4
8/21/2019 Braeckel Et Al-2013-Developmental Medicine & Child Neurology http://slidepdf.com/reader/full/braeckel-et-al-2013-developmental-medicine-child-neurology 1/4 DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY REVIEW Visuospatial and visuomotor deficits in preterm children: the involvement of cerebellar dysfunctioning KOENRAAD N J A VAN BRAECKEL 1  H GERRY TAYLOR 2 1  Division of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. 2  Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children’s Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA. Correspondence to Dr K N J A Van Braeckel, Afdeling Neonatologie, Beatrix Kinderziekenhuis, Postbus 30.001, 9700RB Groningen, the Netherlands. E-mail: [email protected] PUBLICATION DATA Accepted for publication 4th April 2013. One of the more consistent findings in follow-up studies of preterm children is a deficit in visuospatial and visuomotor skills. Impairment of the dorsal visual stream and basal ganglia damage have been hypothesized to underlie this deficit. However, given recent findings of impaired cerebellar development in preterm children without lesions to this structure, and the involvement of the cerebellum in visuospatial and visuomotor functioning, we argue the cerebellum should be included in models relating impaired development of brain networks to visuospatial and visuomotor deficits in this population. Here, we review the current literature on impaired cerebellar development in preterm children, and suggest possible underlying mechanisms.  As a result of improved care in the past few decades, an increasing number of children survive preterm birth (<37 weeks gestational age) without serious neurological complications. 1 Research into the long-term consequences of preterm birth in this group has focused on more subtle signs of impairment. 2 One of the more consistent findings in follow-up studies is a deficit in visual and visuomotor skills. 2  – 5 Impairment of the dorsal visual stream, a neural network linking the occipital and posterior parietal cortices and its connec- tions with prefrontal and premotor cortex, and hippocampal regions 6 has been hypothesized to underlie these deficits in preterm children. 2  – 5 Basal ganglia damage sustained in the first 6 months of life independent of cortical injury has also been shown to underlie altered visual development in children. 7 However, given recent findings of impaired cerebellar development in preterm children  without lesions to this structure, 8 and the involvement of the cere- bellum in visuospatial and visuomotor functioning, 9,10  we argue that the cerebellum should be included in models relating impaired development of brain networks to visual and visuomotor deficits in this population. To this end, we consider the role of the cerebellum in visuospatial and visuomotor skills, review the present literature on impaired cerebellar development in preterm children, and sug- gest possible underlying mechanisms. CEREBELLAR INVOLVEMENT IN VISUOSPATIAL AND VISUOMOTOR FUNCTIONING For most of the 20th century, the cerebellum has been associated  with coordination, balance, and motor speech regulation. In 1986, Leiner et al. 11 proposed cerebellar involvement in cognition on the basis of anatomical, physiological, and clinical data. Subse- quent research documented involvement of the cerebellum in planning, learning, and language. 12 Botez 9  was one of the first to report visuospatial deficits in a large group of patients with bilat- eral cerebellar damage. More recent studies in adults with focal cerebellar infarcts confirmed visuospatial and visuomotor deficits. 13  – 15 In children, Levisohn et al. 10 showed wide ranging cognitive  – affective deficits including impaired visuomotor and  visuospatial functioning in a group of 3- to 14-year-olds, who underwent cerebellar tumor resection without having received cranial irradiation or chemotherapy. Neuro-anatomical studies proposing an afferent and efferent cerebello-cerebral network are in line with the results of these clinical behavioral studies. An afferent system provides input from the posterior parietal cortex through the pontine nuclei to the lateral lobes of the cerebellum. An efferent system sends output from the cerebellum through the thalamus back to the posterior parietal cortex. 16 Given the pivotal role of the posterior parietal cortex in visuospatial and visuomotor functioning, 6 such a cerebello-cerebral network supports the suggestion of cerebellar involvement in visuospatial and visuomotor functioning. Cerebellar contributions to these functions are further sup- ported by findings from functional magnetic resonance imaging (fMRI). Functional magnetic resonance imaging in healthy adults reveals activation of the cerebellum during non-motor visuospatial tasks, such as line bisection, judgment of line orientation, mental rotation of shapes, and mental navigation. 17 Other studies indicate an association of visuospatial functioning with the topography of the lateral lobes of the cerebellum, 17,18 as is consistent with neuro-anatomical connections between the cerebellar lateral lobes and the posterior parietal cortex. 16  Although most of these studies have been conducted with samples of adults, they suggest a special role for the lateral cerebellar lobes in spatial cognition. IMPAIRED CEREBELLAR DEVELOPMENT IN PRETERM CHILDREN In Table I, findings from studies 8,19  – 24 of cerebellar volume in preterm children are summarized. The findings document early and persisting volume reductions across childhood until adulthood, as well as an association of volume reductions with lower gestational age and birthweight, suggesting that preterm birth disrupts early cerebellar development. This decreased vol- ©  The Authors. Developmental Medicine & Child Neurology  ©  2013 Mac Keith Press,  55  (Suppl. 4): 19 – 22 DOI: 10.1111/dmcn.12301  19

Braeckel Et Al-2013-Developmental Medicine & Child Neurology

Embed Size (px)

Citation preview

Page 1: Braeckel Et Al-2013-Developmental Medicine & Child Neurology

8/21/2019 Braeckel Et Al-2013-Developmental Medicine & Child Neurology

http://slidepdf.com/reader/full/braeckel-et-al-2013-developmental-medicine-child-neurology 1/4

DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY REVIEW  

Visuospatial and visuomotor deficits in preterm children: theinvolvement of cerebellar dysfunctioning

KOENRAAD N J A VAN BRAECKEL1

 

H GERRY TAYLOR2

1  Division of Neonatology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. 2   Department of

Pediatrics, Case Western Reserve University and Rainbow Babies & Children’s Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA.

Correspondence to Dr K N J A Van Braeckel, Afdeling Neonatologie, Beatrix Kinderziekenhuis, Postbus 30.001, 9700RB Groningen, the Netherlands. E-mail: [email protected]

PUBLICATION DATA

Accepted for publication 4th April 2013.

One of the more consistent findings in follow-up studies of preterm children is a deficit in

visuospatial and visuomotor skills. Impairment of the dorsal visual stream and basal ganglia

damage have been hypothesized to underlie this deficit. However, given recent findings of 

impaired cerebellar development in preterm children without lesions to this structure, and

the involvement of the cerebellum in visuospatial and visuomotor functioning, we argue the

cerebellum should be included in models relating impaired development of brain networks to

visuospatial and visuomotor deficits in this population. Here, we review the current literature

on impaired cerebellar development in preterm children, and suggest possible underlying

mechanisms.

 As a result of improved care in the past few decades, an increasingnumber of children survive preterm birth (<37 weeks gestationalage) without serious neurological complications.1 Research into thelong-term consequences of preterm birth in this group has focusedon more subtle signs of impairment.2 One of the more consistent findings in follow-up studies is a deficit in visual and visuomotorskills.2 – 5 Impairment of the dorsal visual stream, a neural network linking the occipital and posterior parietal cortices and its connec-tions with prefrontal and premotor cortex, and hippocampalregions6 has been hypothesized to underlie these deficits in pretermchildren.2 – 5 Basal ganglia damage sustained in the first 6 months of life independent of cortical injury has also been shown to underliealtered visual development in children.7 However, given recent findings of impaired cerebellar development in preterm children without lesions to this structure,8 and the involvement of the cere-bellum in visuospatial and visuomotor functioning,9,10  we arguethat the cerebellum should be included in models relating impaireddevelopment of brain networks to visual and visuomotor deficits inthis population. To this end, we consider the role of the cerebellumin visuospatial and visuomotor skills, review the present literatureon impaired cerebellar development in preterm children, and sug-gest possible underlying mechanisms.

CEREBELLAR INVOLVEMENT IN VISUOSPATIAL ANDVISUOMOTOR FUNCTIONINGFor most of the 20th century, the cerebellum has been associated

 with coordination, balance, and motor speech regulation. In 1986,Leiner et al.11 proposed cerebellar involvement in cognition onthe basis of anatomical, physiological, and clinical data. Subse-quent research documented involvement of the cerebellum inplanning, learning, and language.12 Botez9  was one of the first toreport visuospatial deficits in a large group of patients with bilat-eral cerebellar damage. More recent studies in adults with focalcerebellar infarcts confirmed visuospatial and visuomotordeficits.13 – 15 In children, Levisohn et al.10 showed wide ranging

cognitive – affective deficits including impaired visuomotor and visuospatial functioning in a group of 3- to 14-year-olds, whounderwent cerebellar tumor resection without having receivedcranial irradiation or chemotherapy.

Neuro-anatomical studies proposing an afferent and efferent cerebello-cerebral network are in line with the results of theseclinical behavioral studies. An afferent system provides input fromthe posterior parietal cortex through the pontine nuclei to thelateral lobes of the cerebellum. An efferent system sends output from the cerebellum through the thalamus back to the posteriorparietal cortex.16 Given the pivotal role of the posterior parietalcortex in visuospatial and visuomotor functioning,6 such acerebello-cerebral network supports the suggestion of cerebellarinvolvement in visuospatial and visuomotor functioning.

Cerebellar contributions to these functions are further sup-ported by findings from functional magnetic resonance imaging(fMRI). Functional magnetic resonance imaging in healthy adultsreveals activation of the cerebellum during non-motor visuospatialtasks, such as line bisection, judgment of line orientation, mentalrotation of shapes, and mental navigation.17 Other studies indicatean association of visuospatial functioning with the topography of the lateral lobes of the cerebellum,17,18 as is consistent with

neuro-anatomical connections between the cerebellar lateral lobesand the posterior parietal cortex.16  Although most of these studieshave been conducted with samples of adults, they suggest a special

role for the lateral cerebellar lobes in spatial cognition.

IMPAIRED CEREBELLAR DEVELOPMENT IN PRETERMCHILDRENIn Table I, findings from studies8,19 – 24 of cerebellar volume inpreterm children are summarized. The findings document early and persisting volume reductions across childhood untiladulthood, as well as an association of volume reductions withlower gestational age and birthweight, suggesting that pretermbirth disrupts early cerebellar development. This decreased vol-

©  The Authors. Developmental Medicine & Child Neurology  ©  2013 Mac Keith Press,  55  (Suppl. 4): 19 – 22 DOI: 10.1111/dmcn.12301   19

Page 2: Braeckel Et Al-2013-Developmental Medicine & Child Neurology

8/21/2019 Braeckel Et Al-2013-Developmental Medicine & Child Neurology

http://slidepdf.com/reader/full/braeckel-et-al-2013-developmental-medicine-child-neurology 2/4

ume is more pronounced in the lateral lobes than in the midlineregions, with no differences in vermis size between preterm andterm children.22,25  These studies also reveal a strong positive rela-tion between reduced cerebellar volume, specifically of the lateralcerebellar lobes, and visuospatial and visuomotor functioning laterin life. Impaired development of the lateral lobes in preterm chil-dren may therefore contribute to visuospatial and visuomotor

impairments in preterm children.

LIKELY MECHANISMS UNDERLYING IMPAIREDCEREBELLAR DEVELOPMENT IN PRETERM CHILDRENOne potential mechanism for impaired cerebellar development in very preterm children is a crossed trophic effect of cerebral insult on the development of the cerebellum, also referred to as diaschi-sis. Diaschisis refers to a loss of function in a neurally connectedregion remote from a brain lesion. A second potential mechanismis disrupted growth of the cerebellum’s granular layer secondary to preterm birth, a structure that is undergoing rapid changes inthe later stages of fetal development.

Rollins et al.26 described crossed trophic effects or diaschisis inextremely preterm infants, and suggested that cerebellar atrophy ismost often a secondary degenerative phenomenon after severe

intracranial hemorrhage and/or ischemic necrosis of white matter. More recently, Limperopoulos et al.27 found both a reduction incontralateral cerebellar volume with unilateral cerebral parenchy-mal injury and a reduction in total cerebellar volume with bilateralcerebral lesions in very preterm infants. Messerschmidt et al.19 alsofound cerebellar growth impairment in very preterm children withcerebral injuries. Consistently, Allin et al.22 and Argyropoulouet al.25 found positive associations between cerebral white matter volume and cerebellar volume in very preterm children.

Preterm children enter the world during a vulnerable period inthe development of the cerebellum. From about 16 weeks gesta-tional age until about 7 weeks after term birth, granule cells pro-

liferate and migrate from the external granular layer to the

internal granular layer of the cerebellum.28

Granular cell prolifer-ation and migration are especially critical for cerebellar develop-

ment given that most neurons in the cerebellum are granule cellsand the number of these cells in the adult cerebellum, about 1011,far exceeds the total number of neurons in the entire cerebral cor-tex.29 Haldipur et al.30 compared molecular markers of cerebellar

development in preterm infants who survived 5 to 36 days ex ute-ro with those in gestationally age-matched stillborn infants. Thelive-born preterm infants had significant reductions in the thick-

ness of the cerebellum relative to the stillborn infants, as well asan increased packing density of cells within the external and theinternal granular layers. They concluded that the neurogenesis of the cerebellum is altered by events after preterm birth and that granular layer development is specifically affected. This selective

effect is consistent with the results from the MRI study of Lim-peropoulos et al.,8  who found cerebellar underdevelopment intheir subgroup of preterm children without cerebral injury. Thefinding by Allin et al.22 of cerebellar underdevelopment specific tothe lateral lobes is also consistent with these findings, as the gran-ular layers are situated in the lateral lobes. We speculate that increased risk for altered development of the granular layers inpreterm children results in poorer efference to parietal areas of the cerebrum and thus in poorer parietal development (cerebello-cerebral diaschisis/crossed trophic effect). Such poorer parietaldevelopment may jeopardize the development of the dorsal visualstream and lead to impairment in visuospatial and visuomotorfunctioning.

However, Srinivasan et al.31 showed cerebellar growth impair-ment in very preterm infants only in association with supratentoriallesions, whereas cerebellar volume in very preterm infants without supratentorial lesions did not differ from that of term comparisoninfants. Similarly, Shah et al.32 observed associations of cerebellar volumes in preterm infants with cerebral white matter injury but not in preterm infants without cerebral white matter injury. Thesefindings support the possibility that cerebral injury associated withprematurity results in poorer afference to the cerebellum (cerebro-cerebellar diaschisis), but they appear to contradict those of Lim-peropoulos et al.8 indicating cerebellar underdevelopment in theirsubgroup of preterm children without cerebral injury. However,the latter investigators found that the difference in cerebellar vol-ume between preterm children without cerebral injury and term

comparison children, although significant, was smaller than that between preterm children with cerebral injury and the term com-parison group. Adverse effects of perinatal events on cerebellar

development (second mechanism) may thus be small relative to theeffects of cerebro-cerebellar diaschisis. The results of Limperopou-los et al.8 lead us to speculate that preterm children with braininjury sustain an additive negative impact of preterm birth on cere-

bellar development (second mechanism), over and above the effectsof cerebro-cerebellar diaschisis, resulting in smaller cerebellar vol-umes in preterm children with cerebral injury than in children with-

out cerebral injury. Studies comparing the cerebellar volumes of subsets of preterm children with and without cerebral injury withthose of term children would shed light on this possibility. Finally,

smaller cerebellar volumes may result in the development of alter-

native neural pathways. Interestingly, such an alternative network may not be accompanied by poorer functional development, as hasbeen shown for language development in preterm adults.33  Thissuggests that the preterm infant’s brain’s capacity for the recruit-ment of alternative neural pathways plays an important role in theinfant’s functional development.

CONCLUSIONIn summary, there is a growing body of evidence suggesting aheightened risk for impaired cerebellar development in preterm

children, even in the absence of identifiable perinatal cerebellarinsults. Reduced cerebellar volumes, moreover, are associated withpoorer visuospatial and visuomotor functioning in preterm chil-

dren. Afferent and efferent connections between the cerebellumand parietal regions also support involvement of the cerebellum in visuospatial and visuomotor functioning. We thus propose toinclude cerebellar underdevelopment in explanatory models to

account for poorer visuospatial and visuomotor functioning in pre-term children. Studies focusing on the status of the motor and cog-nitive processes specifically subserved by the cerebellum in thispopulation would allow the construction of clinical tests assessingthe motor and cognitive aspects of cerebellar functioning in pre-term children. These tests could also be applied to assess cerebellarfunctioning in term-born children with learning problems and intypically developing children. Motor processes could be investi-gated by testing ‘classical’ motor functions, such as upper limb

What this paper adds•  Preterm birth can result in direct insult to the cerebellum or in cerebro-cere-

bellar diaschisis, but may also affect cerebellar development in the absence

of brain lesions.

•   Further research is needed to understand these effects and their relation to

the deficits in visuospatial and visuomotor functioning commonly observed in

preterm children.

20   Developmental Medicine & Child Neurology  2013,  55  (Suppl. 4): 19 – 22

Page 3: Braeckel Et Al-2013-Developmental Medicine & Child Neurology

8/21/2019 Braeckel Et Al-2013-Developmental Medicine & Child Neurology

http://slidepdf.com/reader/full/braeckel-et-al-2013-developmental-medicine-child-neurology 3/4

        T      a        b        l      e

        I      :

      O    v    e    r    v      i    e    w

    o      f    s     t    u      d      i    e    s    a    s    s    e    s    s      i    n    g    c    e

    r    e      b    e      l      l    a    r    v    o      l    u    m    e      i    n    p    r    e     t    e    r    m   -      b    o    r    n    g    r    o    u    p    s

    S    t   u    d   y

    G   e   s    t   a    t    i   o   n   a    l

   a   g   e ,   w    k

     n

    G   e   s    t   a    t    i   o   n   a    l

   a   g   e ,   w    k

     n

    A   g   e   a    t

   a   s   s   e   s   s   m   e   n    t

   o    f   c   e   r   e    b   e    l    l   u   m

    M

   e    t    h   o    d   o    f

   c   e   r   e    b   e    l    l   a   r

   a   s   s   e   s   s   m   e   n    t

    A   g   e   a    t

    t   e   s    t    i   n   g

    T   y   p   e   o    f    t   e

   s    t    i   n   g

    M   a    j   o   r    fi   n

    d    i   n   g   s

    P   r   e    t   e   r   m

   g   r   o   u   p

    C   o   m   p   a   r    i   s   o   n   g   r   o   u   p

    L    i   m   p   e   r   o   p   o   u    l   o   s

   e    t   a    l .       8

    2    9 .    1

    (    3 .    4

    )

    1    6    9

    3    9 .    6

    (    S    D    0 .    8

    )

    2    0

    4    0 .    1   w    k    (    1 .    5

    )

    M

    R    I

    1 .

    C   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e   s   w   e   r   e   s   m   a    l    l   e   r    i   n   p   r   e    t   e   r   m

    i   n    f   a   n    t   s

   w    i    t    h   o   u    t    d   e   m   o   n   s    t   r   a    b    l   e   c   e   r   e    b

   r   a    l   o   r   c   e   r   e    b   e    l    l   a   r    i   n   s   u    l    t   s .

    2 .

    R   e    d   u   c   e    d   g   e   s    t   a    t    i   o   n   a    l   a   g   e   a    t    b    i   r    t    h   a   n    d    b    i   r    t    h   w   e    i   g    h    t

   w   e   r   e   r   e    l   a    t   e    d    t   o    d   e   c   r   e   a   s   e    d   c   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e .

    M   e   s   s   e   r   s   c    h   m    i    d    t

   e    t   a    l .       1       9

    2    7 .    0

    (    1 .    6

    )

    3    1

    G   e   s    t   a    t    i   o   n   a    l

   a   g   e  -   m   a    t   c    h   e    d

    3    1

    1 ,

    3 ,

    5 ,

    7    d

   p   o   s    t   n   a    t   a    l    l   y

   p    l   u   s   w   e   e    k    l   y

   u   p    t   o    t    h    i   r    d

   m   o   n    t    h

   a    d    j   u   s    t   e    d

   a   g   e

    U

    l    t   r   a   s   o   u   n    d

    2    4   –    3    6   m   o

    N   e   u   r   o    l   o   g    i   c   a    l   p

    l   u   s

   n   e   u   r   o   m   o    t   o   r    (

    B    S    I    D    )

   p    l   u   s   m   e   n    t   a    l

    d   e   v   e    l   o   p   m   e   n    t

    (    B    S    I    D    )

    T    h   e   p   r   e    t   e   r   m

   g   r   o   u   p   w    i    t    h   r   e    d   u   c   e    d   c   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e

   s    h   o   w   e    d   a   p   o   o   r   e   r   n   e   u   r   o   m   o    t   o   r   a   n    d   m   e   n    t   a    l

    d   e   v   e    l   o   p   m   e   n    t    t    h   a   n    t    h   e   p   r   e    t   e   r   m

   g   r   o   u   p   w    i    t    h   a

   s   u   p   r   a    t   e   n    t   o   r    i   a    l    b   r   a    i   n    i   n    j   u   r   y   a   n    d   a   n   o   r   m   a    l   c   e   r   e    b   e    l    l   a   r

   u    l    t   r   a   s   o   u   n    d .

    P   e    t   e   r   s   o   n   e    t   a    l .       2       0

    2    8 .    7

    (    1 .    7

    )

    2    6

    3    9 .    4

    (    S    D    1 .    3

    )

    3    9

    8   y

    M

    R    I

    8   y

    I    Q    (    W    I    S    C  -    I    I    I    )   p    l   u   s

   v    i   s   u   o   m   o    t   o   r    (    V    M    I    )   p    l   u   s

   p   s   y   c    h    i   a    t   r    i   c    d    i   a   g   n   o   s   e   s

   p    l   u   s    b   e    h   a   v    i   o   u   r   a    l

   p   r   o    b    l   e   m   s    (    C    B

    C    L    )   p    l   u   s

   n   e   u   r   o    l   o   g    i   c   a    l

    1 .

    V   o    l   u   m   e   s   o    f   c   e   r   e    b   e    l    l   u   m

   a   n    d   o    t    h   e   r    b   r   a    i   n   s    t   r   u   c    t   u   r   e   s

   w   e   r   e   s    i   g   n    i    fi   c   a   n    t    l   y   s   m   a    l    l   e   r    i   n

    t    h   e   p   r   e    t   e   r   m

   g   r   o   u   p .

    2 .

    S   m   a    l    l   e   r   v   o    l   u   m   e   s   o    f   c   e   r   e    b

   e    l    l   u   m

   a   n    d   o    t    h   e   r    b   r   a    i   n

   s    t   r   u   c    t   u   r   e   s    i   n    t    h   e   p   r   e    t   e   r   m   g   r   o   u   p   w   e   r   e   c   o   r   r   e    l   a    t   e    d

   s    i   g   n    i    fi   c   a   n    t    l   y   w    i    t    h    l   o   w   e   r    f   u    l    l  -   s   c   a    l   e    I    Q ,   v   e   r    b   a    l    I    Q ,

   p   e   r    f   o   r   m   a   n   c   e    I    Q ,   a   n    d    V    M    I .

    A    l    l    i   n   e    t   a    l .       2       1

    2    9   –    3    1

    6    7

    3    8   –    4    2   w    k

    5    0

    1    4 .    9   y

    M

    R    I

    1 ,

    4 ,

    8 ,   a   n    d

    1    4   –    1    5   y

    I    Q    (    W    I    S    C  -    R    /    K  -    A    B    C    )   p    l   u   s

   n   e   u   r   o   p   s   y   c    h   o    l   o   g    i   c   a    l

   p    l   u   s   n   e   u   r   o    l   o   g

    i   c   a    l

    1 .

    C   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e   w   a   s   s    i   g

   n    i    fi   c   a   n    t    l   y   s   m   a    l    l   e   r    i   n    t    h   e

   p   r   e    t   e   r   m

   g   r   o   u   p .

    2 .

    S   m   a    l    l   e   r   c   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e    i   n    t    h   e   p   r   e    t   e   r   m

   g   r   o   u   p

   w   a   s   c   o   r   r   e    l   a    t   e    d   s    i   g   n    i    fi   c   a   n    t    l   y

   w    i    t    h    l   o   w   e   r    f   u    l    l  -   s   c   a    l   e    I    Q ,

   v    i   s   u   o   s   p   a    t    i   a    l   s   u    b    t   e   s    t   s   o    f    W    I    S

    C  -    R ,   r   e   a    d    i   n   g   a   g   e ,   a   n    d

   w   o   r    k    i   n   g   m   e   m   o   r   y .

    3 .

    C   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e    i   n    t    h   e   p   r   e    t   e   r   m   g   r   o   u   p    d    i    d   n   o    t

   c   o   r   r   e    l   a    t   e   w    i    t    h   m   o    t   o   r   n   e   u   r   o    l   o   g    i   c   a    l   s    i   g   n   s .

    A    l    l    i   n   e    t   a    l .       2       2

    2    9   –    3    1

    6    7

    3    8   –    4    2   w    k

    5    0

    1    4 .    9   y

    M

    R    I

    1 ,

    4 ,

    8 ,   a   n    d

    1    4   –    1    5   y

    I    Q    (    W    I    S    C  -    R    /    K  -    A    B    C    )   p    l   u   s

   n   e   u   r   o   p   s   y   c    h   o    l   o   g    i   c   a    l

   p    l   u   s   n   e   u   r   o    l   o   g

    i   c   a    l

    S   m   a    l    l   e   r    l   a    t   e   r   a    l    b   u    t   n   o    t   m    i    d    l    i   n   e   c   e   r   e    b   e    l    l   a   r   v   o    l   u   m   e   w   a   s

   c   o   r   r   e    l   a    t   e    d   s    i   g   n    i    fi   c   a   n    t    l   y   w    i    t    h

    l   o   w   e   r   s   c   o   r   e   s   o   n    t    h   e

   v    i   s   u   o   s   p   a    t    i   a    l   s   u    b    t   e   s    t   s   o    f    W    I    S

    C  -    R ,   a   n    d   r   e   a    d    i   n   g   a   g   e .

    T   a   y    l   o   r   e    t   a    l .       2       3

    2    5 .    9

    (    1 .    8

    )

    3    7

    T   e   r   m

    3    6

    1    6 .    8

    (    1 .    3   y    )

    M

    R    I

    V   o    l   u   m   e   s   o    f   c   e   r   e    b   e    l    l   a   r   w    h    i    t   e

   a   n    d   g   r   e   y   m   a    t    t   e   r   a   n    d

   o    t    h   e   r    b   r   a    i   n   s    t   r   u   c    t   u   r   e   s   w   e   r   e   s    i   g   n    i    fi   c   a   n    t    l   y   s   m   a    l    l   e   r    i   n

    t    h   e   p   r   e    t   e   r   m

   g   r   o   u   p .

    K   a    l   p   a    k    i    d   o   u

   e    t   a    l .       2       4

    2    9 .    5

    (    2 .    4

    3    )

    1    2

    3    7   w    k

    0    d   –    4    2   w    k    6    d

    1    7

    2    0   y

    M

    R    I

    R    i   g    h    t   c   e   r   e    b   e    l    l   a   r   g   r   e   y   m   a    t    t   e   r

   v   o    l   u   m   e   w   a   s   s    i   g   n    i    fi   c   a   n    t    l   y

   s   m   a    l    l   e   r    i   n    t    h   e   p   r   e    t   e   r   m

   g   r   o   u   p    d   e   s   p    i    t   e   a   n   o   r   m   a    l

   u    l    t   r   a   s   o   u   n    d   n   e   o   n   a    t   a    l    l   y .

    M    R    I ,   m   a   g   n   e    t    i   c   r   e   s   o   n   a   n   c   e    i   m   a   g    i   n   g   ;    B    S

    I    D ,

    B   a   y    l   e   y    S   c   a    l   e   s   o    f    I   n    f   a   n    t    D   e   v   e    l   o   p   m   e   n    t   ;

    W    I    S    C ,

    W   e   c    h   s    l   e   r    I   n    t   e    l    l    i   g   e   n   c   e    S   c   a    l   e   s   ;    V    M    I ,    V    i   s   u   a    l  -    M   o    t   o   r    I   n    t   e   g   r   a    t    i   o   n    T   e   s    t   ;    C    B    C    L ,

    C    h

    i    l    d    B   e    h   a   v    i   o   r    C    h   e   c    k    l    i   s    t   ;

    K  -    A    B    C ,

    K   a   u    f   m   a   n   n  -    A   s   s   e   s   s   m   e   n    t    B   a    t    t   e   r   y

    f   o   r    C    h    i    l    d   r   e   n .

Visuospatial and Visuomotor Deficits in Preterm Children Koenraad N J A Van Braeckel and H Gerry Taylor    21

Page 4: Braeckel Et Al-2013-Developmental Medicine & Child Neurology

8/21/2019 Braeckel Et Al-2013-Developmental Medicine & Child Neurology

http://slidepdf.com/reader/full/braeckel-et-al-2013-developmental-medicine-child-neurology 4/4

coordination, eye movements, motor speech, motor learning, andmotor timing and rhythm.21,34  The investigation of cognitiveprocesses is more challenging, as we know little about the indepen-dent contribution of the cerebellum to cognition. However, existingresearch reveals deficits in executive, visuospatial, language, read-ing, and memory functioning after acquired or ontogenetic cerebel-lar injury in children and adults.35,36  A promising direction for

future investigation is to examine the cerebellum’s selective involve-

ment in timing, structuring, and learning aspects of cognitive func-tions. Such studies may well lead to new tools to identify individual

learning needs and would help guide the design of educationalapproaches that consider the role of cerebellar contributions to

learning.37  A further benefit is the opportunity to explore the inter-play of changes in cerebellar structure and function with growth incognitive and learning skills. Associations between motor and cog-nitive development, such as those between fine manual control and visual processing38 along with evidence for cerebellar contributionto diverse cognitive functions, raise the possibility of wide-rangingeffects of cerebellar abnormalities on development.

CONFLICTS OF INTERESTNo financial assistance has been received in support of this paperand the authors have not declared any conflicts of interest.

REFERENCES

1. Lemons JA, Bauer CR, Oh W, et al. Very low birth

 weight outcomes of the National Institute of Child

Health and Human Development Neonatal Research

Network, January 1995 through December 1996.  Pediat-

rics  2001;  107: 1 – 8.

2. Foreman N, Fielder A, Minshell C, Hurrion E, Serg-

ienko E. Visual search, perception, and visual-motor

skill in “healthy” children born at 27 – 32 weeks’ gesta-

tion. J Exp Child Psychol  1997;  64: 27 – 41.

3. Atkinson J, Braddick O. Visual and visuocognitive devel-

opment in children born very prematurely.   Progr Brain

 Res  2007;  164: 123 – 49.

4. Van Braeckel K, Butcher PR, Geuze RH, van Duijn MAJ,

Bos AF, Bouma A. Less efficient elementary visuomotor

processes in 7- to 10-year-old preterm-born children

 without cerebral palsy: an indication of impaired dorsal

stream processes. Neuropsychology 2008;  22: 755 – 64.

5. Butcher PR, Bouma A, Stremmelaar EF, Bos AF, Smith-

son M, Van Braeckel KNJA. Visuospatial perception in

children born preterm with no major neurological disor-

ders. Neuropsychology 2012;  26: 723 – 34.

6. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new

neural framework for visuospatial processing.   Nat Rev

 Neurosci  2011;  12: 217 – 30.

7. Mercuri E, Atkinson J, Braddick O, et al. Basal gangliadamage and impaired visual function in the newborn

infant. Arch Dis Child  1997;  77: F111 – 4.

8. Limperopoulos C, Soul JS, Gauvreau K, et al. Late ges-

tation cerebellar growth is rapid and impeded by prema-

ture birth.  Pediatrics  2005;  115: 688 – 95.

9. Botez MI. Cerebellum and non-motor behaviour.  Rom J 

 Neurol Psychiatry  1993;  31: 189 – 93.

10. Levisohn L, Cronin-Golob A, Schmahmann JD. Neuro-

psychological consequences of cerebellar tumor resection

in children: cerebellar cognitive affective syndrome in a

paediatric population.  Brain  2000;  123: 1041 – 50.

11. Leiner HC, Leiner AL, Dow RS. Does the cerebellum

contribute to mental skills?   Behav Neurosci   1986;   100:

443 – 54.

12. Bailleuix H, De Smet HJ, Paquier PF, De Deyn PP,

 Mari€en P. Cerebellar neurocognition: insights into the bot-

tom of the brain. Clin Neurol Neurosurg  2008;  110: 763 – 73.

13. Hokkanen LSK, Kauranen V, Roine RO, Salonen O,

Kotila M. Subtle cognitive deficits after cerebellar defi-

cits.  Eur J Neurol  2006;  13: 161 – 70.

14. Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova

NK. Cognitive impairments in cerebellar infarcts.  Neuro-

 sci Behav Physiol  2005;  35: 773 – 9.

15. Molinari M, Petrosini L, Misciagna S, Leggio MG. Vi-

suospatial abilities in cerebellar disorders.   J Neurol Neu-

rosurg Psychiatry 2004;  75: 235 – 40.

16. Schmahmann JD, Pandya DN. Disconnection syn-

dromes of basal ganglia, thalamus, and cerebrocerebellar

systems. Cortex  2008;  44: 1037 – 66.

17. Stoodley CJ. The cerebellum and cognition: evidence

from functional imaging studies.   Cerebellum   2012;   11:

352 – 65.

18. Lee TMC, Liu H-L, Hung KN, et al. The cerebellum’s

involvement in the judgment of spatial orientation: a

functional magnetic resonance imaging study.   Neuro-

 psychologia 2005;  43: 1870 – 7.

19. Messerschmidt A, Fuiko R, Prayer D, et al. Disrupted

cerebellar development in preterm infants is associated

 with impaired neurodevelopmental outcome. Eur J Pedi-

atr  2008;  167: 1141 – 7.

20. Peterson BS, Vohr B, Staib LH, et al. Regional brain

 volume abnormalities and long-term cognitive outcome

in preterm infants.  JAMA 2000;  284: 1939 – 47.

21. Allin M, Matsumoto H, Santhouse AM, et al. Cognitive

and motor function and the size of the cerebellumin adolescents born very pre-term.  Brain  2001;  124: 60 – 

6.

22. Allin MPG, Salaria S, Nosarti C, Wyatt J, Rifkin L,

 Murray RM. Vermis and lateral lobes of the cerebellum

in adolescents born very preterm.   Brain Imag  2005;   16:

1821 – 4.

23. Taylor HG, Filipek PA, Juranek J, Bangert B, Minich

N, Hack M. Brain volumes in adolescents with very low

birth weight: effects on brain structure and associations

 with neuropsychological outcomes.   Dev Neuropsychol 

2011;  36: 96 – 117.

24. Kalpakidou AK, Allin MP, Walshe M, et al. Neonatal

brain injury and neuroanatomy of memory processing

following very preterm birth in adulthood: an fMRI

study. PLoS ONE  2012;  7: e34858.

25. Argyropoulou MI, Xydis V, Drougia A, et al. MRI mea-

surements of the pons and cerebellum in children born

preterm; associations with the severity of periventricular

leukomalacia and perinatal risk factors.  Neuroradiology

2003;  45: 730 – 4.

26. Rollins NK, Wen TS, Dominguez R. Crossed cerebellar

atrophy in children: a neurologic sequela of extreme pre-

maturity. Pediatr Radiol  1995;  25: S20 – 5.

27. Limperopoulos C, Soul JS, Haidar H, et al. Impaired

trophic interactions between the cerebellum and the

cerebrum among preterm infants.  Pediatrics   2005;   116:

844 – 50.

28. Ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen

HOM, Renier WO. Development and developmental

disorders of the human cerebellum.  J Neurol  2003;  250:

1025 – 36.

29. Volpe JJ. Cerebellum of the premature infant: rapidly 

developing, vulnerable, clinically important.  J Child Neu-

rol  2009;  24: 1085 – 104.

30. Haldipur P, Bharti U, Alberti C, et al. Preterm delivery 

disrupts the developmental program of the cerebellum.

PLoS ONE  2011;  6: e23449.

31. Srinivasan L, Allsop J, Counsell SJ, Boardman JP,

Edwards AD, Rutherford M. Smaller cerebellar volumes

in very preterm infants at term-equivalent age are associ-

ated with the presence of supratentorial lesions.  Am J 

 Neuroradiol  2006;  27: 573 – 9.

32. Shah DK, Anderson PJ, Carlin JB, et al. Reduction in

cerebellar volumes in preterm infants: relationship to

 white matter injury and neurodevelopment a t two yearsof age.  Pediatr Res  2006;  60: 97 – 102.

33. Constable RT, Vohr BR, Scheinost D, et al. A left cere-

bellar pathway mediates language in prematurely-born

adults. Neuroimage  2013;  64: 371 – 8.

34. Dennis M, Salman MS, Juranek J, Fletcher JM. Cerebel-

lar motor function in spina bifida meningomyelocele.

Cerebellum 2010;  9: 484 – 98.

35. Tavano A, Grasso R, Gagliardi C, et al. Disorders of 

cognitive and affective development in cerebellar malfor-

mations. Brain  2007;  130: 2646 – 60.

36. Steinlin M. Cerebellar disorders in childhood: cognitive

problems. Cerebellum 2008;  7: 607 – 10.

37. Jolles DD, Crone EA. Training the developing brain: a

neurocognitive approach.   Front Hum Neurosci   2012;   6:

1 – 13.

38. Davis EE, Pitchford NJ, Limback E. The interrelation

between cognitive and motor development in typically 

developing children aged 4-11 years is underpinned by 

 visual processing and fine manual control.   Br J Psychol 

2011;  102: 569 – 84.

22   Developmental Medicine & Child Neurology  2013,  55  (Suppl. 4): 19 – 22