14
Brian Keeney, LLU-SCIPP Nanodosimeter A Silicon Telescope For Nanodosimetry Santa Cruz Institute for Particle Physics, UC Santa Cruz in collaboration with the Department of Radiation Medicine at Loma Linda University Medical Center

Brian Keeney, LLU-SCIPP Nanodosimeter A Silicon Telescope For Nanodosimetry Santa Cruz Institute for Particle Physics, UC Santa Cruz in collaboration with

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Brian Keeney, LLU-SCIPP Nanodosimeter

A Silicon Telescope For Nanodosimetry

Santa Cruz Institute for Particle Physics, UC Santa Cruz in collaboration with the

Department of Radiation Medicine at Loma Linda University Medical Center

Brian Keeney, LLU-SCIPP Nanodosimeter

Nanodosimetry for Biomedical Applications - Collaborators

Loma Linda University Medical CenterReinhard Schulte George CoutrakonVladimir Bashkirov Peter Koss

Weizmann Institute of ScienceAmos Breskin Guy GartyRachel Chechik Itzhak OrionSergei Shchemelinin

University of California, San DiegoJohn F. Ward Jamie MilliganJoe Aguilera

Santa Cruz Institute for Particle Physics(University Of California, Santa Cruz)

Abe Seiden Wilko KroegerHartmut Sadrozinski Patrick SpradlinRobert P Johnson Brian Keeney

Brian Keeney, LLU-SCIPP Nanodosimeter

Ionization event (formation of water radicals)

The mean diffusion distance of OH radicals before they react is only 2-3 nm

delta rays

Light damage- reparable

Clustered damage- irreparableWater radicals attack the

DNA

e-

Primary particle track

OH•

Radiation Damage To DNA

Brian Keeney, LLU-SCIPP Nanodosimeter

~1/1.5

MIP

Radmeasure p

Linear Energy Transfer LET:

Radiation damage in DNA occurs within 2-3nm

]2

g[MeV/ )(cm

fdXdE

]2cm

g [ , XXdXdEE

Bethe-Bloch in ND

)@(1

)1@(

)()(

STPpropanembarSTPmbarpropane

DNApropaneDNApropane

)1@(1)(1

)(10001000)1@(

mbarpropanemmDNAnm

DNAmbarpropane

Brian Keeney, LLU-SCIPP Nanodosimeter

1nm solid 1 m @ 1 atm.

Propane

gasLow pressure propane gas

X 1000 X 1000

DNA

1 mm @ .001 atm.

Expanding the DNA

Brian Keeney, LLU-SCIPP Nanodosimeter

Incoming Proton

Ion

Eweak

Estrong

4 Silicon Detectors give position and LET, allow trigger on any combination of planes

Low Pressure Gas

ApertureIon Counter

electron

Vacuum

NOT TO SCALE

X-Y Y-X

1 SSD is 0.4% Xo or 120keV LET at

high energy

Nanodosimetry in Low-Pressure Propane

Brian Keeney, LLU-SCIPP Nanodosimeter

                    VME CRATE

PC W/ DAQ PCI Card

Localization of Protons

2 Silicon Strip Detector (SSD) Modules

Ion Counter

SSD Readout

Integration of Silicon Modules and Nanodosimeter

Brian Keeney, LLU-SCIPP Nanodosimeter

TOT charge LET!

0

20

40

60

80

100

120

0 50 100 150 200

TOT Measurement vs Charge in MIP'sEffect of Threshold and Voltage

TOT SLACTOT LLUMC

Input Charge [fC]

Time-Over-Threshold (TOT): Digitization of Position and Energy with large Dynamic Range

Brian Keeney, LLU-SCIPP Nanodosimeter

13.5 GeV Spectrum

TOT Spectrum - Effect of Charge Sharing in SMD’s

Brian Keeney, LLU-SCIPP Nanodosimeter

0

50

100

150

200

250

300

0 50 100 150

TOT Spectra for low-energy Protons

250MeV

40MeV

24MeV

17MeV

TOT [us]

TOT Spectra For Protons of Different Energies-An absolute calibration of SSD

Brian Keeney, LLU-SCIPP Nanodosimeter

Results

Proton energy [MeV]

Mean TOT [us]

RMS TOT[us]

Charge Deposition 400um Si

by Bethe-Bloch [fC]

TOT expected

[us]

13,500 7 1.4 5.3 6.5

250 12.3 2.6 13.5 13.7

39 53.4 6.4 54 55

27 70.4 7.5 67.5 69

24 78.3 8.5 76.5 78

22 84.4 9.8 81 82

17.6 105 11.5 99 101

9.5 108 15 189 105

7.4 109 21 243 105

Brian Keeney, LLU-SCIPP Nanodosimeter

10

100

1 10 100 1000 104

TOT vs. Proton EnergyMeasurement vs. Expectation

TOT & Resolution measuredTOT expected

Proton Energy [MeV]

LLUMCSynchrotron P Beam

GLAST SLAC Test Beam

TOT Saturation

TOT and Resolution Measured TOT expected through Bethe-Bloch

Brian Keeney, LLU-SCIPP Nanodosimeter

0.01

0.1

1

10

10 100 1000 104

Resolution of TOT System

LETEnergy

0.01

0.1

1

10

Proton Energy [MeV]

TOT Saturation

Resolution

Energy Resolution = LET Resolution /Slope of TOT(E) Curve

Brian Keeney, LLU-SCIPP Nanodosimeter

1. Silicon detectors provide information on position and energy or LET of primary particles for nanodosimetry

2. Silicon detectors have excellent spatial resolution (60 m)

3. We can measure proton LET to 10-20% in each of 4 planes

4. Given LET, we know energy to 20-25% in each plane through Bethe-Bloch from low energies up to 250 MeV

5. Silicon Detectors allow flexible triggering on primary particles.

Conclusion