28
Brief History of Solid State Physics Along with astronomy, the oldest subfield of what we now refer to as Physics. Prescien>fic >mes: stones, bronzes, iron, jewelry...Lots of empirical knowledge but, prior to the end of the 19 th century, almost no understanding. Crystals: periodic structures of atoms and molecules. A common no>on in crystallography and mineralogy well before the periodic structure was proven by Xrays (1912). Special branch of mathema>cs: group theory.

Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Embed Size (px)

Citation preview

Page 1: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Brief  History  of  Solid  State  Physics  

 Along   with   astronomy,   the   oldest   subfield   of  what  we  now  refer  to  as  Physics.  

 Pre-­‐scien>fic   >mes:   stones,   bronzes,   iron,        jewelry...Lots   of   empirical   knowledge   but,   prior  to   the   end   of   the   19th   century,   almost   no  understanding.  

 Crystals:   periodic   structures   of   atoms   and  molecules.   A   common   no>on   in   crystallography  and  mineralogy  well  before  the  periodic  structure  was  proven  by  X-­‐rays    (1912).  

 Special  branch  of  mathema>cs:  group  theory.    

Page 2: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Early  discoveries  

Page 3: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

MaOhiessen  Rule  Agustus  MaOhiesen  (1864)    

ρ T( ) = ρ0

purity-dependent

+ ρin (T )material- but not purity-dependent

ρin T( )∝T (for T > 50 ÷ 70 K)Interpreta>on  

ρ0 : impurities, defects...ρin : lattice vibrations (phonons)In general, all sources of scattering contribute:ρ= ρnn∑

Page 4: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical
Page 5: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical
Page 6: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Wiedemann-­‐Franz  Law  

Gustav  Wiedemann  and  Rudolph  Franz  (1853)  

thermal conductivityelectrical conductivity

= const for a given T

Ludvig  Lorentz  (1872)    

thermal conductivityelectrical conductivity iT

= const

"Lorentz number"=π 2

3kBe

⎛⎝⎜

⎞⎠⎟

2

Page 7: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Ag 2.31 2.37

Au 2.35 2.40

Cd 2.42 2.43

Cu 2.23 2.33

Pb 2.47 2.56

Pt 2.51 2.60

W 3.04 3.20

Zn 2.31 2.33

Ir 2.49 2.49

Mo 2.61 2.79

0 C 100 C

Lexp i108 WiOhm/K2 Ltheor = 2.45i10−8 WiOhm/K2

Page 8: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Hall  Effect  

Edwin  Hall  (1879,  PhD)  

Page 9: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Drude  model  Paul  Drude  (1900)  

Page 10: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Drude  model  

dpdt

= −eE− ev ×B− pτ

dc conductivity: σ = jE= ne

2τm

Hall constant: RH = VHj i B

= − 1en

Lorentz number= 13

kBe

⎛⎝⎜

⎞⎠⎟

2

as compared to the correct value π2

3kBe

⎛⎝⎜

⎞⎠⎟

2

Page 11: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Assump>ons  of  the  Drude  model  

Maxwell-­‐Boltzmann  staLsLcs  12m v2 = 3

2kBT

Wrong.  In  metals,  electrons  obey  the  Fermi-­‐Dirac  sta>s>cs  m2v2 ≈ const(T )

ScaOering  mechanism:  collisions  between  electrons  and  laRce  

Wrong.  QM  bandstructure  theory:  electrons  are  not  slowed  down      by  a  periodic  array  of  ions;  instead,  they  behave  of  par>cles  of  different  mass  

Classical  dynamics  (second  law)  

Quantum  mechanics  was  not  invented  yet...  

Yet, σ =ne2τ /m does not contain the electron velocityThe formula still works if τ is understood as phenomenological parameter

Page 12: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Great  predic>on  of  the  Drude  model  

dc conductivity: σ = jE= ne

2τm

Hall constant: RH = VHj i B

= − 1en

By  measuring  these  two  quanLLes  one  can  separate  the  T  dependences    of  the    relaxaLon  Lme  and  the  electron  number  density  

Page 13: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Metals  and  insulators  

T

ρ−RH

Metals:  number  density  is  T  independent                                relaxa>on  >me  is  T  dependendent  

n = −1/ eRH

Insulators:  free  carriers  freeze  out                                          as  T  goes  down  

Page 14: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Sommerfeld  theory  of  metals  

free  electrons  obeying  Fermi-­‐Dirac  sta>s>cs   independence  of  n  from  T     linear  dependence  of  the  specific  heat  in  metals  at  low      temperatures  $ correct  value  of  the  Lorentz  number  $ below room T, the Lorentz number becomes T dependent ☐  origin  of  scaOering        ☐   posi>ve  value  of  the  Hall  constants  in  certain  metals  ☐  positive magnetoresistance (an increase of the resistivity with B) ☐

f E( ) kBT

Fermi  sphere  

kFEF

EF =2k2

F

2m43π k 3

F = 2π( )3 n

Metals: EF = 1÷10 eV EF / kB = 104 ÷105 K

Arnold  Sommerfeld  (PhD,  1928)  

Page 15: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Quantum-­‐mechanical  theory    electron  dynamics  

Felix  Bloch  (1928,  PhD)  

interference  of  electron  waves  scaOered  by  ionsenergy  bands  

E  

allowed

     forbidde

n  

metal  

insulator  

µ

µ

Posi>on  of  the  chemical  poten>al  is  determined  by  the  number  of  the  electrons  

If  a  band  is  less  than  half  ful      leffec>ve  carriers  are  electrons  RH<0  If  a  band  is  more  than  half  fulleffec>ve  carriers  are  “holes”  Holes=posi>vely  charged  electronsRH>0  

a  

phase  shic  between  incoming  and  reflected  waves    

µ

2ka

2ka = πN ⇒λ = 2πk

= N a2

Page 16: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Shroedinger  equa>on  with    a  periodic  poten>al  energy  

− 2

2m∇2 +U r( )⎡

⎣⎢

⎦⎥ψ = Eψ

U r + n1a1 + n2a2 + n3a3( ) =U r( ); n1,2,3 = 0,±1,±2...

Symmetries  of  lafce  determine  proper>es  of  the  eigenstates  

Bloch  Theorem  

ψ k r( ) = eikiruk r( )uk r + a( ) = uk r( )E k( ) = E k + b( )

bi = 2π( )3 a j × akV

a1a2

a3pseudo  (crystal  momentum)  

k and k + b are equivalent

a1

a2

Page 17: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

17  

Bravais  lafces  in  3D:  14  types,  7  classes  

Poα −

Ag,Au,Al,Cu,Fe,Cr,Ni,Mb…  

Ba,Cs,Fe,Cr,Li,Na,K,U,V…  

Sb,Bi,Hg  

He,Sc,Zn,Se,Cd…  

S,Cl,Br  

F  

1.  Cubic  ✖3  2.  Tetragonal✖2  3.  Hexagonal✖1  4.  Orthorhombic✖4  5.  Rhombohedral✖1  6.  Monoclinic✖2  7.  Triclinic✖1  

Auguste  Bravais  (1850)  

Page 18: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Lafce  dynamics  

Classical  thermodynamics:  specific  heat  for  a  system  of  coupled  oscillators  (Dulong-­‐Pe>t  law)  

CV = 3kBn

Experiment:  marked  devia>ons  from  the  Dulong-­‐Pe>t  law  

T

CVDulong-­‐Pe>t  

room  

Albert  Enstein:  quantum  monochroma>c  oscillators                                                          modern  language:  op>cal  phonons  Paul  Debye:            quantum  sound  waves                                                            modern  language:  acous>c  phonons    “Black-­‐body  radia>on”                                                        

Max  Born:  modern  theory  of  lafce  dynamics  Important  consequence:    electrons  are  not  slowed  down  because  of  scaOering  at  sta1onary    ions.  But  they  are  slowed  down  by  scaOering  from    vibra>ng  ions.  This  is  why  relaxation time depends on T!  T

T 3

CV ∝T 3

Page 19: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Max  von  Laue  (Nobel  Prize  1914)  

X-­‐ray  scaOering  from  crystals:  confirma>on  of  periodicity  

William  Lawrence  Bragg  and  William  Henry  Bragg    (  1913)  

Bragg’s  law  

Page 20: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Discovery  of  superconduc>vity  -­‐1911  

Kamerlingh  Onnes  

Co.  Scien>fic  American  Meissner-­‐Ochsenfeld  effect  (1933)    

Walther  Meissner  

Page 21: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

     Superfluidity  (mo>on  without  fric>on)  in  He-­‐4  

Pyotr  Kapitsa  (1937)  John  F.  Allen  and  Don  Misener  (1937)  

                                                 Lev  Landau:  phenomenological  two-­‐fluid  model  (1941)      Nikolay  Bogolyubov:  

canonical  transforma>ons  (1947-­‐1948)  

Richard  Feynman:  ver>ces  (1955)  

He-­‐4  atoms  are  bosons  

Bose-­‐Einstein  condensa>on  into  the  lowest  energy  state.  

T < Tλ = 4.2 K @1 atm

T > Tλ T < Tλ

Page 22: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Electrons  are  fermions.  How  to  make  bosons  out  of  fermions?                                                                                          Pair  them!  

Herbert  Froelich  

Two  types  of  interac>on  among  electrons  in  metals:  i)  Coulomb  repulsion  ii)  Phonon-­‐mediated  aOrac>on  

Normal  metals:  Coulomb  repulsion  dominates  Superconductors:  phonon-­‐mediated  aOrac>on  dominates  below  the  cri>cal  temperature  

Cooper  pairs  Leon  Cooper  

Page 23: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Bardeen-­‐Cooper-­‐Schrieffer  Theory  of  Superconduc>vity  (1957)  

John  Bardeen  Leon  Cooper  

Robert  Schrieffer  

High-­‐temperature  superconduc>vity                                                        1986  

Alexander  Müller            Georg  Bednorz  

non-­‐phonon  mechanism  

Page 24: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Field-­‐effect  transistor  

first  patent:  Lilienfeld  (1925)  working  device:  John  Bardeen,  Walter  BraOain,  William  Shockley  (Nobel  Prize  1956)    

Page 25: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Integer  Quantum  Hall  Effect  (1980)  

Klaus  von  Klitzing  (Nobel  Prize  1985)  

     von  Klitzing  constant        

     Value                                            25  812.807  4434      Standard  uncertainty            0.000  0084  Rela>ve  standard  uncertainty  3.2  x  10-­‐10

                 Theore>cal  explana>on:  Robert  Laughlin  

RK = h / e2

Page 26: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Frac>onal  quantum  Hall  effect  (1982)  

Dan  Tsui,  Horst  Stormer,  Robert  Laughlin:  Nobel  Prize,  1998  

Dan  Tsui  

Horst  Stormer  

Robert  Laughlin  

quantization of ρxy in fractions of h / e2

1 / 3,1 / 5,5 / 2...Each  plateau  is  a  new  elementary  excita>on  with  a  frac>onal  electric  charge!  

Page 27: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

Solid  statenanoscience  

2D:  electron  gases,  graphene  

Konstan>n  Novoselov  

Andre  Geim  Nobel  Prize  2010  

Page 28: Brief&History&of&Solid&State&Physics&maslov/phz6426/history_SS_fall_2012.pdf · Wiedemann=FranzLaw& Gustav Wiedemann’and’Rudolph’Franz’(1853)’ thermal conductivity electrical

1D:  carbon  nanotubes  and  quantum  wires