62
Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D.

Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Embed Size (px)

Citation preview

Page 1: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Brachytherapy:Clinical implementation LDR/HDR

Kent A. Gifford, Ph.D.

Page 2: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Prostate seed LDR (PPI)

• Advantages– Dose conformity, normal tissue sparing– Continuous LDR delivery– Monotherapy can ablate prostate cancer

cells– “One and done” procedure– No concerns about EBRT motion, setup

uncertainties

Page 3: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Prostate seed LDR (PPI)

• Disadvantages– Rapid falloff of ~25keV photon sources– Edema of implant– Variability of manufacture and activity of

sources– Interseed and Intraseed attenuation– Subject to skill/experience of

brachytherapist (art??)

Page 4: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Prostate seed LDR (PPI)Seed properties

Radionuclide Cs-131 I-125 Pd-103

Half-life (days) 9.65 59.4 16.97

Average Energy (keV) 29 27 21

Λ (cGy hr-1 U-1) 1.05 0.96-1.04 0.69

Half-value layer (mm) 0.035 0.025 0.008

Page 5: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Monotherapy and boost doses

Isotope Cs-131 I-125 Pd-103

Monotherapy dose (cGy) 100-115 140-160 115-130

Boost (cGy) 70-80 100-110 80-110

Page 6: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Treatment Guidelines

• Seeds– I-125: Nycomed-Amersham Model 6711 (NIST 99)– Pd-103: Theraseed Model 200 (NIST 99)

• Activities used at MD Anderson– I-125: .391 mCi = .497 U (used in planning software)– Pd-103: 1.4 mCi= 1.810 U– Will use 1 week decayed sources with a 7.77%

decay; .361 mCi= .457 U

Page 7: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Treatment Guidelines Cont.

• Doses are given as the total dose given over the life of the radioactive seed (decayed to 0 mCi)

• Planned dose - TG 43• Full Dose: Brachytherapy only

– I-125: 145 Gy– Pd-103: 115 Gy

• External Beam + Brachytherapy– XRT 45 Gy + I-125 110 Gy– XRT 45 Gy + Pd-103: 100 Gy

Page 8: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Advantages and Disadvantages of Seed Types

• I-125• Advantages

– NIST Traceable Calibration

– Well Characterized dosimetry

– Rapid Strands available

• Disadvantages– Relatively long half life– Rounded seed ends

makes them mobile– Very anisotropic dose

distribution

• Pd-103• Advantages

– Short Half Life– Cupped seed ends tend to

anchor seeds– Seed activities within +/-

5%

• Disadvantages– No calibration standard– Dosimetry based on only

two studies– Activity decays 4% a day

Page 9: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Which to use? I-125 or Pd-103

• Generally use Pd-103 for higher grade tumors

• The disadvantage is Pd-103 short half

life – may miss the slower growing tumor cells.

Page 10: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Pd-103 Seed in comparison with I-125 Seed

Page 11: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Prostate Implants at MD Anderson• Modified Peripheral Loading based on

Seattle technique• Pre-Plan/ Pre-loaded technique• Use I-125 seeds, Pd-103, Cs-131• Pre-Implant Ultrasound Volume Study

performed 2 weeks to a month before actual implant by the Radiation Oncologist and Resident

• Plan based on ultrasound images acquired during volume study

Page 12: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implants at MD Anderson Cont.• Varian Variseed computer software used for

planning• Implant performed under anesthesia as an

outpatient procedure• Post Implant CTs performed on Day 1 and

Day 30 (2 wks potentially for Pd-103, Cs-131)

Page 13: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Pre-Implant US Volume Study

• 2 weeks to a month before actual implant– scheduling – ordering of seeds

• Done in Urology with the patient awake• Procedure time: 20-30 min.• Patient positioned in stirrups similar to those in

the operating room• Transrectal Ultrasound (TRUS) used to acquire

images

Page 14: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

TRUS Imaging Diagram

Page 15: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Pre-Implant US Volume Study

• Without a good volume study a good plan can not be designed

• Oncologist draws target volume, tissue that is identified to be treated on each 5 mm slice

• Prostate Volume is determined from the prostatic margin

• The target volume includes the prostate volume and some of the surrounding tissue

Page 16: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Pre-Implant US Volume Study

Page 17: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Pre-Implant US Volume Study

– KY Jelly or Ultrasonic Gel used as medium for ultrasound transmission

– Condom placed over the probe– Standoff cap used for prostates that lie

posteriorly– Requirements for adequate ultrasound images

• complete contact between transducer and the medium

• absence of air in the medium• good contact with the rectal wall• absence of gas or stool in the rectum

Page 18: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Pre-Plan

Page 19: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Variseed Software: Template Registration

1.) Lower Left Location: A 1.0

2.) Lower Right Location: G 1.0

Template (in red)

3 Point Method

3.) Designated Row: Any Hole (usually row 5)

Page 20: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Contours

Page 21: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Source Placement

• Set Reference Plane to Base Slice (0.00 cm)

• Right Click on image when highlighted in big window

Page 22: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Planning Guidelines

• Pre-Implant US Volume Study ultrasound images used

• Modified Peripheral Loading Technique

• Base Pattern- basic pattern of needles that begin at the base of the prostate

– Implant small letters (a,b,c,d…) and whole integers (1.0, 2.0, 3.0…) starting with the base slice

– Place needles and seeds in the template locations in the prostate or within 1/2 cm from prostatic capsule delineated by the contour

– Continue pattern every 1 cm

Page 23: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Base Slice

1.0cm Slice

2.0cm Slice

3.0cm Slice

0.5cm Slice

2.5 cm Slice

1.5 cm Slice

3.5 cm Slice

Base Pattern

Page 24: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

0.0 cm Slice (base)

Page 25: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

1.0 cm Slice

Page 26: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

2.0 cm Slice

Page 27: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

3.0 cm Slice

Page 28: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Planning Guidelines Cont.

• Patching Pattern- On the slices with a retraction of a 1/2 cm from the previous pattern-

– Implant at the big letters (A,B,C,D…) and the half-integers (1.5, 2.5, 3.5,…)

– Place needles and seeds in the template locations in the prostate or within a 1/2 cm from the prostatic capsule delineated by the contour

– Avoid the “Big D” column due to the position of the urethra

– Continue pattern every 1 cm

• Modify central needles for urethral sparing– remove complete needles if 100% isodose line sufficiently covers the

prostate

– Remove central seeds in the needles- leave seeds at base and apex

Page 29: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Base Slice

1.0cm Slice

2.0cm Slice

3.0cm Slice

0.5cm Slice

2.5 cm Slice

1.5 cm Slice

3.5 cm Slice

Patching Pattern

Page 30: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

0.5 cm Slice

Page 31: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

1.5 cm Slice

Page 32: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

2.5 cm Slice

Page 33: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

3.5 cm Slice (apex)

Page 34: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

0.0 cm slice

1.0 cm slice

2.0 cm slice

3.0 cm slice

Urethral Sparing

Remove seeds from

“c,d” between rows 2 and 3

Page 35: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Urethral Sparing

Remove seeds from

“C & D” between rows

2.5 and 3.5

0.5 cm slice 1.5 cm slice

2.5 cm slice 3.5 cm slice

Page 36: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Considerations when Planning

• Dipping of the 150% isodose line down the center of the gland - urethral sparing

• Don’t compromise the 100% isodose line for urethral sparing

Page 37: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Dipping of 150% Isodose Line

Urethral

Area

150% Line

150% Line

Page 38: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Considerations when Planning

• Dipping of the 150% isodose line down the center of the gland - urethral sparing

• Don’t compromise the 100% isodose line for urethral sparing

• No needles can have less than 2 seeds

• Try to keep the needle count < 30

• Optimal prostate sizes to implant: 20-50 cc

• The length of the urethra that receives more than 400 Gy for I-125 should be kept as low as possible

Page 39: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Considerations when Planning

• Plan with sufficient dose at the base– loose periprostatic tissue has a high probability of causing seed migration

– a more extended lithotomy position during implant causes the base slice to be larger

– decreases total number of slices

– area with most cold spots, due to anatomical position

• Load posteriolateral aspects of the prostate light– location of neurovascular bundles

– seed migration very likely

• Symmetry is important for uniform dose

Page 40: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Considerations when Planning

• Solutions for prostates that lie posteriorly– drop the needles in the “big letter (A,B,..)” columns from the half-

integers (1.5,2.5,…) to the whole integer (1.0,2.0,…) rows below them

– follow loading guidelines despite modifications

• Avoid the rectum as much as possible by loading the central template locations cooler (“big” C-E)

• Rectal dose should not exceed 100 Gy

• Do not implant or include the seminal vesicles due to unreliable source placement

Page 41: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Considerations when Planning

• Mid-gland- generous coverage laterally and anteriorly, no margin posteriorly because of the rectum

• Recommended to load 70% on the periphery and 30% on the interior

• Hot spots in the interior of 200-250 Gy can be expected

• 145 Gy line should extend 3-5 mm beyond the margin drawn

Page 42: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Final PlanImages 1 - 4 Images 5 - 8

Images 9 - 10

Page 43: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Seed Assay and Loading

• 10% of seeds assayed and then sterilized

• Loaded under a sterile environment

• Seeds loaded according to VariSeed computer printouts – seed positions with correct orientation– most needles loaded with a seed to begin with and then a seed at

every cm with a spacer in between each seed– each needle ends with a seed due to doctor preference

• Once all the needles are finished then a verification film must be taken to assure that the needles are loaded correctly

Page 44: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Prostate Seed Implant Needle QA Films

Page 45: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Needle Loading Box

Based on the plan and template location, the needles are placed in the needle box after verification and taken up to the Operating Room the following day

Page 46: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Operating Room Procedures

• In the Operating Room the patient will be returned to the same position as they were in for the pre-plan (a catheter will be placed with contrast in the Foley balloon)

• Fluoroscopy used

• The Physician will need the pre-planning US to check for patient position for the implant

• Need patient plan, loading diagram, small lead pig, calculator, NaI detector, Geiger-Mueller detector and any radiation safety forms you may need should the patient require a stay in the hospital over night

Page 47: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Operating Room Setup

Page 48: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

OR Procedures

• Coordinates of the needle and retraction of the needle are read from the treatment plan

• When all the needles have been loaded, the extra needles will be used to fill in at the apex and any “cold” spots– This is done using fluoroscopy as well as

ultrasound

• The urologist will do a cystoscopy to ensure there are no seeds in the bladder, if there are seeds they will be retrieved and put in the little lead pig

Page 49: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

OR Procedures

• Make a note in the patient chart with total seeds and needles, total activity, and survey meter reading of the patient with the Geiger detector

• You must remain in the OR until every seed has been accounted for!!!

• Once the patient has left the room, use the NaI detector to survey EVERYTHING.

• X-ray taken of last fluoroscopic image to verify the number of seeds implanted (verification)

Page 50: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Verification Fluoroscopy Image

Page 51: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Post-Implant Dosimetry• Seed Identification- 5 mm CT scan example

Page 52: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Post-Implant Dosimetry• 3-D Dose Reconstruction with Dose 100% isodose

cloud (2 different cases)

Page 53: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Post-Implant Dosimetry• Timing of CT Scans

– Edema• Average swelling- 20%-50% post implant (Range: 0-96%)

– calculated by interseed spacing– prostate border delineation not as accurate of a measurement

• T 1/2 = 10 days

• D90 increases 30 % from day 1 to day 21

• Anderson’s experience- prostate back to normal by day 30• Volume increase results in average of 10% underestimate

of dose

– Suggested Timing between 2 post-implant scans: Pd-103- 2 weeks, I-125- 4 weeks

Page 54: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Post-Implant Dosimetry

• Dose Evaluations– Isodose Distributions

• 2-D distributions on sequential slices of target• Recommended isodose lines: 200%, 150, 100, 90, 80, and

50.

– Dose Volume Histograms (DVH)• Cumulative DVH recommended• Percent volume of prostate that receives greater than or

equal to dose delivered

– Report following:• D100, D90, D80 (dose that 100% of the prostate receives)

Page 55: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities- TG-56

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 56: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 57: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 58: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 59: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 60: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 61: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.

Page 62: Brachytherapy: Clinical implementation LDR/HDR Kent A. Gifford, Ph.D

Implementation, QA, physicist responsibilities

Nath et al., Med. Phys. 24(10) 1557-98 1997.