38
[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Chabot Mathematics §4.3b AbsVal §4.3b AbsVal InEqualities InEqualities

[email protected] MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

Embed Size (px)

Citation preview

Page 1: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt1

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

§4.3b AbsVal§4.3b AbsValInEqualitiesInEqualities

Page 2: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt2

Bruce Mayer, PE Chabot College Mathematics

Review §Review §

Any QUESTIONS About• §4.3a → Absolute Value

Any QUESTIONS About HomeWork• §4.3a → HW-13

4.3 MTH 55

Page 3: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt3

Bruce Mayer, PE Chabot College Mathematics

Solving AbsVal InEqual with <Solving AbsVal InEqual with <

Solving Inequalities in the Form |x| < a, where a > 0

1. Rewrite as a compound inequality involving “and”: x > −a AND x < a.

• Can also write as: −a < x < a

2. Solve the compound inequality. Similarly, to solve |x| a, we would

write x −a and x a (or −a x a)

Page 4: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt4

Bruce Mayer, PE Chabot College Mathematics

Example Example AbsVal & < AbsVal & <

Given InEquality: |x − 3| < 6• solve, graph the solution set, and write the

solution set in both set-builder and interval notation

SOLUTION• |x – 3| < 6 → x − 3 > −6 and x − 3 < 6

• thus −6 < x − 3 < 6 – ReWritten as Compound InEquality

• So −3 < x < 9 (add +3 to all sides)

Page 5: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt5

Bruce Mayer, PE Chabot College Mathematics

Example Example AbsVal & < AbsVal & <

SOLUTION: |x − 3| < 6• Thus the Solution → −3 < x < 9

• Solution in Graphical Form

10-9 -7 -5 -3 -1 1 3 5 7 9-10 -8 -4 0 4 8-10 -2 6-6 102( )

• Set-builder notation: {x| −3 < x < 9}

• Interval notation: (−3, 9)

Page 6: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt6

Bruce Mayer, PE Chabot College Mathematics

Example Example |2 |2xx −− 3| + 8 3| + 8 << 5 5

Given InEquality: |2x − 3| + 8 < 5• solve, graph the solution set, and write the

solution set in both set-builder and interval notation

SOLUTION Isolate the absolute value

• |2x − 3| + 8 < 5

• |2x − 3| < −3 ???

Page 7: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt7

Bruce Mayer, PE Chabot College Mathematics

Example Example |2 |2xx −− 3| + 8 3| + 8 << 5 5 The InEquality Simplified to:

|2x − 3| < −3 Since the absolute value cannot be less

than a negative number, this inequality has NO solution: Ø• No Graph

• Set-Builder Notation → {Ø}

• Interval notation: We do not write interval notation because there are no values in the solution set.

Page 8: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt8

Bruce Mayer, PE Chabot College Mathematics

Solving AbsVal InEqual with >Solving AbsVal InEqual with >

Solving Inequalities in the Form |x| > a, where a > 0

1. Rewrite as a compound inequality involving “or”: x < −a OR x > a.

2. Solve the compound inequality

Similarly, to solve |x| a, we would write x −a or x a

Page 9: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt9

Bruce Mayer, PE Chabot College Mathematics

Example Example AbsVal & > AbsVal & >

Given InEquality: |x + 7| > 5• solve, graph the solution set, and write the

solution set in both set-builder and interval notation

SOLUTION: convert to a compound inequality and

solve each• |x + 7| > 5 →

• x + 7 < −5 or x + 7 > 5

Page 10: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt10

Bruce Mayer, PE Chabot College Mathematics

Example Example AbsVal & > AbsVal & >

SOLUTION : |x + 7| > 5• x + 7 < −5 or x + 7 > 5

– The Addition Principle Produces Solutions

• x < −12 or x > −2

• TheGraph 5-14 -12 -10 -8 -6 -4 -2 0 2 4-15 -13 -9 -5 -1 3-15 -7 1-11 5-3

) (

• Set-builder notation: {x| x < −2 or x > −2}

• Interval notation: (−, −12) U (−2, ).

Page 11: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt11

Bruce Mayer, PE Chabot College Mathematics

Example Example |4 |4xx + 7| – 9 + 7| – 9 >> –12 –12

Given InEquality: |4x + 7| − 9 > −12• solve, graph the solution set, and write the

solution set in both set-builder and interval notation

SOLUTION Isolate the absolute value

• |4x + 7| – 9 > –12

• |4x + 7| > –3 ???

Page 12: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt12

Bruce Mayer, PE Chabot College Mathematics

Example Example |4 |4xx + 7| + 7| −− 9 9 >> – 12 – 12 The InEquality Simplified to:

|4x + 7| > −3 This inequality indicates that the absolute

value is greater than a negative number. Since the absolute value of every real number is either positive or 0, the solution set is All Real Numbers, • The Graph is then the entire Number Line

• Set-builder notation: {x|x is a real number}

• Interval notation: (−, )

Page 13: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt13

Bruce Mayer, PE Chabot College Mathematics

Summary: Solve |Summary: Solve |axax + + bb| | >> kk

Let k be a positive real number, and p and q be real numbers.

To solve |ax + b| > k, solve the following compound inequality

ax + b > k OR ax + b < −k. The solution set is of the form

(−, p)U(q, ), which consists of two Separate intervals.

p q

Page 14: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt14

Bruce Mayer, PE Chabot College Mathematics

Example Example |2 |2xx + 3| + 3| >> 5 5

By the Previous Slide this absolute value inequality is rewritten as

2x + 3 > 5 or 2x + 3 < −5

The expression 2x + 3 must represent a number that is more than 5 units from 0 on either side of the number line. • Use this analysis to solve the compound

inequality Above

Page 15: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt15

Bruce Mayer, PE Chabot College Mathematics

Example Example |2 |2xx + 3| > 5 + 3| > 5

Solve the Compound InEquality2x + 3 > 5 or 2x + 3 < −5

2x > 2 or 2x < −8

x > 1 or x < −4

The solution set is (–, –4)U(1, ). Notice that the graph consists of two intervals.

–5 –4 –3 –2 –1 0 1 2 3 4 5

Page 16: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt16

Bruce Mayer, PE Chabot College Mathematics

Summary: Solve |Summary: Solve |axax + + bb| | << kk

Let k be a positive real number, and p and q be real numbers.

To solve |ax + b| < k, solve the three-part “and” inequality

–k < ax + b < k The solution set is of the form (p, q),

a single interval.

p q

Page 17: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt17

Bruce Mayer, PE Chabot College Mathematics

Example Example |2 |2xx + 3| + 3| << 5 5

By the Previous Slide this absolute value inequality is rewritten as

−5 < 2x + 3 and 2x + 3 < 5 In 3-Part form

−5 < 2x + 3 < 5 Solving for x

−5 < 2x + 3 < 5

−8 < 2x < 2

−4 < x < 1

Page 18: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt18

Bruce Mayer, PE Chabot College Mathematics

Example Example |2 |2xx + 3| + 3| << 5 5

Thus the Solution: −4 < x < 1 We can Check that the solution set is

(−4, 1), so the graph consists of the single Interval:

–5 –4 –3 –2 –1 0 1 2 3 4 5

Page 19: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt19

Bruce Mayer, PE Chabot College Mathematics

Caution for AbsVal vs <>Caution for AbsVal vs <>

When solving absolute value inequalities of the types > & < remember the following:

1. The methods described apply when the constant is alone on one side of the equation or inequality and is positive.

2. Absolute value equations and absolute value inequalities of the form |ax + b| > k translate into “or” compound statements.

Page 20: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt20

Bruce Mayer, PE Chabot College Mathematics

Caution for AbsVal vs <>Caution for AbsVal vs <> When solving absolute value

inequalities of the types > & < remember the following:

3. Absolute value inequalities of the form |ax + b| < k translate into “and” compound statements, which may be written as three-part inequalities.

4. An “or” statement cannot be written in three parts. It would be incorrect to use −5 > 2x + 3 > 5 in the > Example, because this would imply that − 5 > 5, which is false

Page 21: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt21

Bruce Mayer, PE Chabot College Mathematics

Absolute Value Special CasesAbsolute Value Special Cases

1. The absolute value of an expression can never be negative: |a| ≥ 0 for ALL real numbers a.

2. The absolute value of an expression equals 0 ONLY when the expression is equal to 0.

Page 22: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt22

Bruce Mayer, PE Chabot College Mathematics

Example Example Special Cases Special Cases

Solve: |2n + 3| = −7

Solution: • See Case 1 in the preceding slide.

• Since the absolute value of an expression can never be negative, there are NO solutions for this equation

• The solution set is Ø.

Page 23: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt23

Bruce Mayer, PE Chabot College Mathematics

Example Example Special Cases Special Cases Solve: |6w − 1| = 0 Solution:

• See Case 2 in the preceding slide. • The absolute value of the expression

6w − 1 will equal 0 only if 6w − 1 = 0

• The solution of this equation is 1/6. Thus, the solution set of the original equation is {1/6}, with just one element. – Check by substitution.

Page 24: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt24

Bruce Mayer, PE Chabot College Mathematics

Example Example Special Cases Special Cases

Solve: |x| ≥ −2

Solution: • The absolute value of a number is

always greater than or equal to 0.

• Thus, |x| ≥ −2 is true for all real numbers.

• The solution set is then entire number line: (−, ).

Page 25: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt25

Bruce Mayer, PE Chabot College Mathematics

Example Example Special Cases Special Cases

Solve: |x + 5| − 1 < −8 Solution:

• Add 1 to each side to get the absolute value expression alone on one side.

|x + 5| < −7

• There is no number whose absolute value is less than −7, so this inequality has no solution.

• The solution set is Ø

Page 26: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt26

Bruce Mayer, PE Chabot College Mathematics

Example Example Special Cases Special Cases

Solve: |x − 9| + 2 ≤ 2

Solution: • Subtracting 2 from each side gives

|x − 9| ≤ 0

• The value of |x − 9| will never be less than 0. However, |x − 9| will equal 0 when x = 9.

• Therefore, the solution set is {9}.

Page 27: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt27

Bruce Mayer, PE Chabot College Mathematics

WhiteBoard WorkWhiteBoard Work

Problems From §4.3 Exercise Set• 88 (ppt), 94 (ppt), 98 (ppt), 56, 62, 78

Albany, NYYearly TemperatureData

Page 28: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt28

Bruce Mayer, PE Chabot College Mathematics

P4.3-88 P4.3-88 |4 |4 − − xx| < 5| < 5

Solve |4 − x| < 5 by x-y Graph

GRAPH SOLUTION: On graph find the region where the

y = f(x)= |4 − x| function lies BELOW (i.e., is Less Than) the y = f(x) = 5 Horizontal Line

Page 29: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt29

Bruce Mayer, PE Chabot College Mathematics

P4.3-88 P4.3-88 |4 |4 − − xx| < 5| < 5

( )

Ans in SET & INTERVAL Form• {x| −1 < x < 9}

• (−1, 9)

Page 30: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt30

Bruce Mayer, PE Chabot College Mathematics

P4.3-88 P4.3-88 |4 |4 − − xx| < 5| < 5

Solve |4 − x| < 5• 4 −x < 5 and 4−x > −5

• −x < 1 and −x > −9– Multiply Both expressions by −1, REMBERING to

REVERSE the direction of the InEqual signs

• x > − 1 and x < 9 OR

• −1 < x and x < 9

• So the Compound Soln: (−1 < x < 9)

• In Set notation: {x| −1 < x < 9}

• Interval notation: (−1, 9)

Page 31: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt31

Bruce Mayer, PE Chabot College Mathematics

P4.3-94 P4.3-94 Albany, NY Temps Albany, NY Temps

InEquality for Albany, NY Monthly Avg Temperature, T, in °F

|T − 50 °F| ≤ 22 °F Solve and Interpret SOLUTION

• |T−50| ≤ 22 → −22 ≤ T−50 and T−50 ≤ 22

• Or in 3-part form −22 ≤ T−50 ≤ 22

• Add 50 to each Part (addition principle)

Page 32: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt32

Bruce Mayer, PE Chabot College Mathematics

P4.3-94 P4.3-94 Albany, NY Temps Albany, NY Temps

Albany, NY Temps → |T − 50 °F| ≤ 22 °F SOLUTION

• (50−22) ≤ (T−50+50) ≤ (22+50)

• Or ANS → 28 ≤ T ≤ 72

INTERPRETATION:• The monthly avg temperature in Albany, NY

ranges from 28 °F in Winter to 72 °F in Summer

Page 33: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt33

Bruce Mayer, PE Chabot College Mathematics

P4.3-98 P4.3-98 Machining Machining ToleranceTolerance Length, x, of a Machine Part in cm

|x − 9.4cm| ≤ 0.01cm Solve and Interpret SOLUTION

• |x−9.4| ≤ 0.01 →

−0.01 ≤ x−9.4 and x−9.4 ≤ 0.01

• Or in 3-part form −0.01 ≤ x−9.4 ≤ 0.01

• Add 9.4 to each Part (addition principle)

Page 34: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt34

Bruce Mayer, PE Chabot College Mathematics

P4.3-92 P4.3-92 Machining Machining ToleranceTolerance Machine Part Tolerance →

|x − 9.4cm| ≤ 0.01cm SOLUTION

• (−0.01+9.4) ≤ (x−9.4+9.4) ≤ (0.01+9.4)

• Or ANS → 9.39 ≤ x ≤ 9.41

INTERPRETATION:• The expected dimensions of the finished

machine part are between 93.9mm and 94.1mm (i.e. the dim is 94mm ±0.1mm)

Page 35: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt35

Bruce Mayer, PE Chabot College Mathematics

All Done for TodayAll Done for Today

JR EwingFrom

“Dallas”

Page 36: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt36

Bruce Mayer, PE Chabot College Mathematics

Bruce Mayer, PELicensed Electrical & Mechanical Engineer

[email protected]

Chabot Mathematics

AppendiAppendixx

srsrsr 22

Page 37: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt37

Bruce Mayer, PE Chabot College Mathematics

Graph Graph yy = | = |xx||

Make T-tablex y = |x |

-6 6-5 5-4 4-3 3-2 2-1 10 01 12 23 34 45 56 6

x

y

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

file =XY_Plot_0211.xls

Page 38: BMayer@ChabotCollege.edu MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical

[email protected] • MTH55_Lec-17_sec_4-3a_Absolute_Value.ppt38

Bruce Mayer, PE Chabot College Mathematics

Weather UnderGnd – Albany, NYWeather UnderGnd – Albany, NY