19
Literature Presentation Zhenjie Lu Jan 12, 2006 1. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP. 2. Storer, R. L.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006,128, 84. 3. Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424. 4. Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2005,127, 15696. 5. Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005,127, 9360. 6. Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005,127, 11804. 7. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,126, 5356. 8. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566. 9. Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583. Recent applications of chiral binaphthol- derived phosphoric acid in catalytic asymmetric reactions R O O R P O OH

Bronsted Acid - Catalyzed Mannich-type Reaction - Chemistry

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Literature PresentationZhenjie Lu

Jan 12, 2006

1. Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP.2. Storer, R. L.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006,128, 84.3. Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424.4. Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; Wang, Y.; Antilla, J. C. J. Am.

Chem. Soc. 2005,127, 15696.5. Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005,127, 9360.6. Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005,127, 11804.7. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,126, 5356.8. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.9. Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583.

Recent applications of chiral binaphthol-derived phosphoric acid in catalytic

asymmetric reactions

R

O

O

R

PO

OH

Introduction

‘Stereoselective chemical transformations perhaps have over emphasized the virtue ofmetal catalysis but this picture is changing rapidly; fast developing metal-free catalysiswith small organic molecules as been described as utilizing “artificial enzymes” or being“enzyme mimetics”.’

Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289.

advantages of using Bronsted acida. Metal-free chiral organocatalysts exhibit catalytic activity by themselves.b. Organocatalysts are generally stable in air and easily stored.c. Chiral Bronsted acid catalysts would electrophilically activate C=O or C=N

bond, and cause chiral induction.

Chiral Binaphthol-Derived Phosphoric Acid

The tetradentate structure around the phosphorus(V) prevent free rotation at thephosphorus center by formation of a ring structure. This cannot be found in othercarboxylic and sulfonic Bronsted acids.

R

O

O

R

PO

OH

The appropriate acidity (pKa of diethylphosphate is 1.39) should catch up thesubstrate through hydrogen bonding without loose ion-pair formation.

The phosphoryl oxygen should function as a Lewis basic site, and thus aphosphoric acid could function as a bifunctional catalyst.

Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289.

Plausible hydrophosphonylation mechanism

I. Bronsted Acid Catalyzed Mannich - type Reaction

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Bulky Bronsted acid and aromatic solvent gave better selectivity.

I. Bronsted Acid Catalyzed Mannich - type Reaction

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

Akiyama’s catalyst and results.O

OP

O

OH

NO2

NO2

Akiyama's catalyst

I. Bronsted Acid Catalyzed Mannich - type Reaction

Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004,126, 5356.

Terada’s catalyst and results.

O

OP

O

OH

Terada's catalyst in Mannich reaction

Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005,127, 11804.

II. Bronsted Acid Catalyzed Friedel Crafts - type Reactions

Halogenated solvent gave better results than ethereal or aromatic solvents. (87% yield, 97%ee vs. 70% yield, 83% ee in THF or 88% yield, 83% ee in toluene.)

a. 0.1 M in (CH2Cl)2 at -35 oC for 24h.

II. Bronsted Acid - Catalyzed Friedel Crafts - type Reactions

II. Bronsted Acid - Catalyzed Friedel Crafts - type Reactions

Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005,127, 9360.

3 mol% of 5toluene, rt, 24h

II. Bronsted Acid Catalyzed Friedel Crafts - type Reactions:Pictet-Spengler Reaction

1) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558.2) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP.

Pictet-Spengler Reaction:

Jacobsen’s approach

List’s approach

N R

R'

R''O X chiral thiourea catalyst -HX

R2

R3

NH2

R1

! "+

R4 R5

Oprotic orlewis acid

R2

R3

NR1

! "

R4

R5

R2

R3

NHR1

! "

R4 R5

tetrahydroisoquinoline

II. Bronsted Acid Catalyzed Friedel Crafts - type Reactions:Pictet-Spengler Reaction

Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP.

O

OP

O

OH

i-Pr i-Pr

i-Pr

i-Pri-Pr

i-Pr

5 List's catalyst

This reaction toleratesaromatic aldehydes (at-10oC in CH2Cl2) (entry12-16).

III. Bronsted Acid Catalyzed Reductive Amination

Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.

O

O

PO

OH

CF3

CF3

CF3

CF3

Proposed mechanism

(HEH)

Rueping’s approach:

Catalytic asymmetrichydrogenation to imine is limited.

III. Bronsted Acid Catalyzed Reductive Amination

1) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781.2) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem. Int. Ed. 2005, 44, 7424. 3) Storer, R. L.; Carrera, D. E.; Ni, Y.; MacMillan, D. W . C. J. Am. Chem. Soc. 2006,128, 84.

Rueping’s approach:

R = Ar, 46-91% yield, 70-82% ee.

List’s approach:

R = Ar, i-Pr, 80-98% yield, 80-93% ee.One example that from ketone to a deprotected amine (R = Ph, 75% overall yield, 88% ee).

R

O

O

R

PO

OH

Rueping's A1: R = 3,5-(CF3)-phenylList's A2: R = 2,4,6-(i-Pr)-phenylMacMillan's A3: R = SiPh3

A

R CH3

NPMP HEH, 20mol% A1

benzene, 60oC

R CH3

HNPMP

R CH3

NPMP HEH, 1 mol% A2

toluene, 35oC

R CH3

HNPMP

MacMillan’s approach:

R = Ar, R’= OMe, 60-87% yield, 83-95% ee.R = alkyl, R’= OMe, 49-75% yield, 81-94% ee.R = Ar, R’= aryl, 55-92% yield, 91-95% ee.

R CH3

O

+

NH2

R'HEH, 10 mol% A3

5 A MS, 40-50oC

benzene, 24-96h

R CH3

HN

R'

IV. Bronsted Acid Catalyzed Hydrophosphonylation

Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Org. Lett. 2005, 7, 2583.

V. Bronsted Acid Catalyzed Imine Amidation

Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; W ang, Y.; Antilla, J. C. J. Am. Chem. Soc.2005,127, 15696.

catalyst A: 91-99% yield, catalyst B: 91-99% yield.

Bronsted Acid - Catalyzed Imine Amidation

Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennamadhavuni, S.; W ang, Y.; Antilla, J. C. J. Am. Chem. Soc.2005,127, 15696.

Toluene was used assolvent in entry 8-13.

Conclusion

Ph

Ph

O

OP

O

OH

Antilla -imine amidation

O

OP

O

OH

Terada - Mannich

O

OP

O

OH

NO2

NO2Akiyama - Mannich

O

OP

O

OH

Terada - aza-Friedel-Crafts

anth

O

O

anth

PO

OH

Terada - alkylation of diazoester

O

OP

O

OH

i-Pr i-Pr

i-Pr

i-Pri-Pr

i-Pr

List - Pictet-Spengler and amination

O

OP

O

OH

CF3

CF3

CF3

CF3

Rueping - amination andAkiyama - hydrophosphonylation

Si

O

O

Si

PO

OH

Ph Ph

Ph

PhPhMacMillan - amination

PhR

O

O

R

PO

OH

Bronsted Acid - Catalyzed Mannich-type Reaction-Deastereoselectivity

Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.

O

OP

O

OH

NO2

NO2

Akiyama's catalyst

Bronsted Acid - Catalyzed Friedel Crafts - type ReactionsPictet-Spengler Reaction

1) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 10558.2) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, ASAP.

Jacobsen’s approach