of unimolecular reactions).

12

Page 79: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Unit II

Statistical Thermodynamics

Concept of distribution, thermodynamic probability and most probable distribution. Ensemble

averaging, postulates of ensemble averaging. Canonical, grand canonical and microcanonical ensembles,

corresponding distribution laws- (using Lagrange’s method of undetermined multipliers).

Partition functions- translational, rotational, vibrational and electronic partition functions.

Calculation of thermodynamic properties in terms of partition functions. Applications of partition

functions.

Heat capacity behaviour of solids- chemical equilibria and chemical equilibrium constant in terms of

partition functions, Fermi-Dirac statistics, distribution law and applications to metal.

Bose-Einstein statistics – distribution law and application to helium.

Non-Equilibrium Thermodynamics

Thermodynamic criteria for non-equilibrium states, entropy production and entropy flow, entropy

balance equations for different irreversible processes (e.g., heat flow, chemical reaction etc.)

transformations of the generalized fluxes and forces, non-equilibrium stationary states,

phenomenological equations, microscopic reversibility and Onsager’s reciprocity relations,

electrokinetic phenomena, diffusion, electric conduction, irreversible thermodynamics for biological

systems, coupled reactions.

Unit III

Electrochemistry

Electrochemistry of solutions, Debye-Huckel, Onsager treatment and its extension, ion solvent

interactions.Thermodynamics of electrified interface equations. Structure of electrified interfaces. Guoy

Chapman, Stern. Over potentials, exchange current density, derivation of Butler-Volmer equation, Tafel

plot.

Semiconductor interfaces-theory of double layer at semiconductor, electrolyte solution interfaces,

structure of double layer interfaces. Electrocatalyis – influence of various parameters. Hydrogen

electrode. Bioelctrochemistry, threshold membrane phenomena. Polarography theory, Ilkovic equation,

half wave potential and its significance. Introduction to corrosion, homogeneous theory, forms of

corrosion, corrosion monitoring and prevention methods.

Books suggested

1. Physical Chemistry, P.W. Atkins, ELBS.

2. Coulson’s Valence, R. McWeeny, ELBS.

3. Modern Electrochemistry, Vol. I & II, J.O.M. Bockris and A.K.N. Reddy, Plenum.

6. Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill.

7. Quantum Chemistry, Ira N. Levine, Prentice Hall.

SOS/C010 Spectroscopy and

Separation Methods

L T P C MM

3 0 0 3 100

Unit I

Molecular Electronic Spectroscopy

Energy levels, molecular orbitals, vibronic transitions, vibrational progressions and geometry of excited

states, Franck-Condon principle, electronic spectra of polyatomic molecules. Emission spectra, radiative

and non-radiative decay, internal conversion, spectra of transition metal complexes, charge transfer

spectra.

13

Page 80: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Unit II

Raman Spectroscopy

Classical and quantum theories of Raman effect. Pure rotational, vibrational and vibrational-roatational

Raman spectroscopy, selection rules, mutual exclusion principle. Resonance Raman spectroscopy,

coherent anti Stokes Raman spectroscopy (CARS).

Unit III

Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy

Nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shift and its

measurement, factor influencing chemical shift, deshielding, spin-spin interaction, factors influencing

coupling constant ‘J’. Classification (ABX, AMX, ABC, A2B2 etc.), spin decoupling, basic ideas about 13 19 31

instrument, NMR studies of nuclei other than proton- C, F and P. FT NMR, advantages of FT NMR,

use of NMR in medical diagnostics.

Unit IV

Chromatographic Methods

Principle, instrumentation and applications of gas liquid chromatography and HPLC. Ion exchange

chromatography: cationic and anionic exchanges and their applications. Van-Deemter equation (no

derivation), concept about HEPT-plate theory and rate theory. Applications.

Unit V

Radio Analytical Methods

Basic principles and types of measuring instruments, isotope dilution techniques: principle of operations

and uses. Applications.

Books Suggested

1. Modern Spectroscopy, J.M. Hollas, John Wiley.

2. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, R.V. Parish, Ellis Horwood.

3. Physical Method for Chemistry, R.S. Drago, Saunders Company.

4. Introduction of Molecular Spectroscopy, G.M. Barrow, McGraw Hill.

5. Basic Principles of Spectroscopy, R. Chang, McGraw Hill.

6. Theory and Applications of UV Spectroscopy, H.H. Jaffe and M. Orchin, IBH-Oxford.

7. Introduction to Magnetic Resonance, A. Carrington, A.D. Maclachalan, Harper & Row.

8. High Performance Liquid Chromatography, Heinz Engelhardt.

9. Instrumental Methods of Chemical Analysis, Willard, Meritt, Dean & Settle (Wiley Eastern).

SOS/C011 Laboratory

Course-IIA

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical each

from Inorganic, Organic and Physical sections. Each exercise will be 20 marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

14

Page 81: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Inorganic Chemistry

Quantitative Analysis

Quantitative Analysis of mixtures of two metal ions involving Volumetric (by complexometric titration

using masking and demasking agents) and gravimetric analysis.

Organic Chemistry

Organic Synthesis

Acetoacetic ester Condensation: Synthesis of ethyl-n-butylacetoacetate by A.E.E. condensation.

Cannizzaro reaction: 4-Chlorobenzaldehyde as substrate

Aromatic electrophilic Substitutions: Synthesis of p-nitroaniline and p-bromoaniline.

The products may be characterized by Spectral Techniques where possible.

Physical Chemistry

Solutions

1. Determination of molecular weight of non-volatile and non-electrolyte/electrolyte by cryoscopic

method and to determine the activity coefficient of an electrolyte.

2. Determination of the degree of dissociation of weak electrolyte and to study the deviation from ideal

behaviour that occurs with a strong electrolyte.

SOS/C012 Laboratory

Course-IIB

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical each

from Inorganic, Organic and Physical sections. Each exercise will be 20 marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Inorganic Chemistry

Preparations

Preparation of selected inorganic compounds:

VO (acac)2

TiO (C9H8NO)2. 2H2O

cis-K[Cr(C2O4)2 (H2O)2]

Na[Cr(NH3)2(SCN)4]

Mn (acac)3

K3 [Fe (C2O4)3] 3H2O

Prussian Blue, Tumbull’s Blue

Co [(NH3)6] Cl3

[Cu (en)2 (H2O)2] I2

Cu2HgI4

15

Page 82: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

[Co (Py)2Cl2]

[Ni (NH3)6] Cl2

Tris-(thiourea) copper (I) sulphate [Cu (tu)3] SO4.2H2OK3[Cr (C2O4)3]

Organic Chemistry

Quantitative Analysis

Determination of the percentage or number of hydroxyl groups in an organic compound by acetylation

method.

Estimation of amines/phenols using bromate bromide solution/or acetylation method.

Determination of Iodine and Saponification values of an oil sample

Determination of DO, COD and BOD of water sample.

Physical Chemistry

Electrochemistry

Potentiometry/pH-metry

1. Determination of strengths of halides in a mixtures potentiometrically.

2. Determination of the valency of mercurous ions potentiometrically.

3. Determination of the strength of strong and weak acids in a given mixture using a

potentiometer/pH meter.

4. Determination of temperature dependence of EMF of a cell.

5. Determination of the formation constant of silver-ammonia complex and stiochiometry of the

complex potentiometrically.

6. Acid-base titration in a non-aqueous media using a pH meter.

7. Determination of activity and activity coefficient of electrolytes.

8. Determination of the dissociation constant of acetic acid in DMSO, DMF, acetone and dioxane by

titrating it with KOH.

9. Determination of the dissociation constant of monobasic/dibasic by Albert-Serjeant method.

10. Determination of thermodynamic constants ∆G, ∆S and ∆H for the reaction by e.m.f. method.

Zn + H2SO4 ZnSO4 + 2H

Semester- III

Inorganic Chemistry

SOS/C013 Laboratory Course-

IIIA Inorganic

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of 60

marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Preparation

16

Page 83: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Synthesis of selected inorganic compounds/complexes and their characterization by IR, electronic

spectra (UV & Visible), NMR, Mossbauer, ESR and magnetic susceptibility etc. measurement.

Selection can be made from the following or any other from the existing literature.

(i). Cis and Trans isomers of [Co(en)2Cl2] Cl.

J. Chem. Soc., 1960, 4369.

(ii). Metal acetylacetonates: Cr(acac)3; Vanadyl acetylacetonate, Cu(acac)2. H2O etc.

Inog. Synth., 1957, 5, 130; 1, 183.

(iii). Ferrocene

J. Chem. Edu., 1966, 43, 73; 1976, 53, 730.

(iv). Cr(III) complexes: [Cr(H2O)6](NO3)3.3H2O;[Cr(H2O)4 Cl2] Cl.2H2O; [Cr(en)3]Cl3

Inorg. Synth., 1972, 13, 184.

(v). Tin (IV) iodide, Tin (IV) chloride, Tin (II) iodide.

Inorg. Synth., 1953, 4, 119.

(vi). Mixed valence dinuclear complexes of manganese (III, IV).

(vii). Preparation of triphenyl phosphine and its transition metal complexes.

(viii). Reaction of Cr (III) with multidentate ligand, a kinetic experiment (visible spectra of Cr-EDTA

complex). J. Am. Chem. Soc., 1953, 75, 5670.

(ix). Other new synthesis reported in literature.

(x). Bromination of Cr (acac)3.

J. Chem. Edu., 1986, 63, 90.

(xi). Preparation of copper glycine complex-cis and trans bis glycinato copper (II).

J. Chem. Edu., 1982, 59, 1052.

(xii). Relative stability of Tin (IV) and Pb (IV), Preparation of ammonium

hexachlorostannate,(NH4)2SnCl6 and ammonium hexachloroplumbate; (NH4)2 PbCl6.

Books Suggested

1. Vogel’s Text Book of Qualitative Analysis, ELBS .

2. Vogel’s Text Book of Quantitative Analysis, ELBS.

3. Synthesis and Characterization of Inorganic Compounds, W.L. Jolly, Prentice Hall.

SOS/C014 Laboratory Course-IIIB

Inorganic

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of 60

marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Analysis of ores, alloys and inorganic substances by various chemical methods.

Books Suggested

4. Vogel’s Text Book of Qualitative Analysis, ELBS .

5. Vogel’s Text Book of Quantitative Analysis, ELBS.

6. Synthesis and Characterization of Inorganic Compounds, W.L. Jolly, Prentice Hall.

17

Page 84: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Books Suggested

SOS/C015 Organometallic

Chemistry

L T P C MM

3 0 0 3 100

I. Alkyls and Aryls of Transition Metals

Alkyls and aryls of transition metals, nature of metal carbon bond, routes of synthesis, stability and

decomposition pathways and their structure. Alkyls and aryls of s-block and p-block elements.

Comparison of such transition and non-transition element derivatives. Organocopper in organic

synthesis.

II. Compounds of Transition metal-carbon multiple bonds

Alkylidenes, alkylydines, low valent carbenes and carbynes-synthesis, nature of bond, structural

characteristics, nucleophilic and electrophilic reactions on the ligands, role in organic synthesis.

III. Transition Metal π-Complexes

Transition Metal π-Complexes with unsaturated organic molecules. Alkenes, alkynes, allyl, diene,

dienyl, arene and trienyl complexes; preparation, properties, nature of bonding and structural features.

Important reactions relating to nucleophilic and electrophilic attack on ligands and to organic synthesis.

IV. Metal Compounds with bonds to Hydrogen

Transition metal compounds with bonds to hydrogen.

V. Homogeneous Catalysis

Stoichiometric reactions for catalysis, homogeneous catalytic hydrogenation, Zeigler-Natta

polymerization of olefins, catalytic reactions involving carbon monoxide such as hydrocarbonylation of

olefins (oxo reaction), oxopalladation reaction, activation of C-H bond.

VI. Fluxional Organometallic Compounds 2 3

Fluxionality and dynamic equilibria in compounds such as η -olefin, η -allyl and dienyl complexes, their

characterization.

Books Suggested

1. Principle and Application of Organotransition Metal Chemistry, J.P. Collman, L.S. Hegsdus, J.P.

Norton and R.G. Finke. University Science Books.

2. The Organometallic Chemistry of the Transition Metals, R.H. Crabtree, John Wiley.

3. Metallo-organic Chemistry, A.J. Pearson, Wiley.

4. Organometallic Chemistry, R.C. Mehrotra and A. Singh; New Age International.

5. Organometallic Compounds, NLH Green, Chapman & Hall, U.K.

6. Principles of Organometallic Chemistry, G.E. Coates, MLH Green, P. Powell, Chapman & Hall,

U.K.

18

Page 85: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/E001 Spectroscopy, X-

ray and Solid State

L T P C MM

3 0 0 3 100

I. Ultraviolet and Visible Spectroscopy

Instrumentation, source, monochromators, detectors, single and double beam instruments,

applications.

II. Infrared Spectroscopy

Instrumentation, source, monochromators, optics of double beam instruments, detectors, sample

preparation, applications.

III. X-Ray Diffraction

Bragg condition, Miller indices, Laue method, Bragg method, Debye-Scherrer method of X-ray

structural analysis of crystals, index reflections, identification of unit cells from systematic

absences in diffraction pattern. Structure of simple lattices and X-ray intensities, structure factor

and its relation to intensity and electron density, phase problem. Description of the procedure for

an X-ray structure analysis, absolute configuration of molecules, Ramchandran diagram.

IV. Electron Diffraction

Scattering intensity vs. scattering angle, Wire equation, measurement technique, elucidation of

structure of simple gas phase molecules. Low energy electron diffraction and structure of

surfaces.

V. Neutron Diffraction

Scattering of neutrons by solids and liquids, magnetic scattering, measuring techniques.

Elucidation of structure of magnetically ordered unit cell.

VI. Solid State Chemistry

Solid State Reactions

General principles, experimental procedures, co-precipitation as a precursor to solid state

reactions, kinetics of solid state reactions.

Books Suggested:

1. Physical Methods for Chemistry, R.S. Drago, Saunders Company.

2. Structural Methods in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S.

Cradock, ELBS.

3. Infrared and Raman Spectra: Inorganic and Coordination Compounds, K. Nakamoto,

Wiley.

4. Inorganic Electronic Spectroscopy, A.P.B. Lever, Elsevier.

5. Solid State Chemistry and its Applications, A.R. West, Plenum.

6. Solid State Chemistry, D.K. Chakrabarty, New Age International.

7. Symmetry and Spectroscopy, K. Veera Reddy, New Age International, 1998. th

8. Instrumental Methods of Analysis, Willard et al., 7 Edn., CBS Publishers.

19

Page 86: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/E002 Bioinorganic, Bioorganic

Biophysical Chemistry-I L T P C MM

3 0 0 3 100

A) Bioinorganic Chemistry

+ +I. Metal Ions in Biological Systems, Na /K Pump

Essential and trace metals. Role of metal ions in biological processes. Na+/K

+ Pump.

II. Bioenergetics and ATP Cycles

DNA polymerization, glucose storage, metal complexes in transmission of energy; chlorophylls,

photo system I and photo system II in cleavage of water. Model systems.

III. Transport and Storage of Dioxygen

Heme proteins and oxygen uptake, structure and function of hemoglobin, myoglobin,

hemocyanins and hemerythrin, model synthetic complexes of iron, cobalt and copper.

B) Bioorganic Chemistry

I. Enzymes & Mechanism of Enzyme Action

Introduction and historical perspective, chemical and biological catalysis, properties of enzymes-

catalytic power, specificity and regulation. Fischer’s lock and Koshland’s induced fit hypothesis,

concept and identification of active site by the use of inhibitors, affinity labeling and enzyme

modification by site-directed, mutagenesis. Enzyme kinetics, Michaelis-Menten and Lineweaver-

Burk plots, reversible and irreversible inhibition. Transition-state theory, acid-base catalysis,

covalent catalysis, strain of distortion. Examples of some typical enzyme mechanisms for

chymotrypsin, ribonuclease, lysozyme and carboxypeptidase A.

II. Kinds of Reactions Catalysed by Enzymes

Nucleophillic displacement on a phosphorus atom, multiple displacement reactions and the

coupling of ATP cleavage to endergonic processes. Transfer of sulphate, addition and

elimination reactions, enolic intermediates in isomerization reactions, -cleavage and

condensation, some isomerization and rearrangement reactions. Enzyme catalyzed carboxylation

and decarboxylation.

C) Biophysical Chemistry

I. Biological Cell and its Constituents, Cell Membrane and Transport of Ions

Biological cell, structure and functions of proteins, enzymes, DNA and RNA in living systems.

Helix coil transition. Structure and functions of cell membrane, ion transport through cell

membrane.

II. Bioenergetics

Standard free energy change in biological reactions, exergonic, endergonic. Hydrolysis of ATP,

synthesis of ATP from ADP.

Books Suggested

1. Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.

2. Bioinorganic Chemistry, I. Berteni, H.B. Gray, S.J. Lippard and J.S. Valentine, University

Science Books.

20

Page 87: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

3. Bioinorganic Chemistry: A Chemical Approach to Enzyme Action, Hermann Dugas and C.

Penny, Springer-Verlag.

4. Understanding Enzymes, Trevor Palmer, Prentice Hall.

5. Enzyme Chemistry: Impact and Applications, Ed. Colliins J Sucking, Chapman and Hall.

6. Enzymes Mechanism Ed, M.I. Page and A. Williams, Royal Society of Chemistry.

7. Fundamentals of Enzymology, N.C. Price and L. Stevens, Oxford University Press.

8. Immobilized Enzymes: An Introduction and Applications in Biotechnology, Michael D. Trevan,

John Wiley.

9. Enzymatic Reaction Mechanism, C. Walsh, W.H. Freeman.

10. Enzymatic Structure and Mechanism, W.H. Freeman.

11. Principles of Biochemistry, A.L. Lehninger, Worth Publishers.

12. Biochemistry, L. Stryer, W.H. Freeman.

13. Biochemisty, J. David Rawn, Neil Patterson.

14. Biochemistry, Voet and Voet, John Wiley.

15. Outlines of Biochemistry, E.E. Conn and P.K. Stumpf, John Wiley.

16. Macromolecules: Structure and function, F. World, Prentice Hall.

SOS/E003 Bioinorganic and

Supramolecular

Chemistry

L T P C MM

3 0 0 3 100

Unit I

Metal Storage Transport and Biomineralization

Ferritin, Transferrin, and siderophores

Unit II

Calcium in Biology

Calcium in living cells, transport and regulation, molecular aspects of intramolecular processes,

extracellular binding proteins.

Unit III

Metalloenzymes

Zinc enzymes-carboxypeptidase and carbonic anhydrase. Iron enzymes-catalase, peroxidase and

cytochrome P-450. Copper enzymes-superoxide dismutase. Molybdenum oxatransferase enzymes-

xanthine oxidase. Coenzymes vitamin B12.

Unit IV

Metal-Nucleic Acid Interactions

Metal ions and metal complex interactions. Metal complexes-nucleic acids.

Unit V

Metals in Medicine

Metal deficiency and disease, toxic effects of metals, metals used for diagnosis and chemotherapy with

particular reference to anticancer drugs.

Unit VI

Supramolecular Chemistry

Molecular recognition: Molecular receptors for different types of molecules including arisonic

substrates, design and synthesis of co-receptor molecules and multiple recognition. H-bonds in

supramolecular structures. Use of H-bond in crystal engineering and molecular recognition. Chelate and

21

Page 88: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

macrocyclic effects. Cation binding hosts, binding of anions, binding of neutral molecules, binding of

organic molecules. Supramolecular reactivity and catalysis. Transport processes and carrier design.

Supramolecular devices, supramolecular photochemistry, supramolecular electronic, ionic and switching

devices. Some examples of self-assembly in supramolecular chemistry.

Books Suggested

1. Supramolecular Chemistry, J.M. Lehn, VCH.

2. Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.

3. Bioinorganic Chemistry, I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University Science

Books.

4. Inorganic Biochemistry, vols I and II. Ed. G.L. Eichhorn, Elsevier.

5. Progress in inorganic Chemistry, vols 18 and 38 ed. J.J. Lippard, Wiley.

SOS/E004 Analytical Chemistry

L T P C MM

3 0 0 3 100

Unit I

Introduction

Role of analytical chemistry. Classification of analytical methods-classical and instrumental. Types of

instrumental analysis. Selecting an analytical method. Neatness and cleanliness. Laboratory operations

and practices. Analytical balance. Techniques of weighing, errors. Volumetric glassware-cleaning and

calibration of glassware. Sample preparations-dissolution and decompositions. Gravimetric techniques.

Selecting and handling of reagents. Laboratory notebooks. Safety in the analytical laboratory.

Unit II

Errors

Determinate and indeterminate errors, minimization of determinate errors, random distribution of

indeterminate errors.

Unit III

Statistical data analysis

Accuracy and precision, significant figures and computations, mean and standard deviation, distribution

of random errors, reliability of results, confidence interval, comparison of results, comparison of means

of two samples, paired t-test, number of replicate determinations and its use, correlation and regression,

linear regression, analysis of variance, rejection of data.

Unit IV

Application of analytical chemistry in the study of water and soil pollutions, analysis of fuel, body fluids

and drugs

Books Suggested

1. Analytical Chemistry, G.D. Christian, J. Wiley.

2. Fundamentals of Analytical Chemistry, D.A. Skoog, D.M. West and F.J. Holler, W.B. Saunders.

3. Analytical Chemistry-Principles, J.H. Kennedy, W.B. Saunders.

4. Analytical Chemistry-Principles and Techniques, L.G. Hargis, Prentice Hall.

5. Principles of Instrumental Analysis, D.A. Skoog and J.L. Loary, W.B. Saunders.

22

Page 89: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

6. Quantitative Analysis, R.A. Day, Jr. and A.L. Underwood, Prentice Hall.

7. Environmental Solution Analysis, S.M. Khopkar, Wiley Eastern.

8. Basic Concepts of Analytical Chemistry, S.M. Khopkar, Wiley Eastern.

9. Handbook of Instrumental Techniques for Analytical Chemistry, F. Settle, Prentice Hall.

Organic Chemistry

SOS/C016 Laboratory Course-

Org IIIA

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of 60

marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Qualitative Analysis

Separation, purification and identification of the components of a mixture of three organic compounds

(three solids or two liquids and one solid, two solids and one liquid), using TLC for checking the purity

of the separated compounds. Preparation of derivatives and spectral analysis.

Books Suggested

1. Introduction to Organic Laboratory Techniques (Third Edition), DL Pavia, GM Lampman and GS

Kriz, Saunders College Publishing, Philadelphia, New York.

2. Operational Organic Chemistry, A Laboratory Course, Second Edition, JW Lehman, Allyn & Bacon,

Inc. Boston.

3. Microscale Organic Experiments KL Willianson, DC Health & Co. Le Xington.

4. Laboratory Manual of Organic Chemistry, RK Bansal, New Age International, Delhi.

SOS/C017 Laboratory

Course-Org IIIB

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of 60

marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

Multi-step Synthesis of Organic Compounds

The exercise should illustrate the use of organic reagents and may involve purification of the products

by chromatographic techniques.

Photochemical reaction Benzophenone Benzpinacol Benzpinacolone

Beckmann rearrangement: Benzanilide from benzene

Benzene Benzophenone Benzophenone oxime Benzanilide

23

Page 90: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Benzilic acid rearrangement: Benzilic acid from benzoin

Benzoin Benzil Benzilic acid

Synthesis of heterocyclic compounds

Skraup synthesis: Preparation of quinoline from aniline. Fisher-Indole synthesis: Preparation of 2-phenyl

indole from phenylhydrazine.

Enzymatic Synthesis

Enzymatic reduction: Reduction of ethyl acetoacetate using Baker’s yeast to yield enantiomeric excess

of S (+) ethyl-3-hydroxybutanoate and determine its optical purity.

Biosynthesis of ethanol from sucrose

Synthesis using microwaves

Alkylation of diethyl malonate with benzyl chloride.

Synthesis using phase transfer catalyst.

Alkylation of diethyl malonate or ethylacetoacetate with an alkyl halide.

Books Suggested

1. Introduction to Organic Laboratory Techniques (Third Edition), DL Pavia, GM Lampman and

GS Kriz, Saunders College Publishing, Philadelphia, New York.

2. Operational Organic Chemistry, A Laboratory Course, Second Edition, JW Lehman, Allyn &

Bacon, Inc. Boston.

3. Microscale Organic Experiments KL Willianson, DC Health & Co. Le Xington.

4. Laboratory Manual of Organic Chemistry, RK Bansal, New Age International, Delhi.

SOS/C018

Organic

Synthesis and

Photochemistry

L T P C MM

3 0 0 3 100

Unit I

Disconnection Approach

An introduction to synthons and synthetic equivalents disconnection approach, functional group

interconversions, the importance of order of events in organic synthesis, one group C-X and two group

C-X disconnections, chemoselectivity, reversal of polarity, cyclisation reactions and amine synthesis.

Unit II

Protecting Groups

Principle of protection of alcohols, amine, carbonyl and carboxyl groups

Unit III

One Group and Two Group C-C Disconnections

Alcohols and carbonyl compounds regioselectivity. Alkene synthesis, use of acetylenes and aliphatic

nitro compounds in organic synthesis. Diels-Alder reaction, 1,3-difunctional compounds, α,β-

unsaturated carbonyl compounds, control in carbonyl condensations. Micheal addition and Robinson

annelation.

Unit IV

24

Page 91: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Determination of Reaction Mechanism Classification, rate constants and life times of reactive energy states-determination of rate constants of

reactions. Effect of light intensity on the rate of photochemical reactions. Types of photochemical

reactions, photo-dissociation, gas-phase photolysis.

Unit V

Photochemical Reactions

Intramolecular reactions of the olefinic bond-geometrical isomerism, cyclisation reactions,

rearrangement of 1,4-and 1,5-dienes.

Intramolecular reactions of carbonyl compounds-saturated cyclic and acyclic, β,γ-unsaturated and α,β-

unsaturated compounds. Cyclohexadienones.

Intramolecular cycloaddition reactions-dimerisation and oxetane formation.

Isomerisation, additions and substitutions.. Photo-Fries rearrangement, Barton reaction.

Books Suggested

1. Modern Synthetic Reactions, H.O. House, W.A. Benjamin.

2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge Univ. Press.

3. Advanced Organic Chemistry, Reactions Mechanisms and Structure, J. March, John Wiley.

4. Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professional.

5. Advanced Organic Chemistry Part B, F.A. Carey and R.J. Sundberg, Plenum Press.

6. Rodd’s Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.

7. Designing Organic Synthesis, S. Warren, Wiley.

8. Organic Synthesis-Concept, Methods and Starting Materials, J. Fuhrhop and G. Penzillin, Verlag

VCH.

9. Fundamentals of Photochemistry, K.K. Rohtagi-Mukherji, New Age International

10. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Scientific Publication

11. Molecular Photochemistry, N.J. Turro, W.A. Benjamin

12. Introductory Photochemistry, A. Cox and T. Camp, McGraw Hill

13. Photochemistry, R.P. Kundall and A. Gilbert, Thomson Nelson

14. Organic Photochemistry, J. Coxon and B. Halton, Cambridge University Press

SOS/E002 Bioinorganic Chemistry,

Bioorganic Chemistry,

Biophysical Chemistry-I

L T P C MM

3 0 0 3 100

SOS/E005 Spectroscopy

and Solid State

L T P C MM

3 0 0 3 100

Unit I

Ultraviolet

and Visible Spectroscopy

Effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated

carbonyl compounds, dienes, conjugated polyenes. Fieser-Woodward rules for conjugated dienes and

carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds.

Unit II

Infrared Spectroscopy

25

Page 92: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

General idea of the vibrational frequencies of aliphatic and aromatic hydrocarbons, amines, carbonyl

compounds, acid and acid derivatives and conjugated carbonyl compounds, effect of hydrogen bonding

and solvent on IR.

Unit III

Optical Rotatory Dispersion (ORD) and Circular Dichroism (CD)

Definition, deduction of absolute configuration and octant rule for ketones.

Unit IV

Solid State Chemistry

(a).Solid State Reactions

General principles, experimental procedures, co-precipitation as a precursor to solid state reactions,

kinetics of solid state reactions.

(b).Organic Solids, Fullerene, Molecular devices

Electrically conducting solids, organic charge transfer complex, organic metals, magnetism in organic

materials, fullerenes and doped fullerenes, organic superconductors, molecular rectifiers, transistors,

artificial photosynthetic devices, molecular memory, switches and sensors.

Books Suggested

1. Physical Method for Chemistry, R.S. Drago, Saunders Company.

2. Structural Method in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock,

ELBS.

3. Infrared and Raman Spectra: Inorganic and Coordination Compounds, K. Nakamoto, Wiley.

4. Inorganic Electronic Spectroscopy, A.P.B. Lever, Elsevier.

5. Solid State Chemistry and its Applications, A.R. West, Plenum.

6. Solid State Chemistry, D.K. Chakrabarty, New Age International.

SOS/E006 Organometallic

Reagents and Organic

Synthesis

L T P C MM

3 0 0 3 100

Unit I

Principles, preparations, properties and applications of the following in organic synthesis with

mechanistic details.

Group I and II metal organic compounds Li and Hg compounds. Transition metals

Pd, Ni and Cr compounds.

Other elements Si and B compounds.

Unit II

Oxidation

Introduction. Different oxidative processes.

Hydrocarbons- alkenes, aromatic rings, saturated C-H groups (activated and inactivated).

26

Page 93: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Alcohols, diols, aldehydes, ketones, ketals and carboxylic acids.

Amines, hydrazines, and sulphides.

Oxidations with ruthenium tetraoxide, iodobenzene diacetate and thallium (III) nitrate.

Unit III

Reduction

Introduction. Different reductive processes.

Reduction of hydrocarbons- alkenes, alkynes and aromatic rings.

Reduction of carbonyl compounds (aldehydes, ketones, acids and their derivatives). Epoxides.

Reduction of nitro, nitroso, azo and oxime groups.

Hydrogenolysis.

Unit IV

Rearrangements

General mechanistic considerations-nature of migration, migratory aptitude, memory effects

A detailed study of the following rearrangements

Wagner-Meerwein, Demjanov, Benzil-Benzilic acid, Favorskii, Arndt-Eistert synthesis, Neber, Curtius,

Schmidt, Baeyer-Villiger, Shapiro reaction

Unit V

Metallocenes, Nonbenzenoid Aromatics and Polycyclic Aromatic Compounds

General considerations, synthesis and reactions of some representative compounds

Books Suggested

1. Modern Synthetic Reactions, H.O. House, W.A. Benjamin.

2. Some Modern Methods of Organic Synthesis, W. Carruthers, Cambridge Univ. Press. th

3. Advanced Organic Chemistry, Reactions Mechanisms and Structure, J. March, 6 Edn., John Wiley.

4. Principles of Organic Synthesis, R.O.C. Norman and J.M. Coxon, Blackie Academic & Professional.

5. Advanced Organic Chemistry Part B, F.A. Carey and R.J. Sundberg, Plenum Press.

6. Rodd’s Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.

7. Designing Organic Synthesis, S. Warren, Wiley.

8. Organic Synthesis-Concept, Methods and Starting Materials, J. Fuhrhop and G. Penzillin, Verlag

VCH.

SOS/E007 Medicinal

Chemistry

L T P C MM

3 0 0 3 100

Unit I

Drug Design

Development of new drugs, procedures followed in drug design, concepts of lead compound and lead

modification, concepts of prodrugs and soft drugs, structure-activity relationship (SAR) factors affecting

bioactivity, resonance, inductive effect, isosterism, bio-isosterism, spatial considerations. Theories of

drug activity: occupancy theory, rate theory, induced fit theory. Quantitative structure activity

relationship. History and development of QSAR. Concepts of drug receptors. Elementary treatment of

drug receptor interactions. Physico-chemical parameters: lipophilicity, partition coefficient, electronic

27

Page 94: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

ionization constant, steric, Shelton and surface activity parameters and redox potentials. Free Wilson

analysis, Hansch analysis, relationships between Free-Wilson and Hansch analysis. LD-50, ED-50

(Mathematical derivations of equations excluded).

Unit II

Pharmacokinetics

Introduction to drug absorption, disposition, elimination using pharmacokinetics, important

pharmacokinetic parameters in defining drug disposition and in therapeutics. Mention of uses of

pharmacokinetics in drug development process.

Unit III

Pharmacodynamics

Introduction, elementary treatment of enzyme stimulation, enzyme inhibition, sulphonamides,

membrane active drugs, drug metabolism, xenobiotic, biotransformation, significance of drug

metabolism in medicinal chemistry.

Unit IV

Antineoplastic Agents

Introduction, cancer chemotherapy, special problems, role of alkylating agents and antimetabolites in

treatment of cancer. Mention of carcinolytic antibiotics and mitotic inhibitors. Synthesis of

mechlorethamine, cyclophosphamide, melphalan, uracil, mustards, and 6-mercaptopurine. Recent

development in cancer chemotherapy. Hormone and natural products.

Unit V

Antibiotics

Cell wall biosynthesis inhibitors, β-lactam rings, antibiotics inhibiting protein synthesis. Synthesis of

penicillin G, penicillin V, ampicillin, amoxycillin, chloramphenicol, cephalosporin, tetracycline and

streptomycin.

Books suggested

1. Introduction to Medicinal Chemistry, A. Gringuage, Wiley-VCH.

2. Wilson and Gisvold's: Text Book of Organic Medicinal and Pharmaceutical Chemistry, Ed. Robert

F. Dorge.

3. An Introduction to Drug Design, S.S. Pandeya and J.R. Dimmock, New Age International.

4. Burger's Medicinal Chemistry and Drug Discovery, Vol-I, Ed. M.E. Wolff, John Wiley.

5. Goodman and Gilman's Pharmacological Basis of Therapeutics, McGraw-Hill.

6. The Organic Chemistry of Drug Design and Drug Action, R.B. Silverman, Academic Press.

7. Strategies for Organic Drug Synthesis and Design, D. Lednicer, John Wiley.

Physical Chemistry

SOS/C019 Laboratory

Course Phy.IIIA

L T P C MM

0 0 9 3 100

28

Page 95: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Note: The duration of examination will be of eight hours. Students are required to do one practical of 60

marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

1. Verification of the law of photochemical equivalence.

2. Order of reaction by:

(a). Isolation Method.

(b). Half life period method

(c). Integration method

3. Temperature coefficient of a reaction.

4. Energy of activation of a reaction.

5. Entropy of a reaction.

6. Determination of pH by following methods:

(a). Electrical Conductivity.

(b). E.M.F.

(c). Polarography

SOS/C020 Laboratory

Course Phy.-IIIB

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of 60

marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

1. Hydrolysis of the salts by following methods:

(a). Cryoscopic

(b). Electrical Conductivity.

(c). E.M.F.

2. Study of complex formation by the following methods and determination of stability constant

wherever practicable:

(a). Cryoscopic

(b). Electrical Methods.

(c). E.M.F.

3. Determination of solubility of sparingly soluble salts by the following methods:

(a). Electrical Conductivity.

(b). E.M.F.

4. Dissociation constants of polybasic acids.

SOS/C021 Chemistry of

Materials

L T P C MM

3 0 0 3 100

Unit I

29

Page 96: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Multiphase Materials

Ferrous alloys; Fe-C phase transformations in ferrous alloys; stainless steels, non-ferrous alloys,

properties of ferrous and non-ferrous alloys and their applications

Unit II

Glasses, Ceramics, Composites and Nanomaterials

Glassy state, glass formers and glass modifiers, applications. Ceramic structures, mechanical properties,

clay products. Refractories, characterizations, properties and applications.

Microscopic composites; dispersion-strengthened and particle-reinforced, firbe-reinforced composites,

macroscopic composites. Nanocrystalline phase, preparation procedures, special properties, applications.

Unit III

Thin Films and Langmuir-Blodgett Films

Preparation techniques; evaporation/sputtering, chemical processes, MOCVD, sol-gel etc.

Langmuiur-Blodgett (LB) film, growth techniques, photolithography, properties and applications of thin

and LB films.

Unit IV

Liquid Crystals

Mesomorphic 30ehavior, thermotropic liquid crystals, positional order, bond orientational order, nematic

and smectic mesophases; smectic-nematic transition and clearing temperature-homeotropic, planar and

schlieren textures, twisted nematics, chiral nematics, molecular arrangement in smectic C phases, optical

properties of liquid crystals. Dielectric susceptibility and dielectric constants. Lyotropic phases and their

description of ordering in liquid crystals.

Unit V

Polymeric Materials

Molecular shape, structure and configuration, crystallinity, stress-strain 30ehavior, thermal 30ehavior,

polymer types and their applications, conducting and ferro-electric polymers.

Unit VI

Ionic Conductors

Types of ionic conductors, mechanism of ionic conductors, interstitial jumps (Frenkel); vacancy

mechanism, diffusion superionic conductors; phase transitions and mechanism of conduction in

superionic conductors, examples and applications of ionic conductors.

Unit VII

High Tc Materials

Defect perovskites, high Tc superconductivity in cuprates, preparation and characterization of 1-2-3 and

2-1-4 materials, normal state properties; anisotropy; temperature dependence of electrical resistance;

optical phonon modes, superconducting state; heat capacity; coherence length, elastic constants, position

lifetimes, microwave absorption-pairing and multigap structure in high Tc materials, applications of high

Tc materials.

Books Suggested

1. Solid State Physics, N.W. Ashcroft and N.D. Mermin, Saunders College.

2. Material Science and Engineering, An Introduction, W.D. Callister, Wiley.

3. Principles of the Solid State, H.V. Keer, Wiley Eastern.

4. Materials Science, J.C. Anderson, K.D. Leaver, J.M. Alexander and R.D. Rawlings, ELBS.

5. Thermotropic Liquid Crystals, Ed., G.W. Gray, John Wiley.

6. Handbook of Liquid Crystals, Kelker and Hatz, Chemie Verlag.

30

Page 97: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

7. Inorganic Materials:Recent Advances,Editors D.Bahadur et al.,Narosa

8. Ion Conducting Materials: Theory and Applications, Editor A. R. Kulkarni, Narosa.

SOS/E001

Spectroscopy, X-

ray and Solid State

L T P C MM

3 0 0 3 100

SOS/E002

Bioinorganic,

Bioorganic &

Biophysical

Chemistry-I

L T P C MM

3 0 0 3 100

SOS/E004 Analytical Chemistry

L T P C MM

3 0 0 3 100

SOS/E008 Liquid State

L T P C MM

3 0 0 3 100

Unit I

General Properties of Liquids

(a) Liquids as dense gases, liquids as disordered solids, some thermodynamics relations, internal

pressure and its significance in liquids. Equations of state, critical constants. Different types of

intermolecular forces in liquids, different potential functions for liquids. Additivity of pair potential

approximation.

(b) A classical partition function for liquid for liquids, correspondence principle, configuration integral,

configuration properties.

Unit II

Theory of Liquids

Theory of liquids, partition function method or model approach, single cell models, communal energy

and entropy, LTD model, significant structure model.

Unit III

Distribution Function and Related Equations

Radial distribution function method, equation of state in terms of RDF, Molecular distribution functions,

pair distribution function. Relationship between pair distribution function and pair potential function.

The IBG equation, the HNC equation, the PY equation, cluster expansion.

Unit IV

Methods for Structure Determination and Computational Techniques

Spectroscopic techniques for liquid dynamic structure studies, Neutron and X-ray scattering

spectroscopy.

Computation Techniques- Monte Carlo and molecular dynamics methods.

Unit V

Supercooled and Ionic Liquids.

31

Page 98: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Supercooled and ionic liquids, theories of transport properties; non Arrhenius 32ehavior of transport

properties, Cohen-Turnbull free volume model, configurational entropy model, Macedo-Lltovitz hybrid

model, glass transition in supercooled liquids.

Books Suggested

1. An Introduction to Liquid State, P.A. Egeistaff, Academic Press.

2. The Dynamic Liquid State, A.F.M. Barton, Longman.

3. Introduction to Statistical Thermodynamics, T.L. Hill, Addison Wiley.

4. The Liquid State, J.A. Pryde.

5. Significant Liquid Structures, H. Eyring and M.S. John.

SEMESTER IV

Inorganic Chemistry

SOS/C022 Laboratory Course-

Inorg. IVA

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do two practical of

30 marks each.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

I. Spectrophotometric Determinations

(a). Manganese/chromium/vanadium in steel sample.

(b). Nickle/molybdenum/tungsten/vanadium/uranium by extractive Spectrophotometric method.

(c). Fluoride/nitrite/phosphate.

(d). Iron-phenanthroline complex: Job’s Method of continuous variation.

(e). Zirconium-alizarin Red-S complex: Mole-ratio method.

(f). Copper-ethylene diamine complex: Slope –ratio method.

II. Flame Photometric Determinations

(a). Sodium and Potassium when present together.

(b). Lithium/Calcium/barium/strontium.

(c). Cadmium and magnesium in tap water.

SOS/C023 Laboratory Course-

Inorg. IVB

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do two practicals of

30 marks each.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

I. Nephelometric Determinations

(a). Sulphate

(b). Phosphate

32

Page 99: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

(c). Silver

II. Chromatographic separations: Paper or TLC and determination of Rf values:

(a). Cadmium and Zinc.

(b). Silver, Lead and Mercury.

(c). Nickel, Magnesium, Cobalt and Zinc.

SOS/C024 Inorganic

Polymers

L T P C MM

3 0 0 3 100

Unit I

Inorganic polymer synthesis, step-growth and step condensation synthesis of metal containing polymers.

Unit II

Condensation of functionalised metal containing species, condensation through bridged ligand

coordination, bridging ligand formation during condensation, synthesis of main group condensation

polymer.

Unit III

Polycarboranes, polycarbosilanes, polythalocyanines, polysiloxanes.

Unit IV

Chain polymerisations, radical and cationic polymerisations.

Unit V

Inorganic polymer characterization, methods of characterizing average molecular masses.

Unit VI

Glass transition temperature measurement, spectroscopic characterization specific to inorganic

polymers, use of NMR and EPR in characterization of inorganic polymers, use of electronic, vibrational,

Mossbauer spectroscopies in charaterization of inorganic polymers, visco-elasticity measurements.

Crystallinity characterization.

Unit VII

Polymer elastomers, inorganic dental polymers, adhesives, inorganic high temperature fluids and

lubricants.

Unit VIII

Inorganic polymer conductivity, metal containing polymers, metal containing polymers in non linear

optics, luminescent inorganic polymers.

Books suggested

1. Inorganic and Organometallic Polymers, Ronald D. Archer, Wiley VCH, 2001.

2. Inorganic Polymers, J. E. Mark et al., Prentice Hall, 1992.

33

Page 100: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/E009 Spectroscopy

L T P C MM

3 0 0 3 100

Unit I

Electron Spin Resonance Spectroscopy

Principle and theory, Kramer degeneracy, g factor, electron-nuclear coupling (hyperfine structure), line

shape and width, Mc Connell relationship, endor and eldor, electron-electron coupling. Techniques of

measurement, application of ESR to organic free radicals and to transitional metal complexes (having

and unpaired electron) including biological systems.

Unit II

Mossbauer Spectroscopy

Basic principles, spectral parameters and spectrum display. Fine structure, application of the technique 2+ 3+ 2+ 4+

to the studies of (1) bonding and structure of Fe and Fe compounds (2) Sn and Sn compounds,

detection of oxidation state and in equivalent MB atoms.

Unit III

Nuclear Magnetic Resonance Spectroscopy

(a). Chemical shift values for protons bonded to carbon (aliphatic, olelinic, aldehydic and aromatic)

and other nuclei (alcohols, phenols, carboxylic acids, amines, amides), chemical exchange, effects

of deuteration, Karplus curve-variation of coupling constant with dihedral angle.

(b). Carbon-13 NMR Spectroscopy

General consideration, chemical shift (aliphatic, olefinic, alkyne, aromatic, heteroaromatic and

carbonyl compound), coupling constants.

Unit IV

Mass Spectrometry

Principle and theory, fundamental mass equation, ionization methods, odd and even electron ions, base

peak, isotopic ions, fragmentation patterns, Mc Lafferty rearrangement and RD cleavage, application of

mass spectrometry to the structure elucidation of organic molecules

Unit V

Photoelectron Spectroscopy

Basic principles, photoelectric effect, ionization process, Koopman’s Theorem, photoelectron spectra of

simple molecules, ESCA, chemical information from ESCA, Auger electron spectroscopy-basic idea.

Books Suggested

1. Physical Method for Chemistry, R.S. Drago, Saunders Company.

2. Structural Method in Inorganic Chemistry, E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock, ELBS

3. NMR, NQR, EPR and Mossbauer Spectroscopy in Inorganic Chemistry, R.V. Parish, Ellis Horwood.

4. Practical NMR Spectroscopy, M.L. Martin, J.J. Delpeuch and G.J. Martin, Heyden.

5. Spectrometric Identification of Organic Compounds, R.M. Silverstein, G.C. Bassler and T.C.

Morrill, John Wiley.

6. Introduction to NMR Spectroscopy, R.J. Abraham, J. Fisher and P. Loftus, Wiley.

7. Spectroscopic Methods in Organic Chemistry, D.H. Williams, I. Fleming, Tata McGraw-Hill.

8. Introduction to Spectroscopy, D.L. Pavia, G.M. Lampman, G.S. Kritz, Thompson Asia Pvt. Ltd.,

Singapore.

9. Electronic spectroscopy, D.N. Sathyanarayan, Universities Press.

10. Interpretation of Mass Spectra, F.W. McLafferty, University Science Books,California.

34

Page 101: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/E010 Bioinorganic, Bioorganic, Biophysical

Chemistry-II

L T P C MM

3 0 0 3 100

Unit I

Bioinorganic Chemistry

1. Electron Transfer in Biology

Structure and function of metalloproteins in electron transport processes-cytochromes and ion-

sulphur proteins, synthetic models.

2. Nitrogenase

Biological nitrogen fixation, molybdenum nitrogenase, spectroscopic and other evidence, other

nitrogenases model systems.

Unit II

Bioorganic Chemistry

1. Co-Enzyme Chemistry

Cofactors as derived from vitamins, coenzymes, prosthetic groups, apoenzymes. Structure and

biological functions of coenzyme A, thiamine pyrophosphate, pyridoxal phosphate, NAD+, NADP

+,

FMN, FAD, lipoic acid, vitamin B12. Mechanisms of reactions catalyzed by the above cofactors.

2. Enzyme Models

Host-guest chemistry, chiral recognition and catalysis, molecular recognition, molecular asymmetry

and prochirality. Biomimetic chemistry, crown ethers, cryptates. Cyclodextrins, cyxlodextrin-based

enzyme models, calixarenes, ionophores, micelles, synthetic enzymes.

3. Biotechnological Applications of Enzymes

Large-scale production and purification of enzymes, techniques and methods of immobilization of

enzymes, use of enzymes in food and drink industry, brewing and cheese-making, syrups from corn

starch, enzymes as targets for drug design. Clinical uses of enzymes, enzyme therapy, enzymes and

recombinant DNA technology.

Unit III

Biophysical Chemistry

1. Statistical Mechanism in Biopolymers

Chain configuration of macromolecules, statistical distribution, end-to-end dimensions, calculation

of average dimensions for various chain structures. Polypeptide and protein structures, introduction

to protein folding problem.

2. Biopolymer Interactions, Thermodynamics of Biopolymer Solutions

Forces involved in biopolymer interactions. Electrostatic charge and molecular expansion,

hydrophobic forces, dispersion force interactions. Multiple equilibria and various types of binding

processes in biological systems. Thermodynamics of biopolymer solutions, osmotic pressure,

membrane equilibrium, muscular contraction and energy generation in mechanochemical system.

3. Biopolymers and their Molecular Weights

Evaluation of size, shape, molecular weight and extent of hydration of biopolymers by various

experimental techniques. Sedimentation equilibrium, hydrodynamic methods, diffusion,

sedimentation velocity, viscosity, electrophoresis and rotational motions.

Books Suggested

35

Page 102: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

1. Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.

2. Bioinorganic Chemistry, I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University Science

Books.

3. Bioinorganic Chemistry: A Chemical Approach to Enzyme Action, Hermann Dugas and C. Penny,

Springer-Verlag.

4. Understanding Enzymes, Trevor Palmer, Prentice Hall.

5. Enzyme Chemistry: Impact and Applications, Ed. Colliins J Sucking, Chapman and Hall.

6. Enzymes Mechanism Ed, M.I. Page and A. Williams, Royal Society of Chemistry.

7. Fundamentals of Enzymology, N.C. Price and L. Stevens, Oxford University Press.

8. Immobilized Enzymes: An Introduction and Applications in Biotechnology, Michael D. Trevan,

John Wiley.

9. Enzymatic Reaction Mechanism, C. Walsh, W.H. Freeman.

10. Enzymatic Structure and Mechanism, W.H. Freeman.

11. Principles of Biochemistry, A.L. Lehninger, Worth Publishers.

12. Biochemistry, L. Stryer, W.H. Freeman.

13. Biochemisty, J. David Rawn, Neil Patterson.

14. Biochemistry, Voet and Voet, John Wiley.

15. Outlines of Biochemistry, E.E. Conn and P.K. Stumpf, John Wiley.

16. Macromolecules: Structure and function, F. World, Prentice Hall.

SOS/E011 Photoinorganic

Chemistry

L T P C MM

3 0 0 3 100

Unit I

Basics of photochemistry

Absorption, excitation, photochemical laws, electronically excited states-life times, measurements of the

times. Flash photolysis, stopped flow techniques. Energy dissipation by radiative and non-radiative

process, absorption spectra, Franck-Condon principle, photochemical stages-primary and secondary

processes.

Unit II

Properties of Excited States

Structure, dipole moment, acid-base strengths, reactivity. Photochemical kinetics-calculation of rates of

radiative processes. Biomolecular deactivation-quenching.

Unit III

Excited States of Metal Complexes

Excited states of metal complexes: Comparison with organic compounds, electronically excited states of

metal complexes. Charge-transfer spectra, charge transfer excitations, methods for obtaining charge-

transfer spectra.

Unit IV

Ligand Field Photochemistry

Photosubstitution, photo oxidation and photo reduction, lability and selectivity, zero vibrational levels of

ground state and excited state, energy content of excited state, zero-zero spectroscopic energy,

development of the equations for redox potentials of the excited states.

36

Page 103: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Unit V

Redox Reactions by Excited Metal Complexes

Energy transfer under conditions of weak interaction and strong interaction-exciplex formation;

conditions of the excited states to be useful as redox reactants, excited electron transfer, metal

complexes as attractive candidates (2,2'-bipyridine and 1,10-phenanthroline complexes), illustration of 2+

reducing and oxidizing character of Ruthenium , (bipyridyl complex, comparison with Fe (bipy)3); role

of spin-orbit coupling, life time of these complexes. Application of redox processes of electronically

excited states for catalytic purpose, transformation of low energy reactants into high-energy products,

chemical energy into light.

Unit VI

Metal Complex Sensitizers

Metal complex sensitizer, electron relay, metal colloid system, semiconductor supported metal or oxide

systems, water photolysis, nitrogen fixation and carbon dioxide reduction.

Books Suggested:

1. Concepts of Inorganic Photochemistry, A.W. Adamson and P.D. Fleischauer, Wiley.

2. Inorganic Photochemistry, J. Chem. Educ., vol. 60, no. 10, 1983.

3. Progress in Inorganic Chemistry, vol. 30, ed. S.J. Lippard, Wiley.

4. Co-ordination Chem. Revs., 1975, 15, 321; 1981, vol. 39, 121, 131; 1990, 97, 313.

5. Photochemistry of Co-ordination Compounds, V. Balzari and V. Carassiti, Academic Press.

6. Elements of Inorganic Photochemistry, G.J. Ferraudi, Wiley.

7. Fundamentals of Photochemistry, K.K. Rohtagi-Mukherji, Wiley-Eastern.

8. Essentials of Molecular Photochemistry, A. Gilbert and J. Baggott, Blackwell Scientific Publication.

9. Molecular Photochemistry, N.J. Turro, W.A. Benjamin.

10. Introductory Photochemistry, A. Cox

SOS/E012 Environmental

Chemistry

L T P C MM

3 0 0 3 100

Unit I

Environment

Introduction, composition of atmosphere, vertical temperature, heat budget of the earth atmospheric

system, vertical stability atmosphere. Biogeochemical cycles of C, N, P, S and O. Bio distribution of

elements.

Unit II

Hydrosphere

Aquatic pollution- inorganic, organic, pesticides, agricultural, industrial and sewage, detergents, oil

spills and oil pollutants. Water quality parameters-dissolved oxygen, biochemical oxygen demand,

solids, metals, content of chloride, sulphate, phosphate, nitrate and micro-organisms. Water quality

standards. Analytical methods for measuring BOD, DO, COD, F, Oils, metals (As, Cd, Cr, Hg, Pb, Se

etc.) residual chloride and chlorine demand. Purification and treatment of water.

Unit III

Soils

Composition, micro and macro nutrients, Pollution of fertilizers, pesticides and metals.

37

Page 104: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Unit IV

Atmosphere

Chemical and photochemical reactions in atmosphere, smog formation, oxides of N, C, S, O and their

effect, pollution by chemicals, petroleum, minerals chlorofluorohydrocarbons. Analytical methods for

measuring air pollutants. Continuous monitoring instruments.

Unit V

Industrial Pollution

Pollution from cement, sugar, distillery, drug; paper and pulp, thermal power plants, nuclear power

plants, metallurgy, polymers and drugs etc.

Unit VI

Environmental Toxicology

Chemical solutions to environmental problems, biodegradability, principles of decomposition, better

industrial processes.

Books suggested

1. Environmental Chemistry, S.E. Manahan, Lewis Publishers.

2. Environmental Chemistry, Sharma and Kaur, Krishna Publishers.

3. Environmental Chemistry, A.K. De, Wiley Eastern.

4. Environmental Pollution Analysis, S.M. Khopkar, Wiley Eastern.

5. Standard Method of Chemical Analysis, F.J. Welcher Vol. III, Van Nostrand Reinhold Co.

6. Environmental Toxicology, Ed. J. Rose, Gordon and Breach Science Publication.

7. Elemental Analysis of Airborne Particles, Ed. S. Landsberger and M. Creatchman, Gordon and

Breach Science Publication.

8. Environmental Chemistry, C. Baird, W.H. Freeman.

Organic Chemistry

SOS/C025 Laboratory Course

Org.-IVA

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do two practicals of

30 marks each.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

I. Extraction of Organic Compounds from Natural Sources

1. Isolation of caffeine from tea leaves.

2. Isolation of casein from milk (the students are required to try some typical colour reactions of

proteins).

3. Isolation of lactose from milk (purity of sugar should be checked by TLC and PC and Rf value

reported).

4. Isolation of nicotine dipicrate from tobacco.

5. Isolation of cinchonine from cinchona bark.

6. Isolation of piperine from black pepper.

7. Isolation of lycopene from tomatoes.

8. Isolation of -carotene from carrots.

38

Page 105: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

9. Isolation of oleic acid from olive oil (involving the preparation of complex with urea and

separation of linoleic acid).

10. Isolation of eugenol from cloves.

11. Isolation of limonene from citrus fruits.

II. Paper Chromatography

Separation and identification of the sugars present in the given mixture of glucose, fructose and sucrose

by paper chromatography and determination of Rf values.

Books Suggested

1. Introduction to Organic Laboratory Techniques (Third Edition), DL Pavia, GM Lampman and GS

Kriz, Saunders College Publishing, Philadelphia, New York.

2. Operational Organic Chemistry, A Laboratory Course, Second Edition, JW Lehman, Allyn & Bacon,

Inc. Boston.

3. Microscale Organic Experiments KL Willianson, DC Health & Co. Le Xington.

4. Laboratory Manual of Organic Chemistry, RK Bansal, New Age International, Delhi.

SOS/C026 Laboratory Course

Org.-IVB

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do two practicals of

30 marks each.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

I. Spectroscopy

Identification of organic compounds by the analysis of their spectral data (UV, IR, PMR, CMR & MS)

II. Spectrophotometric (UV/VIS) Estimations

1. Amino acids

2. Proteins

3. Carbohydrates

4. Cholesterol

5. Ascorbic acid

6. Aspirin

7. Caffeine

Books Suggested

5. Introduction to Organic Laboratory Techniques (Third Edition), DL Pavia, GM Lampman and GS

Kriz, Saunders College Publishing, Philadelphia, New York.

6. Operational Organic Chemistry, A Laboratory Course, Second Edition, JW Lehman, Allyn & Bacon,

Inc. Boston.

7. Microscale Organic Experiments KL Willianson, DC Health & Co. Le Xington.

8. Laboratory Manual of Organic Chemistry, RK Bansal, New Age International, Delhi.

39

Page 106: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/C027 Natural Products

L T P C MM

3 0 0 3 100

Unit I

Terpenoids and Carotenoids

Classification, nomenclature, occurrence, isolation, general methods of structure determination, isoprene

rule Structures of abietic acid and β-carotene.

Unit II

Alkaloids

Isolation, structure and synthesis of ephedrine, quinine.

Unit III

Steroids

Structure determination of cholesterol and bile acids (without synthesis). Chemistry of testosterone,

estrone and progestrone.

Unit IV

Pigments

(a) Plant Pigments: Occurrence, nomenclature and general methods of structure determination.

Isolation and synthesis of cyanidin, and quercetin.

(b) Porphyrins

General Introduction of haemoglobin and chlorophyll. Chemistry of chlorophyll (without synthesis).

Structure and synthesis of haem.

Unit V

Prostaglandins

Occurrence, nomenclature, classification, biogenesis and physiological effects

Synthesis of Key intermediate, PGE2 and PGF2

Books Suggested

1. Natural Products: Chemistry and Biological Significance, J.Mann, R.S. Davidson, J.B. Hobbs, D.V.

Banthrope and J.B. Harborne, Longman, Essex.

2. Organic Chemistry, Vol 2, I.L. Finar, ELBS.

3. Stereoselective Synthesis: A Practical Approach, M. Nogradi, VCH.

4. Rodd’s Chemistry of Carbon Compounds, Ed. S. Coffey, Elsevier.

5. Chemistry, Biological and Pharmacological Properties of Medicinal Plants from the Americas, Ed.

Kurt. Hostettmann, M.P. Gupta and A. Marston, Harwood Academic Publishers.

6. Introduction to Flavonoids, B.A. Bohm, Harwood Academic Publishers.

7. New Trends in Natural product Chemistry, Atta-ur-Rahman and M.I. Choudhary, Harwood

Academic Publishers

SOS/E009 Spectroscopy L T P C MM

3 0 0 3 100

Bioinorganic, Bioorganic, L T P C MM

40

Page 107: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/E010 Biophysical Chemistry-II 3 0 0 3 100

SOS/E012 Environmental

Chemistry

L T P C MM

3 0 0 3 100

SOS/E013 Heterocyclic

Chemistry

L T P C MM

3 0 0 3 100

Unit I

Nomenclature of Heterocycles

Replacement and Systematic nomenclature (Hantzsch-Widman system) for monocyclic, fused and

bridged heterocycles

Unit II

Aromatic and Non-aromatic Heterocycles

General chemical behaviour of aromatic heterocycles, classification (structural type), Heteroaromatic

reactivity and tautomerism in aromatic heterocycles

Strain –bond angle and torsional strains and their consequences in small ring heterocycles.

Conformation of six-membered heterocycles with reference to molecular geometry, barrier to ring

inversion, pyramidal inversion and 1,3-diaxial interactions.

Stereo-electronic effects, aromatic and related effects. Attractive interactions - hydrogen bonding and

intermolecular nucleophilic, electrophilic interactions.

Unit III

Small Ring Heterocycles

Three-membered and four-membered heterocycles-synthesis and reactions of aziridines, oxiranes,

thiiranes, azetidines, oxetanes and thietanes

Unit IV

Benzo-Fused Five-Membered Heterocycles

Synthesis and reactions including medicinal applications of benzopyrroles, benzofurans and

benzothiophenes

Unit V

Six-Membered Heterocycles with One, Two or More Heteroatoms

Synthesis and reactions of pyrylium salts and pyrones and their comparison with pyridinium &

thiopyrylium salts and pyridones

Synthesis and reactions of quinolizinium and benzopyrylium salts, coumarins and chromones Synthesis

and reactions of diazines, triazines, tetrazines and thiazines

Unit VI

Seven-and Large-Membered Heterocycles

Synthesis and reactions of azepines, oxepines, thiepines, diazepines thiazepines, azocines, diazocines,

dioxocines and dithiocines

Books Suggested

41

Page 108: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

1. Heterocyclic Chemistry Vol. 1 & 2, R.R. Gupta, M. Kumar and V. Gupta, Springer Verlag

2. The Chemistry of Heterocycles, T. Eicher and S. Hauptmann, Thieme.

3. Heterocyclic Chemistry, J.A. Joule, K. Mills and G.F. Smith, Chapman and Hall.

4. Heterocyclic Chemistry, T.L. Gilchrist, Longman Scietific Technical

5. Contemporary Heterocyclic Chemistry, G.R. Newkome and W.W. Paudler, Wiley-Inter

Science.

6. An introduction to the Heterocyclic Compounds, R.M. Acheson, John Wiley

7. Comprehensive Heterocyclic Chemistry, A.R. Katritzky and C.W. Rees, eds. Pergamon

8. Natural Products: Chemistry and Biological Significance, J.Mann, R.S. Davidson, J.B. Hobbs, D.V.

Banthrope and J.B. Harborne, Longman, Essex.

9. Organic Chemistry, Vol 2, I.L. Finar, ELBS.

10. Stereoselective Synthesis: A Practical Approach, M. Nogradi, VCH

Physical Chemistry

SOS/C028 Laboratory Course

Phy.-IVA

L T P C MM

0 0 9 3 100

Note: The duration of examination will be of eight hours. Students are required to do one practical of

60 marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

1. Determination of transport number.

2. Determination of liquid junction potential.

3. Determination of the charge on colloidal particle.

4. Polarography.

5. Beer’s law verification.

SOS/C029 Laboratory

Course Phy.-

IVB

L T P C MM

0 0 9 3 1000

Note: The duration of examination will be of eight hours. Students are required to do one practical of

60 marks.

Viva 15 marks

Seminar/Attendance/Assessment/Record 25 marks.

1. Decomposition of potential determination.

2. Validity of Freundlich’s adsorption isotherm.

3. Validity of Langmuir’s adsorption isotherm.

4. Determination of partial molar volume of solute.

5. Determination of CMC of surfactants.

42

Page 109: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/C030 Advanced Quantum

Chemistry

L T P C MM

3 0 0 3 100

(Pre-requisite: mathematics at least up to First Year B.Sc. level is necessary. At least one PC among 4

students should be available)

Unit I

Theoretical and Computational Treatment of Atoms and Molecules, Hartree-Fock Theory

Review of the principles of quantum mechanics, Born-Oppenheimer approximation. Slater-Condon

rules, Hartree-Fock equation, Koopmans and Brillouin theories, Roothan equation, Gaussian basis sets.

Unit II

Configuration Interaction and MC-SCF

Introduction to CI; full and truncated CI theories, size consistency, Introductory treatment of coupled

cluster and MC-SCF methods.

Unit III

Semi-Empirical Theories

A review of the Huckel, EHT and PPP treatments, ZDO approximation, detailed treatment of CNDO

and INDO theories. A discussion of electronic energies and properties. An introduction to MOPAC and

AMI with hands on experience on personal computer.

Unit IV

Density Functional Theory

Derivation of Hohenberg-Kohn theorem, Kohn-Sham formulation, N- and V- representabilities; review

of the performance of the existing local (e.g. Slater Xa and other methods) and non-local functionals,

treatment of chemical concepts with the density functional theory.

Unit V

Computer Experiments

Computer experiments using quantum chemistry- software packages such as

GAUSSIAN/GAMESS/MOPAC and modeling software e.g. MM2/ AMBER/ CHARM etc.

Books Suggested

1. Modern Quantum Chemistry, N.S. Ostlund and a. Szabo, McGraw Hill.

2. Methods of Molecular Quantum Mechanics, R. Mcweeny and B.T. Sutcliffe, Academic Press

3. Density Functional Theory of Atoms and Molecules, R.G. Parr and W. Yang, Oxford.

4. Exploring Chemistry with Electron Structure Methods, J.B. Foresman and e. Frish, Goussian Inc.

5. Semi-empirical MO Theory, J. Pople and D.L. Beveridge.

SOS/E009 Spectroscopy L T P C MM

3 0 0 3 100

SOS/E010 Bioinorganic, Bioorganic,

Biophysical Chemistry-II

L T P C MM

3 0 0 3 100

43

Page 110: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

SOS/E012 Environmental

Chemistry

L T P C MM

3 0 0 3 100

SOS/E014 Polymers L T P C MM

3 0 0 3 100

Unit I

Basics

Importance of polymers. Basic concepts: Monomers, repeat units, degree of polymerization. Linear,

branched and network polymers. Classification of polymers. Polymerization: condensation, addition,

radical chain, ionic and co-ordination and co-polymerization. Polymerization conditions and polymer

reactions. Polymerization n homogenous and heterogeneous systems.

Unit II

Polymer Characterization

Polydispersion-average molecular weight concept. Number, weight and viscosity average molecular

weights. Polydispersity and molecular weight distribution. The practical significance of molecular

weight. Measurement of molecular weights. End-group, viscosity, light scattering, osmotic and

ultracentrifugation methods. Analysis and testing of polymers-chemical analysis of polymers,

spectroscopic methods, X-ray diffraction study. Microscopy. Thermal analysis and physical testing-

tensile strength. Fatigue, impact. Tear resistance. Hardness and abrasion resistance.

Unit III

Structure and Properties

Morphology and order in crystalline polymers, configurations of polymer chains. Crystal structure of

polymers, strain-induced morphology, crystallization and melting. Polymer structure and physical

properties, crystalline melting point Tm, melting points of homogeneous series, effect of chain

flexibility and other steric factors, entropy and heat of fusion. The glass transition temperature, Tg.

Relationship between Tm and Tg, effects of molecular weight, diluents, chemical structure, chain

topology, branching and cross linking. Property requirements and polymer utilization.

Unit IV

Polymer Processing

Plastic, elastomers and fibres. Compounding. Processing techniques: Calendering, die casting, rotational

casting, film casting, injection moulding, blow moulding, extrusion moulding, thermoforming, foaming,

reinforcing and fibre spinning.

Books Suggested

1. Textbook of Polymer Science, F.W. Billmeyer Jr, Wiley.

2. Polymer Science, V.R. Gowariker, N.V. Viswanathan and J. Sreedhar, Wiley-Eastern.

3. Functional Monomers and Polymers, K. Takemoto, Y. inaki and R.M. Ottanbrite.

4. Contemporary Polymer Chemistry, H.R. Alcock and F.W. Lambe, Prentice Hall.

5. Physics and Chemistry of Polymers, J.M.G. Cowie, Blackie Academic and Professional.

Self Study Courses in Chemistry

1. Computers for Chemists Credits 3 MM 100

44

Page 111: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

This is a theory-cum-laboratory course with more emphasis on laboratory work.

I Introduction to Computers and Computing

Computer fundamentals, Classification of Digital computers: PC, Microcomputers, minicomputers,

mainframe computers, supercomputers, MIDI.

Number Systems: Binary, Decimal, Hexadecimal and Octal number systems and their conversion from

one system to another system. Boolean Algebra and logic gates. Character codes ASCII & EBCDIC.

Basic architecture of the Computer, Input & output Devices, CPU, Processor, Memory.Temporary and

Permanent Memory; ROM, RAM, Cache Memory.

Secondary Storage Devices: Floppy, Hard Disk, Compact Disk, DVD, Magnetic Tape, Optical Disk,

Winchester Disk, Pen Drive.

II C & C++ Languages

Algorithms, Flowcharts, Algorithms involving decision and loops. Computer Program.

Computer languages.

Programming in C : Variables, expressions, assignments and data types, preprocessors. Use of

printf() and scanf().

Arithmetic operators, comparison operators, logical operators, precedence among different types of

operators, parenthesis.

Selection constructs: IF Constructs, If... .Else constructs, Multiple criteria using AND and OR, DO

CASE.

Loops: the WHILE loop, the DO. . . . While loop, REPEAT... UNTIL loop, FOR loop.

Functions, procedures, function libraries, Elementary idea of Arrays, strings and structures.

Computer graphics: Graphic types. SCREEN. Displaying a point. Drawing of Line, Box, Circle and

Ellipse.

Drawing non-geometric shapes with DRAW statements. WINDOW, VIEW, PAINT statements.

III Programming in Chemistry

Development of small computer codes involving simple formulae in chemistry, such as van der

Waals Equation pH titration, kinetics, radioactive decay. Evaluation of lattice energy and ionic radii

from experimental data. Linear simultaneous equations to solve secular equations within the Huckel

theory.Elementary structural features such as bond lengths, bond angles, dihedral angles etc. of

molecules extracted from a database such as Cambridge database.

Numerical methods: Bisection method. Numerical integration. Trapezoidal method. Simpsons 1/3

Matrix algebra- Matrix, Matrix type, Matrix operators, Matrix representation,

Addition/Subtraction/Multiplications/Transpose of Matrices. rd

method. Differentiations. Curve fiting. Straight line fitting. Interpolation. Matrix inversion-Gauss

elimination method, Gauss Jordan method. Determination of Eigen value of a matrix. Mont Carlo

Simulation.

IV Use of Computer Programmes

The student will learn to operate a PC and to run standard programs and packages. Execution of

linear regression, X-Y plot, numerical integration and differentiation as well as differential equation

solution programs. Monte Carlo and Molecular dynamics. Programs with data preferably from

physical chemistry laboratory. Further, the students will operate one or two of the packages such as

MATLAB / SCILAB, EASYPLOT/ GNUPLOT, FOXPRO/ MYSQL, MSOFFICE / OPENOFFICE.

Working with Internet and email.

Working with UNIX/ LINUX/ DOS/ WINDOWS OS: Creating Folder, Shortcuts, Creating text

files, Finding Files, Renaming and deleting file or folder, working with recycle bin / trash bin,

setting desktop wallpaper, screen savers, shutting down. Copying Folders and files.

45

Page 112: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Working with Word processors, creating a document, editing, formatting text and paragraphs,

moving and copying text, headers and footers, setting and and tabs, Viewing document windows,

working with columns, save and protect documents, working with tables.

Working with spreadsheets, creating workbooks and worksheets, working with numbers, modifying

the worksheet layout, printing worksheets, formatting worksheets, selecting multiple cells, writing

simple formulae, writing complex formulae, copying and editing formulae, formatting the cell,

moving and copying cell, formatting rows and columns, using excel for data base management, cell

referencing, relative and absolute referencing, introduction to charts, creating charts, editing and

formatting charts, printing the graphs, using cell references in conditions, using formulae in

conditions.

Working with databases, file creation, modifying a file, adding records, selecting records, and

printing reports.

Books Suggested

1. Computers and Common sense: R. Hunt and J Shelly, Prentice Hall.

2. Fundamentals of Computer: V. Rajaraman.

3. A Handbook of MS Office.

4. Programming in C: E. Balaguruswamy, TMH

5. Programming in C : S.A. Kochar.

6. Computational Chemistry: AC. Norris.

7. Microcomputer Quantum Mechanics: J.P. Killingbeck, Adam Hinger

8. Complete Software Applications in Chemistry: P.C. Jain, John Wiley.

2. Mathematics for Chemists Credits 3 MM 100

(For students without Mathematics in B.Sc.)

I. Vectors and Matrix Algebra

A. Vectors

Vectors, dot, cross and triple products etc. The gradient, divergence and curl. Vector calculus,

Gauss’ theorem, divergence theorem etc.

B. Matrix Algebra

Addition and multiplication; inverse, adjoint and transpose of matrices, special matrices (symmetric,

skew-symmetric, Hermitian, skew-Hermitian, unit, diagonal, unitary etc.) and their properties.

Matrix equations: Homogeneous, non-homogeneous linear equations and conditions for the solution,

linear dependence and independence. Introduction to vector spaces, matrix eigenvalues and

eigenvectors, diagonalization, determinants (examples from Huckel theory).

Introduction to tensors; polarizability and magnetic susceptibility as examples.

II. Differential Calculus

Functions, continuity and differentiability, rules for differentiation, applications of differential

calculus including maxima and minima (examples related to maximally populated rotational energy

levels, Bohr’s radius and most probable velocity from Maxwell’s distribution etc.), exact and inexact

differentials with their applications to thermodynamic properties.

Integral calculus, basic rules for integration, integration by parts, partial fraction and substitution.

Reduction formulae, applications of integral calculus.

Functions of several variables, partial differentiation, co-ordinate, transformations (e.g. cartesian to

spherical polar), curve sketching.

46

Page 113: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

III.Elementary Differential Equations

Variables-separable and exact first-order differential equations, homogeneous, exact and linear

equations. Applications to chemical kinetics, secular equilibria, quantum chemistry etc. Solutions of

differential equations by the power series method, Fourier series, solutions of harmonic oscillator

and Legendre equation etc., spherical harmonics, second order differential equations and their

solutions.

IV. Permutation and Probability

Permutations and combinations, probability and probability theorems, probability curves, average,

root mean square and most probable errors, examples from the kinetic theory of gases etc. curve

fitting (including least squares fit etc.) with a general polynomial fit.

Books Suggested

1. The Chemistry Mathematics Book, E. Steiner, Oxford University Press.

2. Mathematics for Chemistry, Doggett and Sucliffe, Longman.

3. Mathematical Preparation for Physical Chemistry, F. Daniels, McGraw Hill.

4. Chemical Mathematics, D.M. Hirst, Longman.

5. Applied Mathematics for Physical Chemistry, J.R. Barrante, Prentice Hall.

6. Basic Mathematics for Chemists, Tebbutt, Wiley.

3. Nanoscience and Nanotechnology Credits 3 MM 100

Unit I

Introduction

Historical perspective of nano, nanoscience, nano and nature, shift from micro to nano, quantum size

effects.

Unit II

Diversity in nanosystems

Carbon nanoscience (fullerenes and nanotubes), nanowires, nanorods, self assembled mononolayers

(SAMS).

Unit III

Characterization of nanomaterials

Instrumentation for the characterization of nanomaterials. Principle and applications of various

techniques.

Unit IV

Interdisciplinary nature of nanoscience

Smart materials-nanobiology, nanosensors, nanomedicines, nanotribology, molecular electronics

(nanomachines).

Unit V

Nano and society

Implications of nano- science and technology on society, nanorelated issues, nanopolicies and

institutions, public involvement in nanodiscourse, nanotechnology for social and economic

development.

47

Page 114: B.Sc.((Program)(withChemistry( · PDF file12. Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy 13. ... Note: Universities may ... A new Concise

Books Suggested

1. Nanotechnology, M. Ratner and D. Ratner, Pearson, 2007.

2. Nano, The Essentials, T. Pradeep, TMH, New Delhi, 2008.

3. Nanotechnology-Materials Systems & Processes at the Nano Scale, J. Vacca, Elsevier, 2007.

4. Nanochemistry, G.B. Sergeev, Elsevier, 2010.

5. Nanomaterials and Design, D.L. Schodik, Elsevier, 2007.

6. Carbon Nanotechnology, L. Dai, Elsevier, 2006.

7. Nanochemistry: A Chemical Approach to Nanomaterials G. Ozin &A. Arsenault, University of

Toronto, Canada, 2005.

8. Nanoparticles, G Schmid, Ed., Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany,

2004.

9. Nanoparticles - Building Block for Nanotechnology, V Rotello, Ed., Kluwer Academic/Plenum

Publishers, New York, 2004.

48