BRKAGG-2000

Embed Size (px)

Citation preview

  • 7/27/2019 BRKAGG-2000

    1/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco PublicBRKAGG-200014555_04_2008_c1 2

    Implementation andUtilization of Layer 2VPN Technologies

    BRKAGG-2000

  • 7/27/2019 BRKAGG-2000

    2/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 3BRKAGG-200014555_04_2008_c1

    General Prerequis ites

    Spanning Tree problems and Data Center knowledge

    Why L2VPN technology is becoming ever important toservice providers and enterprise

    Good understanding of L2VPN technology pseudowires(PWs) operation (AToM, L2TPv3)

    Basic understanding of network design principles

    Familiarity with quality of service principles; applicationwill be discussed, with examples

    Basic understanding of MPLS traffic engineering(MPLS-TE) concepts

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 4BRKAGG-200014555_04_2008_c1

    L2VPN Deployment Objectives

    Quick review of the motivating factors forL2VPN adoption

    Outline common service requirements for L2VPN andhow they are being addressed by Service Providersand Enterprise

    Quick overview EoMPLS and VPLS

    Using Traffic Engineering with Layer 2 VPN Position Layer 2 VPN for Data Center

  • 7/27/2019 BRKAGG-2000

    3/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 5BRKAGG-200014555_04_2008_c1

    Summary Technology

    AToM/L2TPv3

    EoMPLS

    VPLS

    TrafficEngineering

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 6BRKAGG-200014555_04_2008_c1

    Deployment Objectives

  • 7/27/2019 BRKAGG-2000

    4/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 7BRKAGG-200014555_04_2008_c1

    Why Is L2VPN Needed?

    It allows SP and Enterprise to have a singleinfrastructure for both IP and legacy services

    For SP Move legacy ATM/FR traffic to MPLS/IP core withoutinterrupting current services

    Enterprise allow them to build better DataCenter and spamacross L2 AC across WAN/MPLS and provide better HA

    Help SP provide new P2P Layer 2 tunnelling services

    Customer can have its own routing, QoS policy, etc.

    A migration step towards IP/MPLS VPN

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 8BRKAGG-200014555_04_2008_c1

    Benefits for L2VPNs

    New service opportunities:

    Virtual leased line service

    Offer PVC-like Layer 2-based service

    Reduced costconsolidate multiple core technologiesinto a single packet-based network infrastructure

    Simplify servicesLayer 2 transport provides options for serviceproviders who need to provide L2 connectivity and maintaincustomer autonomy

    Protect existing investmentsGreenfield networks to extendcustomer access to existing Layer 2 networks without deployinga new separate infrastructure

    Feature supportthrough the use of Cisco IOS featuressuch as IPsSec, QoS, and Traffic Engineering, L2 transportcan be tailored to meet customer requirements

  • 7/27/2019 BRKAGG-2000

    5/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 9BRKAGG-200014555_04_2008_c1

    L2VPN Models

    P2MP/MP2MP

    VPWS VPLS

    PPP/HDLC

    ATMAAL5/Cell

    FR

    Ethernet

    PPP/HDLC

    ATMAAL5/Cell

    FR

    Ethernet

    Like-to-Like ORAny-to-AnyPoint-to-Point

    AToM

    Ethernet

    MPLS CoreLocal Switching IP Core

    Any-to-Any ServicePoint-to-Point

    L2TPv3

    L2VPN Models

    CE-TDM

    T1/E1

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 10BRKAGG-200014555_04_2008_c1

    Motivation for L2VPNsIve Really Got to Consolidate These Networks

    Access

    IP/IPSec

    FR/ATMBroadband

    Ethernet

    Access

    IP/IPSec

    FR/ATMBroadband

    Ethernet

    Multiple Access Services Require Multiple Core Technologies = $$$ High Costs/ComplexManagement

    ATM

    MPLS or IP

    SONET

  • 7/27/2019 BRKAGG-2000

    6/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 11BRKAGG-200014555_04_2008_c1

    Generic L2 VPN Architecture

    Tunnels (MPLS, L2TPv3, GRE, IPSec, etc.)

    Emulated VCs (pseudowires) inside tunnels (many-to-one)

    Attachment VCs (e.g., FR DLCI, PPP) mapped to emulated VCs

    L2

    AttachmentCircuit

    VC

    Emulated VCTunnel

    VCEmulated VC/PW

    L2

    AttachmentCircuit

    PSN

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 12BRKAGG-200014555_04_2008_c1

    Motivation for L2VPNsHow Can I Leverage My Packet Infrastructure?

    Reduce overlapping core expense; consolidate trunk lines

    Offer multiservice/common interface (i.e. Ethernet MUX = L2, L3 and Internet)

    Maintain existing revenues from legacy services

    EthernetMPLS/IP

    Edge Packet Switched Network

    MSE

    New Service Growth

    Broadband Access

    Frame Relay ATM

    Existing Infrastructure

    Trunk Replacement

  • 7/27/2019 BRKAGG-2000

    7/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 13BRKAGG-200014555_04_2008_c1

    New Evolution for Circuit Emulation

    SONET/SDH

    IP/MPLSIP/MPLS

    SONET/SDH/Ethernet/DSL

    PW/Abis/Iub FR/ATM

    Radio Access Network

    BTS/NodeB

    SGSN

    RAN Edge

    Backbone Network

    IP POP at

    cellsite

    Abis/Iu b Optimi zation

    GGSN

    GMSC

    MGW

    MGW

    MSC Server

    MSC

    IP/MPLS BackbonePre-Aggregation

    Site

    SS7oIP

    PSTN

    Internet

    ITPITPITPITP

    Pseudo

    Wires

    Broadband Ethernet

    Backhaul

    BSC/RNC

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 14BRKAGG-200014555_04_2008_c1

    L2VPN DeploymentLaying the Groundwork for Successful Deployment

    The Need to Knows of Your Infrastructure:

    What is the aggregate bandwidth requirements for convergedservices?

    What are the minimum platform requirements to runthe planned services?

    What software features will be required to meet all of my plannedneeds?such as:

    L2VPN functionality (like-to-like, any-to-any, etc.)

    VPLS functionality (point-to-multipoint)

    Q-in-Q

    OAM requirements

    IGP, EGP, and TE requirements

    Cisco Express Forwarding (CEF, dCEF)

  • 7/27/2019 BRKAGG-2000

    8/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 15BRKAGG-200014555_04_2008_c1

    Ethernet overMPLS Overview

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 16BRKAGG-200014555_04_2008_c1

    MPLSEnabled

    MPLSEnabled

    Customer A

    Site#2

    1200010720 10720

    Targeted LDP Session Between PE Routers

    PEPE P

    Logical Connectivity

    BPDUs, VTP Messages

    Physical Connectivity

    EoMPLS Reference Model

    SwitchSwitch

    Customer A

    Site#1

    Switch Switch

  • 7/27/2019 BRKAGG-2000

    9/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 17BRKAGG-200014555_04_2008_c1

    A Typical Configuration: EoMPLS VLANR201

    10.0.0.201R202

    10.0.0.202R203

    10.0.0.203

    R204R20010.1.1.0/24 10.1.2.0/24

    PE P PE

    CE CE

    e1/0 e1/0 e2/0 e2/0

    e0/0.10

    e0/0.10

    e0/0.10

    e0/0.10

    LDP LDP

    Targeted LDP

    dot1Q 1010.10.10.200/24

    dot1Q 1010.10.10.204/24

    hostname R201!ipcefmpls ipmplslabel protocol ldpmplsldp router-id Loopback0 force!interface Loopback0ip address 10.0.0.201 255.255.255.255!interface Ethernet0/0.10description *** To R200 ***encapsulation dot1Q 10no ip directed-broadcastno cdp enablexconnect 10.0.0.203 10 encapsulation mpls

    hostname R203!ipcefmplsipmpls label protocol ldpmpls ldp router-id Loopback0 force!interface Loopback0ip address 10.0.0.203 255.255.255.255!pseudowire-class eomplsencapsulation mpls!interface Ethernet0/0.10description *** To R204encapsulation dot1Q 10no ip directed-broadcastno cdpenablexconnect 10.0.0.201 10 pw-class eompls

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 18BRKAGG-200014555_04_2008_c1

    Calculating MTU Requirementsfor the Core

    Core MTU Edge MTU + Transport Header + AToMHeader + (MPLS Label Stack * MPLS Header Size)

    Edge MTU is the MTU configured in the CE-facingPEs interface

    Examples (all in bytes):

    1530[1526]

    1530[1526]

    1526[1522]

    Total

    431500EoMPLS Port w/ TE FRR

    421500EoMPLS VLAN Mode

    421500EoMPLS Port Mode

    MPLSHeader

    MPLSStack

    Edge

    14

    18

    14

    Transport

    4 [0]

    4 [0]

    4 [0]

    AToM

  • 7/27/2019 BRKAGG-2000

    10/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 19BRKAGG-200014555_04_2008_c1

    L2 VPN Interworking

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 20BRKAGG-200014555_04_2008_c1

    Interworking Modes and Features

    The AC are terminated locally!!!

    There are two types of Interworking (a.k.a. any-2-any)

    Ethernet (AKA bridged)Ethernet frames are extractedfrom the AC and sent over the PW; VLAN Tag is removed;CEs can run Ethernet, BVI, or RBE

    IP (a.k.a. routed)IP packets are extracted from the ACand sent over the PW

    AToM L2TPv3 IP Mode Ethernet

    Frame Relay to Ethernet/VLAN Yes Yes Yes Yes

    Frame Relay to PPP Yes Yes Yes No

    Frame Relay to ATM AAL5 Yes No Yes No

    Ethernet/VLAN to ATM AAL5 Yes No Yes Yes

    Ethernet to VLAN Yes Yes Yes Yes

  • 7/27/2019 BRKAGG-2000

    11/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 21BRKAGG-200014555_04_2008_c1

    Configuration ExampleFrame-Relay to Ethernet

    Frame Li nkfr ame-rel ay swi tchi ng!pseudowi re-cl ass atom_fr _vl anencapsul ati on mplsin te r wor kin g ip

    !i nterface POS3/0encapsulati on fr ame-rel aycl ock source i nternalfr ame-r elay l mi -t ype ansifr ame-r elay intf -t ype dce

    !connect fr -vl an POS3/0 210 l2transportxconnect 192. 168. 200. 2 210 pw- cl ass atom_f r_vl an

    Ethernet/ VLAN Li nkfr ame-rel ay swi tchi ng!pseudowi re- cl ass atom_vl an_frencapsul ati on mplsin te r wor kin g ip

    !i nterface Gi gabit Ethernet4/0. 310encapsul ati on dot1Q 310xconnect 192. 168. 200. 1 210 pw- cl ass atom_vl an_fr

    VLAN 310

    i nterface POS5/ 0.210 point- to-poi nti p address 172.16.1. 1 255. 255.255.0fr ame-relay interface-dl c i 210

    i nterface Gi gabit Ethernet6/0.310encapsul ati on dot1Q 310i p address 172.16.1. 2 255. 255.255.0

    MPLS/IP

    DLCI 210

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 22BRKAGG-200014555_04_2008_c1

    Local Switching InterWorking

    interface Serial1/0/1:0encapsulation frame-relay MFR100

    !interface Serial1/0/2:0encapsulation frame-relay MFR100

    !interface Serial1/0/3:0encapsulation frame-relay MFR100

    !interface MFR100

    frame-relay lmi-type ansiframe-relay intf-type dce

    !interface GigabitEthernet0/1.10encapsulation dot1Q 10

    T1/E1 Total6.144 Mbps

    Ethernet0/1.10speed 100

    connect FR_to_EtherMFR100 Ethernet0/1.10 interworking ip

    CE3

    PPP/HDLCEthernet0/1.20speed 100

    MFR

    CE2-HUBCE

    PE1

  • 7/27/2019 BRKAGG-2000

    12/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 23BRKAGG-200014555_04_2008_c1

    VPLS Introduction

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 24BRKAGG-200014555_04_2008_c1

    VPLS Introduction

    Pseudo Wire Refresher

    VPLS Architecture

    VPLS Configuration Example

    VPLS Deployment

    Summary

  • 7/27/2019 BRKAGG-2000

    13/56

  • 7/27/2019 BRKAGG-2000

    14/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 27BRKAGG-200014555_04_2008_c1

    Why Provide a Layer 2 Service?

    Customer have full operational control over theirrouting neighbours

    Privacy of addressing space - they do not have tobe shared with the carrier network

    Customer has a choice of using any routing protocolincluding non IP based (IPX, AppleTalk)

    Customers could use an Ethernet switch instead ofa router as the CPE

    A single connection could reach all other edge

    points emulating an Ethernet LAN (VPLS)

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 28BRKAGG-200014555_04_2008_c1

    VPLS Is Defined in IETF

    Application

    General

    Ops and Mgmt

    Routing

    Security

    IETF

    MPLS

    Transport

    Formerly PPVPNworkgroup

    VPWS, VPLS, IPLS

    BGP/MPLS VPNs (RFC 4364 was2547bis)

    IP VPNs using Virtual Routers (RFC2764)

    CE based VPNs using IPsec

    Pseudo Wire Emulation edge-to-edgeForms the backbone transport for VPLS

    IAB

    ISOC

    As of 2-Nov-2006

    Internet

    L2VPN

    L3VPN

    PWE3

  • 7/27/2019 BRKAGG-2000

    15/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 29BRKAGG-200014555_04_2008_c1

    VPLS Components

    N-PE

    MPLSCore

    CE router

    CE router

    CE switch

    CE router

    CE router

    CE switch

    CE switch

    CE router

    Attachment circuitsPort or VLAN mode

    Mesh of LSP between N-PEs

    N-PE

    N-PE

    Pseudo Wires within LSP

    Virtual Switch Interface (VSI) terminates PWand provides Ethernet bridge function

    Targeted LDP between PEsto exchangeVC

    labels for Pseudo WiresAttachment CE

    can be a switch or router

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 30BRKAGG-200014555_04_2008_c1

    Virtual Switch Interface

    Flooding/Forwarding

    MAC table instances per customer (port/vlan) for each PE

    VFI will participate in learning and forwarding process

    Associate ports to MAC, flood unknowns to all other ports

    Address Learning/Aging

    LDP enhanced with additional MAC List TLV (label withdrawal)

    MAC timers refreshed with incoming frames

    Loop Prevention

    Create full-mesh of Pseudo Wire VCs (EoMPLS)

    Unidirectional LSP carries VCs between pair of N-PE Per

    A VPLS use split horizon concepts to prevent loops

  • 7/27/2019 BRKAGG-2000

    16/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 31BRKAGG-200014555_04_2008_c1

    VPLS Architecture

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 32BRKAGG-200014555_04_2008_c1

    VPLS TopologyPE View

    Each PE has a P2MP view of all other PEs it sees it selfas a root bridge with split horizon loop protection

    Full mesh topology obviates STP in the SP network

    Customer STP is transparent to the SP/CustomerBPDUs are forwarded transparently

    PEs

    CEs

    PE view

    Full Mesh LDPEthernet PW to each peer

    MPLS

  • 7/27/2019 BRKAGG-2000

    17/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 33BRKAGG-200014555_04_2008_c1

    PEs

    CEs

    PE view

    Full Mesh LDPEthernet PW to each peer

    MPLS

    VPLS TopologyCE View

    CE routers/switches see a logical Bridge/LAN

    VPLS emulates a LAN but not exactly

    This raises a few issues which are discussed later

    PEs

    CEs

    PE view

    Full Mesh LDPEthernet PW to each peer

    MPLS

    CEs

    MPLS

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 34BRKAGG-200014555_04_2008_c1

    VPLS Functional Components

    N-PE provides VPLS termination/L3 services

    U-PE provides customer UNI

    CE is the customer device

    CE U-PE N-PE MPLS Core N-PE U-PE CE

    CustomerMxUs

    SP PoPsCustomer

    MxUs

  • 7/27/2019 BRKAGG-2000

    18/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 35BRKAGG-200014555_04_2008_c1

    Why H-VPLS?

    Potential signaling overhead

    Full PW mesh from the Edge Packet replication done at the Edge

    Node Discovery and Provisioningextends end to end

    Minimizes signaling overhead

    Full PW mesh among Core devices Packet replication done the Core

    Partitions Node Discovery process

    VPLS H-VPLS

    CE

    CE

    CECE

    CE

    CE

    PE

    PE

    PE

    PE

    PE

    PE

    PE

    PECE

    CE

    MTU-s

    CE

    CE

    PE-rs

    PE-rs

    PE-rs

    PE-rs

    PE-rs

    PE-rs

    PE-r

    CE

    CE

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 36BRKAGG-200014555_04_2008_c1

    MPLS VPLS

    N-PE

    N-PE

    N-PE

    P P

    PP

    GE Ring

    Metro AU-PE

    PE-AGG

    Metro C

    U-PE

    DWDM/CDWM

    U-PE

    User Facing Provider Edge (U-PE)

    Network Facing Provider Edge (N-PE)

    Ethernet Edge Topologies

    U-PE

    RPR

    Metro D

    Large ScaleAggregation

    PE-AGGIntelligent Edge

    N-PEMultiservice Core

    PEfficientAccess

    U-PEIntelligent Edge

    N-PEEfficientAccess

    U-PE

    SiSi

    SiSi

    Metro B

    10/100/1000 Mbps

    10/100/1000 Mbps

    10/100/1000 Mbps

    10/100/1000 Mbps

    Hub andSpoke

    FullService CPE

    FullService CPE

  • 7/27/2019 BRKAGG-2000

    19/56

  • 7/27/2019 BRKAGG-2000

    20/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 39BRKAGG-200014555_04_2008_c1

    VPLS ConfigurationExample

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 40BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

  • 7/27/2019 BRKAGG-2000

    21/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 41BRKAGG-200014555_04_2008_c1

    Direct Attachment Configuration (C7600)

    CEs are all part of same VPLS instance (VCID = 56)

    CE router connects using VLAN 100 over sub-interface

    PE1 PE2CE1 CE2

    CE2

    PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0 gi4/4

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1VLAN100

    VLAN100

    VLAN100

    MPLS Core

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 42BRKAGG-200014555_04_2008_c1

    Direct Attachment CE RouterConfiguration

    CE routers sub-interface on same VLAN

    Can also be just port based (NO VLAN)

    i nterface Gi gabit Ethernet 1/3.100encapsul ati on dot 1q 100i p address 192. 168.20. 2

    i nterface Gi gabit Ethernet 2/0.100encapsul ati on dot 1q 100i p address 192. 168.20. 3

    CE1 CE2

    CE2

    VLAN100

    VLAN100

    VLAN100

    Subnet 192.168.20.0/24

    i nterface Gi gabit Ethernet 2/1.100encapsul ati on dot 1q 100i p address 192. 168.20. 1

  • 7/27/2019 BRKAGG-2000

    22/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 43BRKAGG-200014555_04_2008_c1

    Direct Attachment VSI Configuration

    Create the Pseudo Wires between N-PE routers

    MPLS Core

    l 2 vfi VPLS-A manualvpn i d 56

    neighbor 2. 2.2. 2 encapsul ati on mpl sneighbor 1. 1.1. 1 encapsul ati on mpl s

    l 2 vfi VPLS-A manual

    vpn i d 56neighbor 1. 1.1. 1 encapsulat i on mpl sneighbor 3. 3.3. 3 encapsulat i on mpl s

    l 2 vfi VPLS- A manual

    vpn i d 56neighbor 2. 2.2. 2 encapsulat i on mpl sneighbor 3. 3.3. 3 encapsulat i on mpl s

    PE1 PE2CE1 CE2

    CE2

    PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0 gi4/4

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1VLAN100

    VLAN100

    VLAN100

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 44BRKAGG-200014555_04_2008_c1

    Direct Attachment CE Router(VLAN Based)

    Same set of commands on each PE

    Configured on the CE facing interface

    MPLS CorePE1 PE2

    CE1 CE2

    CE2

    PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0 gi4/4

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1VLAN100

    VLAN100

    VLAN100I nterf ace Gi gabit Ethernet3/0

    swi t chportswi tchport mode t runkswi tchport tr unk encapsulat i on dot1qswi tchport tr unk all owed vl an 100

    !I nterf ace vlan 100

    no i p addressxconnect vf i VPLS-A

    !vlan 100

    state acti ve

    This command associates the VLAN with t heVPLS instance

    VLAN100 = VCID 56

  • 7/27/2019 BRKAGG-2000

    23/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 45BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 46BRKAGG-200014555_04_2008_c1

    Direct Attachment CE Switch(Port Based)

    IfCE was a switch instead of a router then we can use QinQ

    QinQ places all traffic (tagged/untagged) from switch into a VPLS

    MPLS CorePE1 PE2

    CE1 CE2

    CE2

    PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0 gi4/4

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1All VLANs

    All VLANs

    All VLANsI nterf ace Gi gabit Ethernet3/0

    swi t chportswi t chport mode dot1qtunnelswi tchport access vlan 100l 2protocol -t unnel stp

    !I nterface vlan 100

    no i p addressxconnect vf i VPLS-A

    !vlan 100

    state acti ve

    This command associates the VLAN with t heVPLS instance

    VLAN100 = VCID 56

  • 7/27/2019 BRKAGG-2000

    24/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 47BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 48BRKAGG-200014555_04_2008_c1

    H-VPLS Configuration (C7600/3750ME)

    U-PEs provide services to customer edge device

    CE traffic then carried in QinQ or EoMPLS PW to N-PE

    PW VSI mesh configuration is same as previous examples

    MPLS Core

    N-PE1 N-PE2

    N-PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1

    U-PE3Cisco 3750ME

    CE1 CE2

    CE1

    CE2

    CE1

    CE2

    U-PE1Cisco

    3750ME

    gi4/4 gi1/1/1fa1/0/1

    U-PE2Cisco

    3750ME 4.4.4.4

  • 7/27/2019 BRKAGG-2000

    25/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 49BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 50BRKAGG-200014555_04_2008_c1

    H-VPLS QinQ Tunnel (Ethernet Edge)

    U-PE carries all traffic from CE using QinQ

    Outer tag is VLAN100, inner tags are customers

    MPLS Core

    N-PE1 N-PE2

    N-PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0 gi4/4 gi1/1/1

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1

    U-PE3Cisco 3750ME

    CE1 CE2

    CE1

    CE2

    U-PE1Cisco

    3750ME

    I nterf ace Gi gabit Ethernet4/4swi t chportswi tchport mode t runkswi tchport tr unk encapsulat i on dot1qswi tchport tr unk al l owed vlan 100

    !I nterface vlan 100

    no ip addressxconnect vf i VPLS-A

    !vlan 100

    state acti ve

    i nterf ace FastEthernet1/0/ 1swi t chportswi tchport access vlan 100swi t chport mode dot1q-t unnelswi tchport trunk al l ow vlan 1-1005

    !i nterf ace Gi gabit Ethernet 1/1/1swi t chportswi tchport mode t runkswi tchport al l owvlan 1-1005

    CE1

    CE2

    fa1/0/1

    4.4.4.4

    U-PE2Cisco

    3750ME

  • 7/27/2019 BRKAGG-2000

    26/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 51BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 52BRKAGG-200014555_04_2008_c1

    H-VPLS EoMPLS PW Edge (VLAN Based)

    CE interface on U-PE can be access or trunk port

    xconnect per VLAN is required

    MPLS Core

    N-PE1 N-PE2

    U-PE2Cisco

    3750ME

    N-PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1

    U-PE3Cisco 3750ME

    CE1 CE2

    CE1

    CE2

    U-PE1Cisco

    3750ME

    i nterf ace FastEthernet1/0/ 1swi t chportswi tchport access vlan 500

    !i nterf ace vl an500xconnect 2.2. 2.2 56 encapsul ati on mpl s

    !i nterf ace Gi gabit Ethernet1/1/ 1no swi t chporti p address 156.50. 20. 2 255.255.255. 252mpl s i p

    gi4/4 gi1/1/1

    CE1

    CE2

    fa1/0/1

    I nterf ace Gi gabit Ethernet4/4no swi t chporti p address 156.50. 20. 1 255.255.255. 252mpl s i p

    !l 2 vfi VPLS- A manual

    vpn i d 56neighbor 1. 1.1. 1 encapsul ati on mpl sneighbor 3. 3.3. 3 encapsul ati on mpl snei ghbor 4.4.4.4 encaps mpls no-spl i t

    4.4.4.4

    Ensures CE traffic passed on PW to/from U-PE

  • 7/27/2019 BRKAGG-2000

    27/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 53BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 54BRKAGG-200014555_04_2008_c1

    H-VPLS EoMPLS PW Edge (Port Based)

    CE interface on U-PE can be access or trunk port

    xconnect for entire PORT is required

    MPLS Core

    N-PE1 N-PE2

    U-PE2Cisco

    3750ME

    N-PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1

    U-PE3Cisco 3750ME

    CE1 CE2

    CE1

    CE2

    U-PE1Cisco

    3750ME

    i nterf ace FastEthernet1/0/ 1no swi t chportxconnect 2.2. 2.2 56 encapsul ati on mpl s

    !i nterf ace Gi gabit Ethernet1/1/ 1no swi t chporti p address 156.50. 20. 2 255.255.255. 252mpl s i p

    gi4/4 gi1/1/1

    CE1

    CE2

    fa1/0/1

    I nterf ace Gi gabit Ethernet4/4no swi t chporti p address 156.50. 20. 1 255.255.255. 252mpl s i p

    !l 2 vf i PE1- VPLS-A manual

    vpn i d 56neighbor 1. 1.1. 1 encapsul ati on mpl sneighbor 3. 3.3. 3 encapsul ati on mpl snei ghbor 4.4.4.4 encaps mpls no-spl i t

    4.4.4.4

    Ensures CE traffic passed on PW to/from U-PE

  • 7/27/2019 BRKAGG-2000

    28/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 55BRKAGG-200014555_04_2008_c1

    Configuration Examples

    Direct Attachment

    Using a Router as a CE(VLAN Based)

    Using a Switch as a CE(Port Based)

    H-VPLS

    Ethernet QinQ

    EoMPLS Pseudo Wire(VLAN Based)

    EoMPLS Pseudo Wire(Port Based)

    Sample Output

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 56BRKAGG-200014555_04_2008_c1

    MPLS Core

    show mpls l2 vc

    N-PE1 N-PE2

    U-PE2Cisco

    3750ME

    N-PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1

    U-PE3Cisco 3750ME

    CE1 CE2

    CE1

    CE2

    U-PE1Cisco

    3750ME

    gi4/4 gi1/1/1

    CE1

    CE2

    fa1/0/1

    NPE- A#showmpl s l 2 vcLocal i nt f Local c i r cui t Des t address VC ID Sta tus- - -- - -- - -- - -- - - -- - -- - -- - -- - - -- - -- - -- - -- - - -- - - - - -- - -VFI VPLS-A VFI 1.1. 1.1 10 UPVFI VPLS-A VFI 3.3. 3.3 10 UP

    4.4.4.4

  • 7/27/2019 BRKAGG-2000

    29/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 57BRKAGG-200014555_04_2008_c1

    MPLS Core

    show mpls l2 vc detail

    N-PE1 N-PE2

    U-PE2Cisco

    3750ME

    N-PE3

    1.1.1.1 2.2.2.2

    3.3.3.3

    gi3/0

    gi4/2

    pos4/1 pos4/3

    pos3/0 pos3/1

    U-PE3Cisco 3750ME

    CE1 CE2

    CE1

    CE2

    U-PE1Cisco

    3750ME

    gi4/4 gi1/1/1

    CE1

    CE2

    fa1/0/1

    NPE- 2#showmpl s l 2 vc detai lLocal i nterf ace: VFI VPLS-A up

    Desti nati on address: 1.1. 1.1, VC I D: 10, VC status: upTunnel l abel : i mp-nul l , next hop 156.50.20. 1Output i nterf ace: POS4/ 3, i mposed l abel st ack {19}

    Create ti me: 1d01h, l ast st atus change t i me: 00: 40: 16Signal i ng protocol : LDP, peer 1. 1.1. 1:0 up

    MPLS VC label s: l ocal 23, remote 19

    4.4.4.4Use VCLabel 19

    Use VCLabel 23

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 58BRKAGG-200014555_04_2008_c1

    PW RedundancyConcepts

  • 7/27/2019 BRKAGG-2000

    30/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 59BRKAGG-200014555_04_2008_c1

    PW High Availability

    Failure in the Provider core mitigated with link redundancy and FRR

    PE router failure PE Diversity Attachment Circuit failure Need Pair of Attachment Ckts end-to-end

    CE Router failure Redundant CEs

    CE1

    CE2

    Site1

    PE1

    PE2

    PE3

    PE4

    P1

    P2

    P3

    P4Site2

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 60BRKAGG-200014555_04_2008_c1

    PW High Availability

    Failure in the Provider core mitigated with link redundancy and FRR

    PE router failure PE Diversity

    Attachment Circuit failure Need Pair of Attachment Ckts end-to-end

    CE Router failure Redundant CEs

    CE1

    CE2

    Site1

    PE1

    PE2

    PE3

    PE4

    P1

    P2

    P3

    P4Site2

  • 7/27/2019 BRKAGG-2000

    31/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 61BRKAGG-200014555_04_2008_c1

    L2VPN NetworksDual Homed PWSites Without Redundancy Feature

    CE1 CE2

    Site1

    PE3

    Site2P2

    PE1

    PE4

    P1 P3

    P4

    CE3

    PE2

    x

    interface e 1/0.1encapsulation dot1q 10xconnect encapsulation mpls

    Interface e1/0.1encapsulation dot1q 10xconnect encapsulation mpls

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 62BRKAGG-200014555_04_2008_c1

    High Availabili ty in L2VPN Networks

    The TCP session between two LDP peers may go down dueto HW/SW failure (RP switchover)

    If PE3 fails, traffic will be dropped

    Need PW-redundancy so that pw can be re-routed to theredundant router i.e. PE4

    PE1

    Site1

    P1 P3

    Site2P4

    PE3

    PE4

    P2

    Primary

    Standby

    Primary

    Primary

  • 7/27/2019 BRKAGG-2000

    32/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 63BRKAGG-200014555_04_2008_c1

    Dual Homed PW Siteswith Redundancy Feature

    CE1

    CE3

    Site1

    PE2

    PE3

    P2

    P3

    P4Site2

    P1

    PE1x

    PE4

    CE2

    pe1(config)#int e 0/0.1pe1(config-subif)#encapsulation dot1q 10pe1(config-subif)#xconnect encapsulation mplspe1(config-subif-xconn)#backup peer

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 64BRKAGG-200014555_04_2008_c1

    PW RedundancyManual Switchover

    CE1CE2

    Site1

    PE1

    PE2

    Site2P2 P4

    PE3

    P1 P3

    PE4

    CE3

    interface Ethernet0/0.1encapsulation dot1Q 10xconnect 192.168.1.3 10 encapsulation mplsbackup peer 192.168.1.4 10backup delay 3 10

    pe1#sh mpls l2transport vc 10Local intf Local circuit Destaddress VC ID Status------------- -------------------------- ------------------------- ----------Et0/0.1 Eth VLAN 20 192.168.1.3 10 UPEt0/0.1 Eth VLAN 20 192.168.1.4 10 DOWN

    pe1#sh mpls l2transport vc 10

    Local intf Local circuit Destaddress VC ID Status------------- -------------------------- ------------------------- ----------Et0/0.1 Eth VLAN 20 192.168.1.3 10 DOWNEt0/0.1 Eth VLAN 20 192.168.1.4 10 UP

    pe1>xconnectbackup force-switchover peer 192.168.1.3 10Maintenance Required

  • 7/27/2019 BRKAGG-2000

    33/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 65BRKAGG-200014555_04_2008_c1

    PW RedundancyConfig Examples (1/2)

    Example 1: MPLS xconnect with 1 redundant peer. The debounce timer is set to 3 seconds sothat we dont allow a switchover until the connection has been deemed down for 3 seconds.

    interface serial0/0

    xconnect 10.0.0.1 100 encapsulation mpls

    backup peer 10.0.0.2 200

    backup delay 3 10

    pseudowire-class test

    encapsulation mpls

    !

    connect frpw1 serial0/1 50 l2transport

    xconnect 20.0.0.1 50 pw-class testbackup peer 20.0.0.2 50

    backup delay 0 never

    Example 2: xconnect with 1 redundant peer. In this example, once a switchover occurs, we willnot fallback to the primary until the secondary xconnect fails.

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 66BRKAGG-200014555_04_2008_c1

    PW RedundancyConfig Examples

    Example 3: Local-switched connection between ATM and FR using Ethernet interworking.The FR circuit is backed up by a MPLS pseudowire

    pseudowire-class test

    encapsulation mpls

    connect frpw1 serial0/1 50 l2transport

    xconnect 20.0.0.1 50 pw-class test

    backup peer 20.0.0.2 50

    backup delay 3 10

    pseudowire-class test

    encapsulation mpls

    interworkingethernet

    connect atm-fr atm1/0 100/100 E0/0.10 100 interworkingethernet

    backup peer 1.1.1.1 100 pw-class test..

    r201

    ce ce

    f0/0.10atm4/0

    atm4/0 f0/0.10

    pe

    1.1.1.1

    Example 4: xconnect with 1 redundant peer. In this example, the switchover will not beginunless the pseudowire has been down for 3 seconds. Once a switchover occurs, we will notfallback to the primary has been re-established and UP for 10 seconds.z`

    PE2-Backup

  • 7/27/2019 BRKAGG-2000

    34/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 67BRKAGG-200014555_04_2008_c1

    Tunnel Selection

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 68BRKAGG-200014555_04_2008_c1

    What If the Core Uses Traffic Engineering?Need to Use the Command preferred-path {interface | peer} Under the pseudowire-class;

    The selected path must be a label switched path (LSP) destined tothe peer PE router

    If you specify a tunnel (selecting interface):

    The tunnel must be an MPLS traff ic engineering tunnel

    The tunnel tailend must be on the remote PE router

    If you specify an IP address (selecting peer):

    The address must be the IP address of a loopback interface on theremote PE router, not necessarily the LDP router-id address; peer

    means targeted LDP peerThe address must have a /32 mask

    There must be an LSP destined to that selected address

    The LSP does not have to be a TE tunnel

    Have in Mind That:

  • 7/27/2019 BRKAGG-2000

    35/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 69BRKAGG-200014555_04_2008_c1

    Forwarding Traffic into a TE Tunnel

    Static routing

    Policy routing

    Global table onlynot from VRF at present

    Autoroute

    Forwarding Adjacency

    AToM Tunnel Selection

    Class Based Tunnel Selection

    Static, Autoroute, and Forwarding AdjacencyGet You Unequal-Cost Load-Balancing

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 70BRKAGG-200014555_04_2008_c1

    Coupling Layer-2 Services with MPLSTEAToM Tunnel Selection

    Static mapping betweenpseudo-wire and TETunnel on PE

    Implies PE-to-PE TEdeployment

    TE tunnel defined aspreferred path for

    pseudo-wire

    Traffic will fall backto peer LSP if tunnelgoes down

    ATM

    PE1

    PE2

    IP/MPLS

    ATM

    CE

    CETE LSP

    Layer 2 Circuit

    Layer 2 Circuit

    PE3

    pseudowire-class my-path-prefencapsulation mplspreferred-path interface tunnel 1 disable-fallback!interface fastEthernet .encapsulation dot1Q 150xconnect 172.18.255.3 1000 pw-class my-path-pref

  • 7/27/2019 BRKAGG-2000

    36/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 71BRKAGG-200014555_04_2008_c1

    MPLS Forwarding (AToM Traffic)

    PE2 sees multiple IGP paths to reach PE1

    L2VPN Packets load balanced per customer siteaccording to VC label over two label

    Switched paths from PE to P

    10.1.1.0/24CE1

    Voice Site 2

    P4

    P2P1

    P3

    10.1.1.0/24

    VideoSite 2

    CE2

    CE1CE2PE1

    10.1.1.0/24

    Site 2CE1

    CE2

    E2/0.1Vlan10

    E2/0.2vlan20

    E2/0.3Vlan30

    PE2

    23 17

    23 37

    20 38

    17

    37

    38

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 72BRKAGG-200014555_04_2008_c1

    pseudowi re- cl ass my-path- pref

    encapsul ati on mpl s

    preferred-path i nterface tunnel 1 di sabl e-f all back

    !

    i nterf ace fastEthernet .

    encapsulat i on dot1Q 150

    xconnect 172. 18. 255. 3 1000 pw- cl ass my-path- pref

    preferred path [interface tunnel tunnel-number| peer /{ip address | host name}] [disable-fallback]

    L2VPN DeploymentTunnel Selection for Bandwidth Protection

    This configuration will allow one to direct which pathpseudowires are to take throughout the network

    The tunnel head end / tail end must be on the PEs

  • 7/27/2019 BRKAGG-2000

    37/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 73BRKAGG-200014555_04_2008_c1

    ATOM: Preferred Path TE Tunnels

    Three TE tunnels (Tunnel 0, Tunnel 1 and Tunnel2) between PE1 and PE2

    Preferred path can be used to map each vc (or multiple vcs) traffic into differentTE tunnels

    192.168.0.5/32

    10.1.1.0/24

    PE2

    CE1

    Site 1 Site 2

    P4

    P2 P1

    P3

    10.1.1.0/24

    Site 1Site 2

    CE2

    CE1CE2

    PE1

    10.1.1.0/24

    Site 1Site 2

    CE1CE2

    TE Tunnel 2

    TE Tunnel 1

    TE Tunnel 0

    30

    34

    35

    pseudowire-class testencapsulation mpls

    preferred-path interface Tunnel0!pseudowire-class test1encapsulation mplspreferred-path interface Tunnel1!pseudowire-class test2encapsulation mplspreferred-path interface Tunnel2

    interface Ethernet2/0.1description green vcxconnect192.168.0.5 1 encapsulation mplspw-class test!interface Ethernet2/0.2description red vcxconnect192.168.0.5 20 encapsulation mplspw-class test1

    !interface Ethernet2/0.3description dark green vcxconnect192.168.0.5 30 encapsulation mpls pw-class test2

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 74BRKAGG-200014555_04_2008_c1

    ATOM: Preferred Path TE Tunnels

    Each vc is mapped to a different tunnel

    Site 2

    Site 2

    CE2

    CE2

    Site 2CE2

    10.1.1.0/24

    Site 1

    10.1.1.0/24

    Site 1

    10.1.1.0/24

    Site 1

    192.168.0.5/32

    PE2

    CE1

    P4

    P2 P1

    P3

    CE1

    PE1

    CE1

    TE Tunnel 2

    30

    34

    35

    pe2#sh mplsl2transport vc detail | in labelOutput interface: Tu0, imposed label stack {30 16}MPLS VC labels: local 16, remote 16Tunnel label: 3, next hop point2pointOutput interface: Tu1, imposed label stack {34 37}MPLS VC labels: local 17, remote 37Tunnel label: 3, next hop point2pointOutput interface: Tu2, imposed label stack {35 38}MPLS VC labels: local 37, remote 38

  • 7/27/2019 BRKAGG-2000

    38/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 75BRKAGG-200014555_04_2008_c1

    Data CenterImplementation withLayer 2 VPN PWE

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 76BRKAGG-200014555_04_2008_c1

    Data Center Option (A) Utilizing Layer 2 VPN to Provide High Availabil ityBetween Two Data Centers and Two Service Providers

    6500-DCN- SWI TCH!

    i nterf ace gi gabitethernet 1/0/1 COREAchannel - group 1 mode onswi tchportswi tchport tr unk encapsulati on dot1qswi tchport mode t runk!i nterf ace gi gabitethernet 1/0/2 COREBchannel - group 1 mode onswi tchportswi tchport tr unk encapsulati on dot1qswi tchport mode t runk

    PE1- COREB!

    i nterf ace gigabitethernet 1/0/0no swi tchportxconnect X.X.X. PE2 70 encapsulat i on mpl s PE2-COREA

    ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ ___ ___ ___ ___ ___ ___PE2- COREB!i nterf ace gigabitethernet 1/0/0no swi tchportxconnect X.X.X. PE1 70 encapsulat i on mpl s PE1-COREA

  • 7/27/2019 BRKAGG-2000

    39/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 77BRKAGG-200014555_04_2008_c1

    Data Center Option (B) Utilizing Layer 2 VPN to Provide Physical HighAvai labil ity Between Two Data Centers

    6500-DCN-SWITCH!interface gigabitethernet 1/0/1channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface gigabitethernet 1/0/2channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface Port-channel1switchport trunk!interface gigabitethernet 1/0/4

    switchport mode accessSwitchport access vlan 10

    interface gigabitethernet 1/0/1channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface gigabitethernet 1/0/2channel-group 2 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface gigabitethernet 2/0/1channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface gigabitethernet 2/0/2

    channel-group 2 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface Port-channel1switchport trunk!interface Port-channel2switchport trunk

    PE1-COREAinterface gigabitethernet 3/0no switchportxconnect X.X.X.PE2-CORE A 70encapsulat i on mpl s

    PE1-COREBi nterface gi gabitethernet 3/0no switchportxconnect X.X.X.PE2-CORE B 70encapsulat i on mpl s

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 78BRKAGG-200014555_04_2008_c1

    Data Center Option (C) Utilizing Layer 2 VPN to Provide Physical HighAvai labil ity Dual Switches Betw een Two Data Centers STP Free Topology

    6500-A!interface gigabitethernet 1/0/1channel-group 1 mode onswitchport trunk encapsulation dot1q

    switchport mode trunk!interface gigabitethernet 1/0/2channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface Port-channel1switchport trunk!i nterf ace gi gabitethernet 1/0/4swi tchport mode accessSwi tchport access vl an 10

    6500-A

    6500-B!interface gigabitethernet 1/0/1channel-group 1 mode onswitchport trunk encapsulation dot1q

    switchport mode trunk!interface gigabitethernet 1/0/2channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk!interface Port-channel1switchport trunk!i nterf ace gi gabitethernet 1/0/4swi tchport mode accessSwi tchport access vl an 10

    PE1-COREAinterface gigabitethernet 3/0

  • 7/27/2019 BRKAGG-2000

    40/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 79BRKAGG-200014555_04_2008_c1

    Data Center Option (C) Utilizing Layer 2 VPN to Provide Physical HighAvai labil ity Dual Switches Betw een Two Data Centers STP Free Topology

    6500-A

    !interface gigabitethernet 1/0/1channel-group 1 mode on

    switchport trunk encapsulation dot1qswitchport mode trunk!interface gigabitethernet 1/0/2channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk

    !interface Port-channel1switchport trunk

    !interf ace gigabit ethernet 1/0/4swi tchport mode accessSwi tchport access vlan 10

    6500-A

    6500-B

    !interface gigabitethernet 1/0/1channel-group 1 mode on

    switchport trunk encapsulation dot1qswitchport mode trunk!interface gigabitethernet 1/0/2channel-group 1 mode onswitchport trunk encapsulation dot1qswitchport mode trunk

    !interface Port-channel1switchport trunk

    !interf ace gigabit ethernet 1/0/4swi tchport mode accessSwi tchport access vlan 10

    PE1-COREAinterface gigabitethernet 3/0

  • 7/27/2019 BRKAGG-2000

    41/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 81BRKAGG-200014555_04_2008_c1

    Virtual Switchingand Layer 2 VPNin Data Center

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 82BRKAGG-200014555_04_2008_c1

    Current Network ChallengesEnterprise Campus

    Access

    L2/L3Distribution

    L3 Core

    FHRP, STP, Asymmetricrouting,

    Policy Management

    Extensive routingtopology, Routing

    reconvergence

    Single active uplink perVLAN (PVST), L2

    reconvergence, increasedroute peering with L3

    access

    Traditional Enterprise Campus deployments have been designedin such a way that allows for scalability, differentiated services andhigh availability. However they also face many challenges, some ofwhich are listed in the below diagram

  • 7/27/2019 BRKAGG-2000

    42/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 83BRKAGG-200014555_04_2008_c1

    Current Network ChallengesData Center

    L2/L3 Core

    L2Distribution

    L2 Access

    Dual-Homed Servers to single

    switch, Single active uplink perVLAN (PVST), L2reconvergence

    Single active uplink per VLAN(PVST), L2 reconvergence,

    excessive BPDUs

    FHRP, HSRP, VRRPSpanning Tree

    Policy Management

    Traditional Data Center designs are requiring ever increasing

    Layer 2 adjacencies between Server nodes due to prevalence ofVirtualization technology. However, they are pushing the limits ofLayer 2 networks, placing more burden on loop-detection protocolssuch as Spanning Tree

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 84BRKAGG-200014555_04_2008_c1

    Introduction to Virtual SwitchConceptsVirtual Switch System is a new technology break through for theCatalyst 6500 family

  • 7/27/2019 BRKAGG-2000

    43/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 85BRKAGG-200014555_04_2008_c1

    Virtual Switch SystemEnterprise Campus

    Access

    L2/L3Distribution

    L3 Core

    No FHRPsNo Looped topologyPolicy Management

    Reduced routingneighbors, Minimal L3

    reconvergence

    Multiple active uplinks perVLAN, No STPconvergence

    A Virtual Switch-enabled Enterprise Campus network takes

    on multiple benefits including simplified management &administration, facilitating greater high availability, whilemaintaining a flexible and scalable architecture

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 86BRKAGG-200014555_04_2008_c1

    Virtual Switch SystemData Center

    L2/L3 Core

    L2Distribution

    L2 Access

    Dual-Homed Servers, Singleactive uplink per VLAN (PVST),

    Fast L2 convergence

    Dual Active Uplinks, Fast L2convergence, minimized L2

    Control Plane, Scalable

    Single router node, Fast L2convergence, Scalable

    architecture

    A Virtual Switch-enabled Data Center allows for maximumscalability so bandwidth can be added when required, but stillproviding a larger Layer 2 hierarchical architecture free of relianceon Spanning Tree

  • 7/27/2019 BRKAGG-2000

    44/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 87BRKAGG-200014555_04_2008_c1

    Virtual Switch ArchitectureVirtual Switch LinkThe Virtual Switch Link is a special link joining each physical switch

    together - it extends the out of band channel allowing the activecontrol plane to manage the hardware in the second chassis

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 88BRKAGG-200014555_04_2008_c1

    Virtual Switch ArchitectureVSL Initialization

    Role Resolution Protocol (RRP) used to determine compatible Hardware and Soft ware versions to form the VSL as well as determinewhich switch becomes Active and Hot Standby from a control plane perspective

    Role Resolution Protocol (RRP) used to determine compatible Hardware and Software versions to form the VSL as well as determinewhich switch becomes Active and Hot Standby from a control plane perspective

    LMPLMP

    LMPLMP

    RRPRRPRRPRRP

    Link Management Protocol (LMP) used to track and reject Unidirectional Links, Exchange ChassisID and other information between the 2switches

    Link Management Protocol (LMP) used to track and reject Unidirectional Links, Exchange Chassis ID and other information between the 2switches

    Link Bringup to determine which ports form the VSLLink Bringup to determine which ports form the VSL

    Before the Virtual Switch domain can become active, the Virtual SwitchLink (VSL) must be brought online to determine Active and Standbyroles. The initialization process essentially consists of 3 steps:

    1.

    2.

    3.

  • 7/27/2019 BRKAGG-2000

    45/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 89BRKAGG-200014555_04_2008_c1

    Virtual Switch ArchitectureVSLP Ping

    The VSLP Ping operates on a per-physical interface basis and parameterssuch as COUNT, DESTINATION, SIZE, TIMEOUT may also be specified

    VSL

    Switch 1 Switch 2

    VSLPVSLP VSLPVSLP

    VSLPVSLP VSLPVSLP

    vss#ping vslp output i nterf ace t enGi gabitEthernet 1/5/4

    Type escape sequence to abort .Sendi ng 5, 100-byt e VSLP pi ng to peer- sup vi a output por t 1/ 5/4, ti meout i s 2 seconds:! ! ! ! !Success rat e i s 100 percent (5/ 5), round-t ri p mi n/avg/max = 12/12/16 msvss#

    vss#ping vslp output i nterf ace tenGi gabitEthernet 1/5/4

    Type escape sequence to abort .Sendi ng 5, 100-byt e VSLP pi ng to peer- sup via output port 1/5/ 4, t i meout i s 2 seconds:! ! ! ! !

    Success rat e is 100 percent ( 5/5) , round-tr i p mi n/avg/max =12/ 12/16 msvss#

    A new Ping mechanism has been implemented in VSS mode to allow the

    user to objectively verify the health of the VSL itself. This is implemented asa VSLP Ping

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 90BRKAGG-200014555_04_2008_c1

    VSS EtherChannelConceptsOverview, Protocols, LoadBalancing, Enhancements with VSL

  • 7/27/2019 BRKAGG-2000

    46/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 91BRKAGG-200014555_04_2008_c1

    EtherChannel ConceptsMultichassis EtherChannel (MEC)

    Regular EtherChannel on single chassis Multichassis EtherChannel across 2 VSL-enabled Chassis

    Virtual Switch Virtual Switch

    LACP, PAGP or ON EtherChannelmodes are supported

    LACP, PAGP or ON EtherChannelmodes are supported

    Prior to Virtual Switch, Etherchannels were restricted to reside within the

    same physical switch. In a Virtual Switch environment, the 2 physicalswitches form a single logical network entity - therefore Etherchannelscan now also be extended across the 2 physical chassis

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 92BRKAGG-200014555_04_2008_c1

    EtherChannel ConceptsEtherChannel Hash for MEC

    Link A1 Link B2

    Blue Traffic destined for theServer will result in LinkA1 in theMEC link bundle being chosen as

    the destination path

    Orange Traffic destined for theServer will result in Link B2 in t heMEC link bundle being chosen as

    the destination path

    Server

    MEC

    Deciding on which link of a Multi-chassis EtherChannel to use in aVirtual Switch is skewed in favor towards local links in the bundle -this is done to avoid overloading the Virtual Switch Link (VSL) withunnecessary traffic loads

  • 7/27/2019 BRKAGG-2000

    47/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 93BRKAGG-200014555_04_2008_c1

    Hardware RequirementsVSL Hardware RequirementsThe Virtual Switch Link requires special hardware as noted below

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 94BRKAGG-200014555_04_2008_c1

    Hardware RequirementsOther Hardware Considerations

  • 7/27/2019 BRKAGG-2000

    48/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 95BRKAGG-200014555_04_2008_c1

    High AvailabilityLink Failure, Redundancy Schemes,Dual-Active Detection, GOLD

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 96BRKAGG-200014555_04_2008_c1

    High Availabili tyRedundancy Schemes

    Should a mismatch of information occur between the Active and Standby

    Chassis, the Standby Chassis will revert to RPR mode, where only configurationis synchronized, but PFC, Switch Fabric and modules will not be brought up

    VSL

    Switch 112.2(33)SXH1

    Active

    Switch 212.2(33)SXH1

    NSF/SSO

    VSL

    Switch 112.2(33)SXH1

    Active

    Switch 212.2(33)SXH2

    RPR

    The default redundancy mechanism between the 2 VSS chassis andtheir associated supervisors is NSF/SSO, allowing state information andconfiguration to be synchronized. Additionally, only in NSF/SSO mode doesthe Standby supervisor PFC, Switch Fabric, modules and their associatedDFCs become active

  • 7/27/2019 BRKAGG-2000

    49/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 97BRKAGG-200014555_04_2008_c1

    High Availabili tySSO-Aware Protocols

    Virtual SwitchSwitch 1 Switch 2

    DHCP SnoopingBinding Table

    DHCP SnoopingBinding Table

    IP AddIP Add MAC AddMAC Add

    10.10.10.1010.10.10.10 00:50:56:01:e1:0200:50:56:01:e1:02

    172.26.18.2172.26.18.2 00:02:b3:3f:3b:9900:02:b3:3f:3b:99

    172.26.19.34172.26.19.34 00:16:a1:c2:ee:3200:16:a1:c2:ee:32

    10.10.10.4310.10.10.43 00:16:cb:03:d3:4400:16:cb:03:d3:44

    VLANVLAN

    1010

    1818

    1919

    1010

    InterfaceInterface

    Po10Po10

    Po10Po10

    Po20Po20

    Po20Po20

    As of Whitney 1, there are over 90 protocols that are SSO-aware. Theseinclude information such as ARP, DHCP Snooping, IP Source Guard, NACPosture database, etc In a VSS environment, failure of either VS will notrequire this information to be re-populated again

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 98BRKAGG-200014555_04_2008_c1

    High Availabili tyDual-Active Detection

    Virtual Switch Domain

    VS State :ActiveControl Plane:ActiveData Plane:Active

    VS State : StandbyControl Plane: Standby

    Data Plane:Active

    VSL

    Switch 1 Supervisor Switch 2 Supervisor

    It is always recommended to deploy the VSL with 2 or more links and distribute thoseinterfaces across multiple modules to ensure the greatest redundancy

    It is always recommended to deploy the VSL with 2 or more links and distribute thoseinterfaces across multiple modules to ensure the greatest redundancy

    In a Virtual Switch Domain, one switch is elected as Active and the other iselected as Standby during bootup by VSLP. Since the VSL is always configuredas a Port Channel, the possibility of the entire VSL bundle going down is remote,however it is a possibility

  • 7/27/2019 BRKAGG-2000

    50/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 99BRKAGG-200014555_04_2008_c1

    1. Enhanced Port Aggregation Protocol (PAgP)

    2. Dual-Active Detection over IP-BFD

    High Availabili tyDual-Active Detection

    2 mechanisms have been implemented in the initial release to detect and recover froma Dual Active scenario:

    Virtual Switch Domain

    VS State :ActiveControl Plane:ActiveData Plane:Active

    VS State :ActiveControl Plane:Active

    Data Plane:Active

    VSL

    Switch 1 Supervisor Switch 2 Supervisor

    If the entire VSL bundle should happen to go down, the Virtual Switch Domain willenter a Dual Active scenario where both switches transition to Active state and sharethe same network configuration (IP addresses, MAC address, Router IDs, etc)potentially causing communication problems through the network

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 100BRKAGG-200014555_04_2008_c1

    High Availabili tyDual-Active DetectionMechanisms1. Enhanced Port Aggregation Protocol (PAgP)

    2. Dual-Active Detection over IP-BFD

  • 7/27/2019 BRKAGG-2000

    51/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 101BRKAGG-200014555_04_2008_c1

    High Availabili tyDual-Active DetectionExclude Interfaces

    vs-vsl#conf tEnter conf i gurat i on commands, one per l i ne. End wi th CNTL/Z.vs-vsl (confi g)#swi tch vi rt ual domai n 100vs-vsl (confi g-vs-domain) #dual- acti ve excl ude i nterf ace Gi g 1/5/1vs-vsl (confi g-vs-domain) #dual- acti ve excl ude i nterf ace Gi g 2/5/1vs-vsl (confi g-vs-domain) # Zvs-vs l#

    vs-vs l#c onf tEnt er confi gurat i on commands, one per l i ne. End wi t h CNTL/ Z.vs-vsl (confi g)#swi tch vi rt ual domain 100vs-vsl (confi g-vs-domain) #dual- acti ve exclude i nterface Gi g 1/ 5/1vs-vsl (confi g-vs-domain) #dual- acti ve exclude i nterface Gi g 2/ 5/1vs-vsl (confi g-vs-domain) # Zvs-vs l#

    Upon detection of a Dual Active scenario, all interfaces on the previous-Active switch will be brought down so as not to disrupt the functioning ofthe remainder of the network. The exception interfaces include VSLmembers as well as pre-determined interfaces which may be used formanagement purposes

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 102BRKAGG-200014555_04_2008_c1

    High Availabili tyDual-Active Recovery

    After role has been resolved and SSO Hot Standby mode is possible, interfaceswill be brought up and traffic will resume back to 100% capacity

    VSL Up! ReloadVSL Up! Reload

    Switch 1 Switch 2

    Switch 1 Switch 2

    VSLPVSLP VSLPVSLP

    Upon the restoration of one or more VSL interfaces, VSLP will detect thisand will proceed to reload Switch 1 so that it may be able to re-negotiateActive/Standby role after bootup

  • 7/27/2019 BRKAGG-2000

    52/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 103BRKAGG-200014555_04_2008_c1

    High Availabili tyGeneric OnLine Diagnostics (GOLD)

    There are 4 new tests that are available in VSS mode:

    1. TestVSLLocalLoopback

    2. TestVSLBridgeLink3. TestVSLStatus

    4. TestVSActiveToStandbyLoopback

    VS State :ActiveLocal GOLD:Active

    VS State : StandbyLocal GOLD:Active

    VSLSwitch 1 Switch 2

    Distributed GOLD Manager

    Some enhancements to the GOLD framework have been implemented in aVSS environment, which leverages a Distributed GOLD environment. Inthis case, each supervisor runs an instance of GOLD, but is centrallymanaged by the Active Supervisor in the Active chassis

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 104BRKAGG-200014555_04_2008_c1

    Virtual Switch SystemDeployment ConsiderationsVirtual Switch will incorporate some deployment considerations as best practice

  • 7/27/2019 BRKAGG-2000

    53/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 105BRKAGG-200014555_04_2008_c1

    Virtual Switch SystemBenefits

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 106BRKAGG-200014555_04_2008_c1

    Virtual Switch SystemSummary

  • 7/27/2019 BRKAGG-2000

    54/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 107BRKAGG-200014555_04_2008_c1

    Data Center Option (E) Utilizing Layer 2VPN and Virtual Switching New Features

    PE1-COREAinterface gigabitethernet 3/0

  • 7/27/2019 BRKAGG-2000

    55/56

    2006, Cisco Systems, Inc. All rights reserved.esentation_ID.scr

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 109BRKAGG-200014555_04_2008_c1

    Recommended Reading

    Continue your Cisco Livelearning experience with furtherreading from Cisco Press

    Check the RecommendedReading flyer for suggestedbooks

    Layer 2 VPN Architectures

    ISBN: 1-58705-168-0

    Available Onsite at the Cisco Company Store

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 110BRKAGG-200014555_04_2008_c1

    Complete Your OnlineSession Evaluation

    Give us your feedback and you could winfabulous prizes. Winners announced daily.

    Receive 20 Passport points for each sessionevaluation you complete.

    Complete your session evaluation online now(open a browser through our wireless networkto access our portal) or visit one of the Internetstations throughout the Convention Center.

    Dont forget to activateyourCisco Live virtualaccount for access toall session materialon-demand and returnfor our live virtual eventin October 2008.

    Go to the CollaborationZone in World ofSolutions or visitwww.cisco-live.com.

  • 7/27/2019 BRKAGG-2000

    56/56

    2008 Cisco Systems, Inc. All rights reserved. Cisco Public 111BRKAGG-200014555_04_2008_c1