21
Boundfree spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field, CA 94035‐0001 It is now recognized that prediction of radiative heating of entering space craft requires explicit treatment of the radiation field from the infrared (IR) to the vacuum ultra violet (VUV). While at low temperatures and longer wavelengths, molecular radiation is well described by bound‐bound transitions, in the short wavelength, high temperature regime, bound‐free transitions can play an important role. In this work we describe first principles calculations we have carried out for bound‐bound and bound‐free transitions in N2,O2,C2, CO, CN, NO, and N2 + . Compared to bound‐bound transitions, bound‐free transitions have several particularities that make them different to deal with. These include more complicated line shapes and a dependence of emission intensity on both bound state diatomic and atomic concentrations.. These will be discussed in detail below. The general procedure we used was the same for all species. The first step is to generate potential energy curves, transition moments, and coupling matrix elements by carrying out ab initio electronic structure calculations. These calculations are expensive, and thus approximations need to be made in order to make the calculations tractable. The only practical method we have to carry out these calculations is the internally contracted multi‐reference configuration interaction (icMRCI) method as implemented in the program suite Molpro. 1 This is a widely used method for these kinds of calculations, and is capable of generating very accurate results. With this method, we must first of choose which electrons to correlate, the one‐electron basis to use, and then how to generate the molecular orbitals. https://ntrs.nasa.gov/search.jsp?R=20120015908 2020-06-18T23:32:31+00:00Z

Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Bound‐freespectrafordiatomicmolecules

DavidW.Schwenke

NASAAmesResearchCenter

M.S.T27B‐1,P.O.Box1000

MoffettField,CA94035‐0001

Itisnowrecognizedthatpredictionofradiativeheatingofenteringspacecraft

requiresexplicittreatmentoftheradiationfieldfromtheinfrared(IR)tothe

vacuumultraviolet(VUV).Whileatlowtemperaturesandlongerwavelengths,

molecularradiationiswelldescribedbybound‐boundtransitions,intheshort

wavelength,hightemperatureregime,bound‐freetransitionscanplayanimportant

role.Inthisworkwedescribefirstprinciplescalculationswehavecarriedoutfor

bound‐boundandbound‐freetransitionsinN2,O2,C2,CO,CN,NO,andN2+.

Comparedtobound‐boundtransitions,bound‐freetransitionshaveseveral

particularitiesthatmakethemdifferenttodealwith.Theseincludemore

complicatedlineshapesandadependenceofemissionintensityonbothboundstate

diatomicandatomicconcentrations..Thesewillbediscussedindetailbelow.

Thegeneralprocedureweusedwasthesameforallspecies.Thefirststepisto

generatepotentialenergycurves,transitionmoments,andcouplingmatrixelements

bycarryingoutabinitioelectronicstructurecalculations.Thesecalculationsare

expensive,andthusapproximationsneedtobemadeinordertomakethe

calculationstractable.Theonlypracticalmethodwehavetocarryoutthese

calculationsistheinternallycontractedmulti‐referenceconfigurationinteraction

(icMRCI)methodasimplementedintheprogramsuiteMolpro.1Thisisawidely

usedmethodforthesekindsofcalculations,andiscapableofgeneratingvery

accurateresults.Withthismethod,wemustfirstofchoosewhichelectronsto

correlate,theone‐electronbasistouse,andthenhowtogeneratethemolecular

orbitals.

https://ntrs.nasa.gov/search.jsp?R=20120015908 2020-06-18T23:32:31+00:00Z

Page 2: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Inallcalculations,weonlycorrelatethevalenceelectrons,i.e.the1s‐likeorbitalsare

keptdoublyoccupiedinallconfigurations.Weinitiallyconsideredcorrelatingall

electrons,whichwouldyieldmoreaccurateresults,howevertheextraexpensewas

deemedun‐warranted,giventhedifficultieswiththeicMRCImethodforhighly

excitedstates.Thiswillbediscussedinmoredetaillater.

Forallcalculations,theone‐electronbasissetusedwasbasedontheDunning2cc‐

pVTZbasisset,whichisthesmallestone‐electronbasissetcapableofyielding

reasonableresults.WealsousedthesecondorderDouglas‐Kroll‐Hess3

approximationtotreatscalarspecialrelativity.Tohelpdescribetheouter‐most

electronclouds,thecc‐pVTZbasissetwasaugmentedbyoneextradiffusefunction

foreachshellforCandN,andtwoextradiffusefunctionsforeachshellforO.The

extrashellsonOarerequiredduetotheimportanceofO‐configurations.4

Furthermore,systemsexpectedtohavelow‐lyingRydbergstates(theneutrals,but

notthecations)hadanadditionaldiffusefunctionaddedforeachshell.

Themolecularorbitalsweregeneratedusingthefollowingcompositeprocedure.

Wefirstgeneratedvalancemolecularorbitalsbycarryingoutaseriesofcomplete

activespace(CAS)calculationsstartingatlargeinternuclearseparations(100aofor

neutralsand1000aoforions)andworkingourwayintosmallinter‐nuclear

separations.Wewillusethesymbolrforinter‐nuclearseparation.About50

Page 3: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

internuclearseparationswereconsidered.Inthesecalculations,theO2s‐like

orbitalswerekeptdoublyoccupiedinallconfigurations.IntheCAScalculations,

severalrootsfromeachsymmetrywereoptimized,withtheweightforeachroot

computedfromtheenergydifferenceasdescribedbyDeskevichetal.5Webasedour

selectionofrootsontheatomicstatesthatwecouldreliableconvergeto.Thusour

orbitalstransformasC∞vforheternucleardiatomicsandD∞hforhomonuclear

diatomics,andfurthermoreleadtotheproperatomicdegeneraciesinthe

asymptoticregion.Wejustconsideredasingleoverallelectronspin:doubletsfor

CN,N2+,CO+,tripletsforN2,O2,C2,CO,andquartetsforNO.ForN2,C2,COandNO.

Thischoiceofspinisnotthesameasthegroundelectronicstate,butthischoice

givesbettercoverageofpossibleatomicstates,thusitgivesbetteroverallresultsfor

allspinsintheicMRCIcalculations.Theresultsfromoneinternuclearseparation

wereusedasinitialguessforthenextsmallerinternuclearseparation,andthediab

procedureinMolprowasusedtomakethemolecularorbitals,bothactiveand

virtual,lookassimilaraspossibleastheinternuclearseparationchanged.

Page 4: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Oncethevalencemolecularorbitalsweredetermined,wedeterminedlow‐lying

Rydbergorbitalsfortheneutrals.Forthesecalculationswestartedatthesmallest

inter‐nuclearseparationsandworkedourwaytolargerrvalues.Thevalence

molecularorbitalswerekeptfrozenattheirpreviouslydeterminedvalues,andin

theCAScalculationswerestrictedtheconfigurationssothatexactlyoneelectron

Page 5: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

waskeptintheRydbergorbitalofinterest.ForN2,O2,C2,andCO,weusedthe

lowestlyingRydbergsingletstates,whileforCNandNOweusedthelowestlying

Rydbergdoubletstates.Inasequentialmanner,wegeneratedtwoRydberg

orbitalsandbothcomponentsoftheRydbergorbital.Aswiththevalenceorbitals,

weusedthediabprocedureinMolprotoensurethattheRydbergorbitalssmoothly

changedwithinter‐nucleardistance.

Nowweturntoevaluatingtheenergiesandcouplingmatrixelements.Wecarried

Page 6: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

outicMRCIcalculationsforusinganactivespacethatconsistedofallvalence

orbitalsandallRydbergorbitals:howeverO2svalenceorbitalswherekeptdoubly

occupiedinthereferenceconfigurationsandamaximumofoneelectronwas

allowedontheRydbergorbitals.Forthesecalculations,weusedamodifiedversion

ofMolprothatallowedtheselectionofforthestateofinterest.Thus,stateswere

computedfromseparateicMRCIcalculationsthenstates,etc.Nonetheless,itis

necessarytoextractmultiplerootsfromtheicMRCIcalculations.Thesecalculations

canbecarriedoutintwoways:thecoupledstatemethod,inwhichallrootsare

computedtogetherandTheprojectedstatemethod,inwhichallrootsarecomputed

sequentially.ThefirstapproachisthedefaultprocedureinMolproandhasthe

advantagesthatthecomputedwavefunctionsareorthogonalandhavelower

energies,andhencearemoreaccurate,thantheprojectedstateenergies.Ithasthe

disadvantagethatthecostofcalculationgrowssignificantlyasthenumberofstates

increasesMuchmoretroublesome,however,isthefactthatchangesinthe

characterofhigherstatescanleadtodiscontinuouschangesinlowerstateenergies.

Theadvantageoftheprojectedstatecalculationsisthatthecostislinearinthe

numberofroots,andstateenergiesarecontinuousastheinternuclearseparation

changes.Thedisadvantagesoftheprojectedstatecalculationsaretheelectronic

wavefunctionsarenolongerorthogonaland,ifoneisunlucky,astateflippingcan

occurthatcausesthecalculationstofail.Thusneithermethodwillalwaysgive

reliableresults.Forthemostpart,weusetheprojectedstatemethod,withthe

coupledstatemethodusedselectivelyforO2andCO+.Theunpleasantfeaturesthat

occasionallyoccurinhighlyingrootsinthefiguresshownismainlyduetothis

problem.

Page 7: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Usingtheseelectronicwavefunctions,wecomputedtheenergies,theoverlaps,the

dipolemoment,thequadrapolemoment,themagneticdipolemoment,andspin‐

orbitmatrixelementsforallpossiblecouplings.Furthermore,toascertainthe

relativephasesofmatrixelementsandtotransformfromtheadiabatictoadiabatic

basis,wecomputedtheoverlapsofthewavefunctionsfromadjacentinter‐nuclear

separations.

Nowletmakeaslightdigression.Theenergiescomputedasdescribedaboveare

knownasadiabaticenergies,forthenucleiare"clamped"tofixedpositionsinthe

calculationsoftheelectronicenergies.However,foraccuratecalculations,itis

Page 8: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

importanttoconsidertheeffectofunclampingthenucleiontheelectronic

properties.Thisismostreadilyshowninthe2manifoldofNO:inthefigurethe

symbolsaretheadiabaticenergies,andthelinesareMoleculardiabaticenergies.

TheadiabaticenergiesshownumerousavoidedcrossingsastheRydbergstate

comesdowninenergy.Atthesecrossings,theelectronicwavefunctionchanges

rapidlyfromonesidetotheother,andthusthecouplingbetweentheinternuclear

coordinateandtheelectronicwavefunctionswillbeverylarge.Eventhoughthis

couplingcanbeincludedinthecalculationsinafairlystraightforwardmanner,

othercomplicationswithusingtheadiabaticelectronicfunctionsremain.Namely

thematrixelementsofotheroperators,suchasthedipolemoment,havevery

complexbehaviorinthevicinityofanavoidedcrossing,whichmakesreliable

interpolationdifficult.Itisthusadvantageoustotransformtoadifferentelectronic

basisthatdoesnothavetheseproblemsbecausethecharacteroftheelectronic

wavefunctionshasbeenforcedtovaryslowlyandsmoothly.Thistypeofbasisis

calledadiabaticbasis.Severaldifferentchoicesforthediabaticbasisarepossible,

andtheparticularbasisweusewecalltheMoleculardiabaticbasis.Thisdiabatic

basisisformedrecursivelyrequiringthattheadiabaticanddiabaticbasisbethe

sameattheinter‐nuclearseparationwheretheadiabaticpotentialenergycurvehas

itsdeepestminimum.Inpractice,westartwiththeinternuclearseparationatthe

lowestminimum,thenpropagatebothforwardandbackwardsinr.Thepropagation

involvesaseriesofJacobi‐typerotations,appliedtotheoverlapbetweenthe

electronicfunctionsatneighboringgeometriestomakeitasdiagonalaspossible.

TheJacobirotationsareonlyappliedtoonesideoftheoverlapmatrix,andeach

individualrotationangleischosentominimizetheoffdiagonaloverlapofeachpair

ofstates.Sweepsthroughthematrixarecarriedoutuntiltheoffdiagonalsofthe

matrixstopdecreasing.Inthediabaticbasis,off‐diagonalcouplingduetoelectronic

energyisnon‐zero,butallcurvesaresmoothandeasytointerpolate.The

disadvantageofthisbasisisthatconvergencetotheadiabaticatomicenergiesis

ratherslowintheasymptoticregion.Howeverthisisnotexpectedtobeacritical

partofpredictingaccuratemolecularspectra.

Page 9: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Anotherthingtonoteaboutthisfigureisthediabatizationprocedurenotonlyturns

thesharplyavoidedcrossingsintorealcrossings,butalsochangesthelarger‐

dependenceofthegroundstatepotential.Inthelargerregion,thegroundstate

potentialdoesnotexhibitanyobviousavoidedcrossings,sothatthediabaticcurve

differsfromtheadiabaticcurveinthisregionmightbesurprising.Howeversome

considerationofthesituationmakesthesituationmorereasonable.Inthelarger

region,thepotentialenergycurvescanbelabeledbyatomicquantumnumbers,e.g.

thelowestadiabaticpotentialcurvehastheasymptoteof3PO+4SN.Inthevicinity

oftheminimum,nearr=2ao,thewavefunctionwillreflectamixtureofatomic

states.Forexample,duetothehigherelectro‐negativityofOoverN,therewillbe

significantO‐N+characterinthewavefunction.IntheMoleculardiabaticstates,the

fractionalcharacterofthewavefunctionismoreorlessfrozenatitsvalueatthe

minimum,thustheenergyattheasymptotewillbelargerthanthelowestadiabatic

curve.Thisisexactlywhatwesee.Whathappentothe3PO+4SNstateinthe

moleculardiabaticbasis?Afterall,eveninthevicinityoftheminimum,themolecule

isnotpurelyO‐N+.TheO+Ncomponentshouldstillbepresent.TheNOfigure

appearstoshowadeficiencyinthemoleculardiabaticbasis.Thelossofthe3PO+4S

Nstatewouldmeanthatonecannotusethisbasisfordissociation.

Page 10: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Itisinterestingtocomparethecomputedpotentialenergycurveswithexperimental

data.Inthefigures,wehaveplacedlabelsofelectronicstatesatthevalueofTeand

retakenfromHuberandHerzberg.6Forthemostpart,theagreementisextremely

good,graphically.ThetableabovewiththecomparisonsbetweenthecomputedTe

andthosegivenbyHuberandHerzberginwavenumbers.Whilethedifferencesare

asmallfractionofTe,theabsoluteerrorsaresizableenoughtobeobservedinsaya

spectrumfromtheEASTfacility.Thusweshiftedthecurvesforwhichdatawas

availablebythenegativeoftheamountlistedinthecalc‐obscolumns.Amore

accurateprocedurewouldbetouseT00,whichisamoredirectlymeasuredquantity,

buttheotherapproximationsinthepresentworkmakethislevelofrefinement

superfluous.

Nowitshouldbenotedthatthiscomparisonandcorrectionisnotexact,forthe

valuesofTecomputedarejustthedifferencesinminimumenergiesintheMolecular

diabaticcurves,whiletheTefromHuberandHerzbergiseithertheY00parameterin

theDunhamexpansionoftheexperimentalenergylevelsforsimplecases,ora

parameterinacomplicatedeffectiveHamiltonianformorecomplexcases.Thuswe

Page 11: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

arecomparingapplestooranges.Nonethelessitisexpectedthatthiscorrectionwill

bereliableenoughtoyieldusefulresults.

Wenextcarriedoutcoupledro‐vibrational‐spin‐electroniclevelcalculations.To

proceedwebuildupbasisfunctionsforallcoordinatesexcepttheinter‐nuclear

separation:

with , and0when=0.Here isthespin‐electronicfunction,

withlabelingparticularelectronicstates,Sisthetotalelectronicspinquantum

number,istheabsolutevalueofquantumnumberspecifyingtheprojectionofthe

totalelectronicangularmomentumontheinter‐nuclearbondaxis,isthequantum

numberspecifyingtheprojectionofthetotalelectronicspinangularmomentumon

theinter‐nuclearbondaxis,and specifyspin‐electroniccoordinatesintheframe

ofreferencehavingthebodyfixedzaxisalongtheinter‐nuclearbond,JandMare

thequantumnumbersforthetotalangularmomentumandtheprojectionofthe

totalangularmomentumonthespacefixedzaxis.Thebodyfixedandspacefixed

axisarerelatedbytherotationbytheEulerangles0,Pistheparityand=Ne/2,

whereNeisthenumberofelectrons.Thefactoris‐1for‐states,and+1

otherwise.TheW aretheWignerrotationmatrixelementsasdefinedbyEdmonds.7

Inthisbasis,thefullrelativisticHamiltonianoperatorisdiagonalinJMP.Thenon‐

relativisticpartoftheHamiltonianisalsodiagonalinS.Ifalloffdiagonalcoupling

matrixelementsareneglected,thenthiswouldbewhatiscalledtheHund'scasea

basis.However,wedonotmakethisapproximation,andratherincludeallcoupling

terms.ThuswecanaccuratelytreatallpossibleHund'scasesaswellasall

intermediatecases.

Thematrixelementsofthenuclearrotationalangularmomentumcontribution

R(R+1)tothekineticenergyisgivenby

S

JMP 2J 1

8 10 0

12

S ˜ x W M(J ) 0 P 1 J S ˜ x W M

(J ) 0

P 1 0 S ˜ x

˜ x

Page 12: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Inthisexpression,weonlyneglectthe term,foritiscurrentlydifficultto

calculate,andfurthermoreonlyvariesbyafewcm‐1acrossthepotentialenergy

curve.

Besidesthecustomaryelectricdipoletransitionmoment,wewillconsiderhigher

ordermoments.ThisisbecausetheLBHaXN2transitionisdipoleforbidden.The

nextordermomentsaretheelectricquadrapolemomentandthemagneticdipole

moment.Ingeneral,thetransitionmatrixelementsinthisbasisaregivenby

JMSP R(R 1) J M S P J J M M S S P P

J J 1 S S 1 2 2 Lx2 Ly

2 1 J J 1 S S 1 10 0 0

12

12 Lx

J J 1 1 0 0 0 12

1 S S 1 1 0 0 0 0 12

P 1 J 0 0 J J 1

12

1, S S 1 12

12P 1 J 1

2 0 J 1

2 S 12

1 0 0 Lx J 12

Lx2 Ly

2

Page 13: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

where isa3‐jsymbol.NowthisfactorizesintoatermthatcontainsalltheM

dependenceandtherest:

Nowourfinalwave‐functionswillconsistoflinearcombinationsofthe with

fixedJMP,butthiswillnoteffectthisfactorization,butwillchangefromthelabels

to.Thentherateofstimulatedemission(akaEinsteinAcoefficient)from

electricdipoleradiationis

therateofstimulatedemissionfrommagneticdipoleradiationis

JMPS ˆ O mqt

m

W mm '(q ) J M P S 1 M 2J 1 2 J 1

10 0 1' 0 ' 0

12

S S

J q J

M m M

1 P P c t 1 q

2

J q J

Sqt S

0P' ' 1 J ' J q J '

' '

Sqt ''S '

. . .

. . .

JMPS ˆ O m

qt

m

W m m (q ) J M P S 1 M J q J

M m M

FS S

JP J P qt

SJMP

S

Page 14: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

andtherateofstimulatedemissionfromelectricquadrapoleradiationis

Weseethefollowingselectionrules:forelectricdipoleradiation(e1), and

,whileforbothmagneticdipole(m1)andelectricquadrapole(e2)

radiationwehave ,andadditionallyfore2, ispossible.Withall

otherthingsbeingapproximatelyequalinatomicunits,m1isdownfromdipole

allowedtransitionsbyafactorof1/c2,orabout10‐4.Comparedtom1,e2isdown

aboutby2,whichaboutanother10‐4intheinfra‐redregion,butnearingunityin

theVUV.

Sofarwehavejustdiscussedourtreatmentoftheangular‐electronicdegreesof

freedom.Theradialdegreeoffreedom,r,istreatedusingthefinitedifference

boundaryvaluemethodincludingfullcoupling.Weperformcalculationsofeach

valueofJandP(theradialwavefunctionsareindependentoftheMquantum

number)andweexplicitlyintegratethetransitionmomentsovertheradial

functions,thuswedonoteneedHönl‐Londonfactorsorther‐centroid

approximation.Furthermore,byfullyincludingallcouplingterms,weexplicitly

obtainnonzerolambdadoublingsplittings,spin‐forbiddentransitions,andall

perturbations.

Whensolvingfortheradialfunctions,wehavetwosituationstoconsider.Inthe

first,forboundlevels,theboundaryconditionsarehomogenousas andas

.Inthesecond,thetotalenergyisabovethelowestdissociationlimit,thusthe

largerboundaryconditionsareinhomogenous.Thiscomplicatesthings

considerably.

P P

J J 1

P P J J 2

Page 15: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

Forboundlevels,thehomogeneousboundaryconditionsmakethesolutionofthe

radialfunctionsabandedeigen‐valueproblem.Thustheenergiesarefixedbythe

boundaryconditions.

Ontheotherhand,forun‐bound,orfreelevels,theenergyisafreeparameter,and

wemustemployscatteringtheorytodeterminethewavefunction.Thenlarger

boundaryconditionstaketheform

wherelabelschannels(channelsarethevariousasymptoticallydiagonalbasis

functions), ,whereisthereducedmassforradialmotion,Eisthe

kineticenergyoftherelativemotionofthefreeparticles,isthethresholdenergy

forchannel,andSisthescatteringmatrix,whichisacomplexsymmetricmatrix.

Fornotationalsimplicity,wehavesuppressedtheenergylabelfromtheradial

functionfandthescatteringmatrix.Nowwedonotknowapriorithevaluesofthe

scatteringmatrix,soinpracticalcalculationswesolveforthefunctions subject

totheboundaryconditions .Wethenanalyzethelargerbehaviorof

thenumericalresults,andformlinearcombinationstosatisfythedesiredboundary

conditions.Itshouldbenotedthattheaboveexpressionsareonlyvalidwhenkis

real,i.e.E>.Forotherchannels,theradialfunctionsdecayexponentiallyatlarger.

Nowforfreestates,howshouldwesampleE?Theobviousansweristousea

densityofenergiessothatthescatteringmatrixcanbereliablyinterpolatedover.

Thisrequiresknowledgeoftheformalbehaviorofthescatteringmatrix.Thereare

polesinthescatteringmatrixatdiscretecomplexenergies ,wheren

isacountingindex.Whilecomplexenergiesarenotphysicallyobtainable,these

poleshaveimportantconsequencesontherealenergyaxis.Specifically,atenergies

"far"from ,i.e.greaterthanaboutnaway,thephaseofthedeterminantofS

decreasesmonatonicallywithincreasingE,butnear ,thephaseabruptly

f r ~ k 1

2 exp ikr exp ikr S

k 2 E

˜ f

˜ f rbc

E Xn in /2

Xn

Xn

Page 16: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

increasesby2like .Physically,thesepolescorrespondto

"almost"boundstateswithdecaylifetime/n.ThusweneedtoconcentrateourE

samplingnearthe .Butonceagain,wedonotaprioriknowthe .

Weobtainestimatesofthe byenclosingthesysteminafinitebox,whichturns

allfreestatesintoboundstates.Thenwecandetermineenergyeigenvalues,and

the willbenearbysomeoftheseeigenvalues.Byevaluatingtheenergy

derivativeofthephaseofthescatteringmatrix,wecanisolatethe ,andthendoa

refinementtodeterminebetterestimatesof andn.

Itwouldseemthatknowing andnandthe ,wewouldbeinapositionto

computebound‐freetransitionsjustlikebound‐boundtransitions,butfurther

reflectionrevealsadditionaldetailsthatmustbeaddressed.Firstofall,howshould

the be"normalized"?Thisisnotwelldetermined,sincetheyarenotsquare

integrablefunctions.Secondly,whichofthe'shouldwechosetocompute

transitionmatrixelements?Anotherwaytolookatthislastproblemis

representsincomingfluxinchannel'andoutgoingfluxinallopenchannels.But

thephysicalsituationshouldhavenoincomingflux,sinceallthepopulationwould

begeneratedbyphotonabsorption.

Thepropersolutionofthisproblemistodirectlycoupletheradiationfieldtothe

nuclearproblemusingGreen'sfunctions.Thisleadstoadrivingterminthe

differentialequationsfortheradialfunctions,andasolutionthatlookslike

withlindexingtheparticularboundstateforthetransition.Theamplitude is

complexanddependsonenergy.Notethatthesedifferentialequationsarenomore

difficulttosolvethanthescatteringequations.Thenonefindsthatif corresponds

2tan1 n /2 Xn E

Xn Xn

Xn

Xn

Xn

Xn

Xnf

f

f

gl r ~

2k

12

Ml exp ikr

Ml

Xn

Formatted: Lowered by 4 pt

Formatted: Lowered by 4 pt

Page 17: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

toaverynearlyboundstate,theninthelimitofthecouplingofthetrueboundstate

tothecontinuumbecomeszero,thenifEisnear ,

.

Thatis,theemissivitylookslikeanEinsteinAmodulatedbyaLorentzian,andthat

theEinsteinAcanbecomputedvia

.

Howeverthissimpleresultisnottrueingeneral.Thisisbecausethe arecomplex

numbers,andthusvariouspolescancauseconstructiveanddestructive

interference.Seethefollowingfigureforanexample:

Inthisfigure,theredis ,whichclearlyshowsfirstderivativelikefeatures

ratherthanLorentzianfeatures.Thegreenistheresultofconvolutionwiththe

Dopplerbroadening.Oneseesthatthebroadeningforthesesharpfeaturescan

resultinmuchofthepositiveportionofthefeaturebeingeliminated.Inour

calculations,wefindthatthissortofsituationistheruleratherthantheexception.

Thusitisnotsufficienttojustevaluatetheamplitude atthe ,butratheritis

importanttohavemoreenergiesinordertonaildowntheenergydependenceof

theamplitudeinordertoperformtheDopplerbroadeningcalculation.These

Xn

M

l 2

An

l n

2E Xn 2

n2 /4 1

Anl M

l 2

E Xn

Ml

Ml 2

Ml

Xn

Formatted: Lowered by 4 pt

Formatted: Lowered by 4 pt

Page 18: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

calculationsareinprogress,buthavenotyetbeencompleted.

Anadditionalcomplicationisthatinadditiontoemissionfromanalmostbound

state,therewillbecollision‐inducedemissionatthatenergy.Theemissionfromthe

almostboundstatewillbetheproductofthealmostboundstatepopulationtimes

.Incontrast,thecollision‐inducedemissionwillbetheproductofthe

atomicpopulationsforchannel'timesthefactor .Seebelowforan

example.Theredlinesareformolecularemissionwhiletheothercolorsarefor

collision‐inducedemission.

Thusweonlyconsiderbound‐boundtransitionsinthisdocument.Inthefollowing

figures,weshowtheopticallythinabsorptionspectraofthediatomicscomputedat

T=10,000K,whichisroughlyappropriateforEarthentry.

WeseethatinallcasesexceptforN2,thedipoletransitionsdominatethespectrum.

Wealsoseesignificantfillinginofthespectrabetweenpeaksduetoweak

transitions,includingspin‐forbiddentransitions.

Ml 2

Ml S

2

Page 19: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,
Page 20: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,
Page 21: Bound free spectra for diatomic molecules€¦ · Bound‐free spectra for diatomic molecules David W. Schwenke NASA Ames Research Center M.S. T27B‐1, P.O. Box 1000 Moffett Field,

References:

1MOLPROisapackageofabinitioprogramswrittenbyH.‐J.Werner,P.J.Knowles,G.Knizia,F.R.Manby,M.Schütz,P.Celani,T.Korona,R.Lindh,A.Mitrushenkov,G.Rauhut,K.R.Shamasundar,T.B.Adler,R.D.Amos,A.Bernhardsson,A.Berning,D.L.Cooper,M.J.O.Deegan,A.J.Dobbyn,F.Eckert,E.Goll,C.Hampel,A.Hesselmann,G.Hetzer,T.Hrenar,G.Jansen,C.Köppl,Y.Liu,A.W.Lloyd,R.A.Mata,A.J.May,S.J.McNicholas,W.Meyer,M.E.Mura,A.Nicklaß,D.P.O'Neill,P.Palmieri,K.Pflüger,R.Pitzer,M.Reiher,T.Shiozaki,H.Stoll,A.J.Stone,R.Tarroni,T.Thorsteinsson,M.Wang,A.Wolf.2T.H.DunningJ.Chem.Phys.90,1007(1989)3M.Kouglas,N.M.Kroll,Ann.Phys.82,89(1974),B.A.Hess,Phys.Rev.A32,756(1985)4D.W.Schwenke,Mol.Phys.108(19‐20):2751(2010).5M.P.Deskevich,D.J.Nesbitt,andH.‐J.Werner,“Dynamicallyweightedmulticonfigurationself‐consistentfield:MultistatecalculationsforF+H2OHF+OHreactionpaths”,J.Chem.Phys.Vol.120,2004,pp.72816K.‐P.HuberandG.Herzberg,"MolecularSpectraandMolecularStructure:IV.ConstantsofDiatomicMolecules",VanNostrandReinhold,NewYork,1979.7D.Edmonds,“AngularMomentum”,PrincetonUniversityPress,Princeton,1962.