22
Broadband Nonparametric Ground-Motion Evaluation of Horizontal Shear-Wave Fourier Spectra 2004. 11. 15 presented for OECD-NEA Workshop on seismic input motions, incorporating recent geological studies by KWAN-HEE YUN*, DONG-HEE PARK (Korea Electric Power Research Institute) JEONG-MOON SEO (Korea Atomic Energy Research Institute)

Broadband Nonparametric Ground-Motion Evaluation of ......Fq5 Fq10 Fq20 Fq30 Comparison of bias-corrected path terms with exact path terms 10 100-1.0-0.5 0.0 log(FS)+log(Rhyp/21.54)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Broadband Nonparametric Ground-Motion Evaluation of Horizontal Shear-Wave Fourier Spectra

    2004. 11. 15presented for

    OECD-NEA Workshop on seismic input motions, incorporating recent geological studies

    by

    KWAN-HEE YUN*, DONG-HEE PARK (Korea Electric Power Research Institute)JEONG-MOON SEO (Korea Atomic Energy Research Institute)

  • ContentsIntroduction

    Analysis method

    Data and preprocessing

    Numerical validationInversion of stochastic ground-motion model parametersGeneration of artificial datasetEvaluation of path bias terms using synthetic data

    Nonparametric inversion results

    Discussion and conclusion

  • IntroductionParametric method

    Assume path functions– e.g. Q0fη + Geometrical spreading (bilinear, trilinear linear segments)

    Adopted in most of the previous studies due to small number of available earthquake data

    – there are wide variety of Q models reported in KoreaNeed to verify the parametrically inverted path functions and determine the best model to simulate strong GM models

    Nonparametric methodIndependent of physical models → capable of being used as a reference GM attenuationLarge earthquake dataset accumulated from nation-wide seismic networksProvide additional information of the observed data → complement the parametric method

  • Nonparametric methodY(fc)ij = Log (Horizontal Fourier Amp.)

    = [E`(fc)i + F(fc)] + Site(fc)j + Lk(R)Dk(fc)

    * i, j = index for source (excitation) and sitesLk(R) = linear interpolation function for a path term Dk(fc)

    Obtain a least-square solution by matrix inversion with constraints= 0

    Smoothness of Dk termsD(Rref, fc) = 0

    ( )c jj

    Site f∑

    Source Path

    F(fc) = a dummy factor common to all the eqk. events

  • 253 shallow crustal events from 1992(‘99) to 2003 (ML > 2.0)6,203 records, 134 stationsCatalogs of earthquake source parameters to calculate the hypocentral distances

    KMA, KIGAM, ISC

    Earthquake data resourcesDomestic major seismic networks

    – KMA, KIGAM, KEPRI, KINS, universities, NPPsForeign seismic networks

    – KSRS Array (U.S. Air Force)– IRIS (INCN, SEO), PASSCAL (XI, XL)– F-net (IZH), JMA (JTU), PS (TJN, PHN)

    Earthquake Database

  • 10 1001.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    Mag

    nitu

    de

    Hypocentral Distance(km)

    30

    25

    20

    15

    10

    5

    0

    0 2 4 6 8 10 12 14 16

    % of occurrence

    Dep

    th(k

    m)

    KMA

    KIGAM

    KEPRI

    KINS

    KSRS

    UNIV.

    Foreign

  • Data ProcessingPreprocessing

    screening seismic recordsS wave-train windowing (5% tapering)→ Vg= 2.6-3.6km/sec used for automatic windowing at distances > 100kminstrumental correction for short-period seismometercalculation of Fourier spectra for horizontal acceleration components and vector summation (1024pts, df=0.05Hz)select available frequency band (S/N > 3 - 4)→ mainly between 2.0 ∼ 30.0 HzNo smoothingusing velocity (for low frequency), acceleration (for high frequency) data

  • Numerical validation

    Nonparametric method applied to artificial dataset generated by using inverted stochastic GM model parameters (Boore, ‘03)

    Possible bias of the inverted path terms was investigated by numerical simulation

    There are more earthquake records from small earthquakes at short distance ranges

  • Inversion of stochastic GM model parameters

    Parametric inversion of stochastic GM model parameters was previously performed (’02, OECD/NEA Workshop)

    Stochastic GM model parameters:Source: Brune’s omega-2 model (’70, 71)Path: Q(f), trilinear G(R), crustal amp (=1.67 at high frequencies)Site: site-dependent kappa (Anderson, ’04)

    Simultaneous nonlinear inversion of the model parameters performed by using the modified Levenberg-Marquardt’s method

  • Inversion results

    0.1 1 10100

    1000

    Q(f)=348f0.54

    Q(f)=Q1(1+(f/0.3)eta1)/(f/0.3)2

    Q1 = 168.4eta1= 2.54

    Q(f)

    Frequency(Hz)(a)

    10 100-1.0

    -0.5

    0.0

    0.5

    (1/65)1.11(65/R)0.02

    (1/65)1.11(65/117)0.02(117/R)0.5

    1/R1.11

    Trilinear Geo. Att. modelNormalized to 21.54km

    Log1

    0(G

    eo(R

    hyp)

    )

    Rhyp(km)(b)

    2 3 4 51

    10

    100

    1000

    Stre

    ss D

    rops

    (bar

    s)

    Mw

    SD

    0 50 100

    0.01

    0.1

    Kap

    pa(s

    ec)

    Site ID

    kappa

    Path Source Site

  • Evaluation of path bias terms (1)Generated two types of artificial dataset by using inverted stochastic GM model parameters and perform nonparametric inversion

    2 3 4 51

    10

    100

    1000

    Stre

    ss D

    rops

    (bar

    s)

    Mw

    SD

    +

    D/B

    #1 Dkinv(M, SD, κ0)

    Dkinv(M0, SD0, κ0)

    D/B

    #2

    Inversion

    +κ0 = (0.016,…,0.016)Crustal amp.(f) =0

    10 100-1.5

    -1.0

    -0.5

    0.0

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)

    Fq1 Fq3 Fq5 Fq10 Fq20 Fq30

    Forward

    Mw=(3.5,…,3.5)SD(bars)=(50,…,50)

    Exact path terms

    Difference = bias!!!

    Q(f)+G(R) Type 1 path terms

    Type 2 path terms

  • Evaluation of path bias terms (2)Calculated biases between estimated and exact path terms

    Bk = Dkinv(M, SD, κ0) - Dkinv(M0, SD0, κ0) (Bk(ref) = 0)Dkinv(M0, SD0, κ0) is considered to be exact path terms

    6 frequency bands & 17 discrete distances to calculate Di(fc)

    5 10 15 20 25 30

    10

    100

    Fq30Fq20Fq10Fq5Fq3Fq1

    Hyp

    ocen

    tral D

    ista

    nce(

    km)

    Frequency(Hz)

    FqcFqc-0.25Fqc+0.25

    0.5

    1.0

    wei

    ght

    Frequency weighting function

  • Calculation of path bias terms

    10 100

    -0.04

    -0.02

    0.00

    0.02

    0.04

    fq1 fq3 fq5 fq10 fq20 fq30

    Bia

    s of

    the

    inve

    rted

    path

    term

    s (B

    k)

    Rhyp(km)(a)

    10 100-0.40

    -0.35

    -0.30

    -0.25

    -0.20

    -0.15

    -0.10 Frequency(Hz): 0.99 - 1.49

    D kinv(M0,SD0,k0)

    D kinv(M ,SD ,k0)

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)(b)

    Bk = Dkinv(M, SD, κ0) - Dkinv(M0, SD0, κ0) (Bk(ref) = 0)

  • 10 100-1.5

    -1.0

    -0.5

    0.0

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)

    : ExactEstimated

    Fq1 Fq3 Fq5 Fq10 Fq20 Fq30

    Comparison of bias-corrected path terms with exact path terms

    10 100

    -1.0

    -0.5

    0.0

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)

    fq1 fq3 fq5 fq10 fq20 fq30

    Dkinv(M, SD, κ0) terms

    Correction with Bk

    Normalization

  • 10 100

    -4

    -3

    -2

    -1

    0

    1

    Freqeuency(Hz): 2.97 - 3.46

    Mw 2.2-2.5 2.8-3.1 3.4-3.7 4.0-4.3 4.6-4.9

    Mw: 2.5-2.8: 3.1-3.4: 3.7-4.0: 4.3-4.6

    Freqeuency(Hz): 2.97 - 3.46

    log(

    FS(c

    m/s

    ec))

    Rhyp(km)10 100

    -4

    -3

    -2

    -1

    0

    1

    Rhyp(km)

    An example of raw data of Fourier acceleration spectrum between 2.97-3.46Hz according to the moment magnitude ranges

  • Nonparametric inversion resultsTrilinear type of change is observed Avg. of Log standard deviation = 0.024 for fq3

    10 100-2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)

    fq1 fq3 fq5 fq10 fq20 fq30

    10 100-1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Bootstrap result for fq3

    Rhyp(km)

  • 200 250 300 350 4000.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    1

    2

    3

    4

    A

    B

    C

    D

    a

    b

    c

    d

    Q(f)=168(1+(f/0.3)2.55)/(f/0.3)2

    fc(Hz) 12.101.24 14.081.73 16.052.23 18.033.22 1 20.004.20 A 21.985.19 a 23.956.18 25.937.17 27.908.15 29.889.14 32.8410.13 35.8011.12 38.77

    slope=1/Q

    -(D(r)

    -0.5

    *log(

    1/r))

    *Vs/

    (pi*f

    q*lo

    g(e)

    ) Vs=

    3.5k

    m/s

    Hypocentral distance (km)

    0.1 1 10

    103

    Qua

    lity F

    acto

    r

    Frequncy(Hz)

    3-30Hz

    Comparison of Q(f) function with nonparametrically inverted Q’s values for R>200km where R-0.5 attenuation is justified

    Parametrically inverted Q(f) function validated for Fq’s between 3-30Hz

  • 10 100-1.0

    -0.5

    0.0

    0.5

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)(a)

    Nonpar. fq1 fq3 fq5 fq10 fq20 fq30

    Parametric path functions

    Comparison with two types of parametric results“Par. path function” = Q(f) + G(R) “Par. path residuals” = Obs. F.S. – Source (Mw,SD,Rref) – Site (kappa)

    10 100-1.0

    -0.5

    0.0

    0.5

    1

    2

    3

    45

    6

    7

    8

    9

    10

    11

    12

    Parametric path residual

    fq1 fq3 fq5 fq10 fq20

    1 fq30

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)(b)

    Nonpar.

    fq1 fq3 fq5 fq10 fq20 fq30

    Good agreement!!For Fq > 3Hz and R > 100km

  • Par. path residual better fits the nonparametric results

    Par. path function is overestimated for short distance ranges less than 100km for fq1

    Abrupt increase of nonparametric path terms and par. path residuals observed at greater than 200km

    presence of more than two phases

    Explains the misfit for the frequencies below 3Hz

    10 100-0.3

    -0.2

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4For fq1

    Nonparametric Path functions Par. path residual

    Geo. spreading fn. R-1.3,R-1.5,R-2.0

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    Rhyp(km)( )

  • Steeper than R-1 observed for short distances less than 50km

    Less rapid attenuation for higher Fq’s than for lower Fq’s. reverse of what par. path functionpredicts

    3

    4

    5

    6

    20 30 40 50 60 70 8090100-0.25

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10Geo. spreading fn.

    R-1.3,R-1.5,R-2.0

    fq1 fq3

    with error bar fq5 fq10 fq20

    1 fq30

    Rhyp(km)

    log(

    FS)+

    log(

    Rhy

    p/21

    .54)

    (cm

    /sec

    )

    20 30 40 50 60 70 80 90 100

    -0.4

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8Anelastic function Q(f)=217f0.7 used

    Geo

    met

    rical

    Slo

    pe (=

    R-S

    lope

    )

    Rhyp(km)

    fq1 fq3 fq5 fq10 fq20 fq30 Mean

  • Conclusion(1)

    The inverted path terms with the bias correction show three distinct linear regions roughly divided by hypocentral distances of 65km and 117km.

    The use of parametrically inverted Q functions was validated over the frequency band between 3-30Hz and distance range beyond 200km.

    Mixing of more than two wave phases was found in the low frequency band within the time window for spectral calculation beyond 200km in hypocentral distances.

    Parametrically estimated Q at 1Hz is overestimated because of fitting to the spectral data at the far distance range.

  • Conclusion(2)Steep attenuation comparable to R-1.3 geometrical spreading is found at distances less than 50km.

    Unresolved phenomena is found that implies possible change of Q according to distances and different geometrical spreading according to the frequencies at short distances less than 100km.

    Parametric and nonparametric method should be used in complementary way to reduce the uncertainty in simulating strong GM