51
BLDG 476 Building Thermal Analysis Concordia University Project # 1 Modeling Indoor Thermal Conditions in Urban Heat Island Areas Submitted to: Professor Haghighat September 24 2013 Submitted by: Name: Rupali Patel ID: 9578587

BLDG 476 - HEAT TRANSFER

Embed Size (px)

Citation preview

Page 1: BLDG 476 - HEAT TRANSFER

 BLDG  476-­‐  Building  Thermal  Analysis  

Concordia  University  Project  #  1  

       

Modeling  Indoor  Thermal  Conditions  in  Urban  Heat  Island  Areas  

           

Submitted  to:    

Professor  Haghighat    September  24  2013  

 Submitted  by:  

 Name:  Rupali  Patel  

ID:  9578587              

 

Page 2: BLDG 476 - HEAT TRANSFER

  2  

 1.  Introduction    In  terms  of  urbanization  and  development,  Montreal  is  one  of  Canada’s  oldest  cities  with  an  everyday  growing  population.  With  many  residential  buildings  and  houses  built  in  the  1950s,  an  issue  under  concern  is  rising:  Retrofitting  the  buildings  to  comply  with  today’s  building  standards  and  codes  as  economically  and  ecologically  as  possible.      Another  issue  is  also  underhand  and  it  is  climate  change.  Greener  areas  in  the  cities  are  becoming  less  common  and  housings,  businesses  and  highways  are  popping  up  in  underdeveloped  towns.  The  rising  temperatures  during  the  summer  have  led  to  the  Heat  Alert  and  Response  System  in  buildings  due  to  urban  heat  islands.      The  Health  Office  of  Quebec  initiated  this  system  because  many  older  buildings  do  not  have  an  air  conditioning  or  mechanical  ventilation  systems  and  its  residents  are  prone  to  many  health  issues.  The  system  estimates  indoor  thermal  characteristics  of  a  building  with  respect  to  its  building  materials,  the  temperatures,  outdoor  issues  etc.      1.1  Scope    In  this  project,  I  will  act  as  the  HOQ  and  using  Matlab,  determine  the  temperature  distributions  through  each  wall  and  the  indoor  temperatures  of  a  3  story  residential  building  in  Montreal.      The  intention  and  thought  process  behind  modeling  this  building  is  designing  it  for  the  worst  possible  case.  Meaning  using  low  efficient  building  materials,  low  performing  windows,  temperatures  recorded  during  heat  waves  and  assuming  no  air  conditioning  or  ventilation  system.      1.2  Objective    To  predict  the  hourly  room  air  temperature  in  consideration  with  various  real  life  factors.  (Plotted  on  graph)    To  predict  hourly  temperature  distributions  in  the  north,  east,  west  and  south  walls  and  in  the  roof  all  while  neglecting  the  thermal  mass  of  the  building  itself.    (Plotted  on  graph)    To  take  into  consideration  estimated  heat  gains  and  losses  from:  

-­‐ Solar  radiation  -­‐ Temperature  difference  

Page 3: BLDG 476 - HEAT TRANSFER

  3  

-­‐ Heat  generated  by  occupants  -­‐ Air  exchange  

 To  take  into  consideration  calculated  heat  gains  and  losses  from:  

-­‐ Solar  radiation  intensities  on  different  surfaces  -­‐ Ambient  air  temperatures  -­‐ Heat  gains  from  the  source  in  the  room  -­‐ Air  exchanges  

                                                       

Page 4: BLDG 476 - HEAT TRANSFER

  4  

1.  Methodology    1.1  Building  Considerations    1)  Building  Location:    The  building  must  be  of  a  high  construction  density  built  in  Montreal.  Therefore  we  will  use  building  materials  such  as  high-­‐density  insulation,  brick  or  concrete  exterior  and  standard  gypsum  board.  We  will  consideration  the  month  of  July  since  it  has  the  highest  recorded  temperatures.  We  must  omit  all  wind  sources  but  take  into  consideration  heat  emissions  from  surrounding  buildings  which.  This  type  of  heat  will  come  from  convection  from  the  HVAC  systems  of  the  surrounding  buildings.      2)  Building  System:    For  this  project,  we  will  consider  the  building  with  no  air  conditioning  or  mechanical  ventilation  whatsoever.  This  will  force  us  to  find  an  optimal  solution  in  the  most  severe  conditions  and  we  can  later  add  HVAC  as  improvements  if  needed.      3)  Building  Envelope:    For  the  purpose  of  this  project,  inefficient  and  low  performing  materials  will  be  used  to  put  emphasis  on  the  worst  case  scenario  and  due  to  the  fact  that  the  building  was  built  in  the  1950s.  The  building  will  have  low  exterior  material  surface  albedo  (brick  /  stone  cladding),  low  thermal  mass  (wood  /  steel  framing,  not  CMUs),  poor  natural  ventilation  (not  a  lot  of  windows)  ,  low  thermal  insulation  (  low  density  fiberglass  insulation,  type  of  window)  and  poor  shading  (flat  roof,  no  louvers,  no  blinds  on  windows).      4)  Room  Location:  The  room  to  be  studied  will  be  located  on  the  top  floor  and  is  therefore  the  most  critical  due  to  the  exposure  of  environment  from  the  roof  and  windows  and  as  with  the  simple  notion  that  heat  rises.        5)  Space  Use:  For  the  project  we  will  consider  cooking  as  the  main  human  activity  and  energy  generated  in  the  room  since  it  creates  the  most  heat.        1.2  Building  Data      1)  Room  Dimensions:  Width:  10  meters  Depth:  8  meters  Height:  2.2  meters  Third  floor  of  a  detached  triplex  building  with  a  flat  roof.    

Page 5: BLDG 476 - HEAT TRANSFER

  5  

2)  Fenestration:  South  Wall:  1  x  2m  x  1.5m  double  glazed  single  pane  window  (sliding).    East  &  West  walls:  1  x  1.5m  x  1m  double  glazed  single  pane  window  (sliding).  Factors  to  consider:    

-­‐ Window  frame  (conductivity)  -­‐ Thermal  transmittance  -­‐ Solar  heat  gain  coefficient  -­‐ Glass  type  –  double  glazed  -­‐ Glass:  clear  /  tempered  -­‐ Insulating  glass  -­‐ Filling  between  panes  :  air  /  argon  -­‐ Low  E-­‐coating  -­‐ Weather-­‐stripping  around  frames  

 3)  Outdoor  conditions:  -­‐  Ongoing  heat  wave  -­‐  Maximum  outdoor  temperature:  34  degrees  Celsius  at  3  pm  -­‐  Minimum  outdoor  temperature:  23  degrees  Celsius  at  3  am  -­‐  Equivalent  sky  temperature  =  5  degrees  Celsius  below  ambient  air  temperature  This  will  be  used  as  the  temperature  for  the  roof  design.      4)  Solar  Radiation:  Use  month  of  July  2012.  See  Table  1  in  Appendix.      5)  Air  exchange  rate:  0.5  when  windows  and  doors  are  closed.  Formula:  a)  !"# =   ! !"#$%&  !"  !"#!$%&'%!("

!  (!"#$%&  !"  !"#!$%&'%!(")  

 b)  !!"# = !"#  !  !"#$!"  !  !!"#    6)  Indoor  activity:  Cooking  will  occur  for  2  hours  per  day,  from  7-­‐8  am  and  then  6-­‐7  pm.    1  occupant  will  be  home  all  day  while  the  other  will  be  at  work  from  8  am  to  5p                  

Page 6: BLDG 476 - HEAT TRANSFER

  6  

2.  Modeling  Procedure    1.  Plan  of  the  building        

                         

Page 7: BLDG 476 - HEAT TRANSFER

  7  

2.  Select  Design    1)  Walls  (exterior  to  interior):  -­‐  Brick  cladding  -­‐  152  mm  Fiberglass  insulation  (batt  insulation)  -­‐  12  mm  Interior  Gypsum  Board    For  simplicity,  we  will  neglect  the  air  and  vapor  barriers  and  furring  strips  in  the  compositions.  Also,  we  will  neglect  the  wood  /  metal  framing.  The  insulation  goes  in  between  the  framing.      2)  Floor  (top  to  bottom):  -­‐  Finished  floor  :  Hardwood  -­‐  152  mm  Fiberglass  insulation  -­‐  12  mm  Interior  gypsum  board    For  simplicity,  we  will  neglect  the  framing,  furring  strips,  barriers  and  components  needed  for  the  finished  floor.  Also,  we  will  neglect  all  acoustic  components.  To  simplify  the  equations,  we  will  consider  the  entire  floor  composition  as  one  component  and  the  conduction  through  the  entire  composition  as  one.      3)  Roof  (top  to  bottom):  -­‐  Standard  built  up  roofing  membrane  -­‐  300  mm  fiberglass  insulation  -­‐  12  mm  interior  gypsum  board    For  simplicity,  we  will  neglect  the  air  and  vapor  barriers  and  furring  strips  in  the  compositions.  Also,  we  will  neglect  the  wood  /  metal  framing.  The  insulation  goes  in  between  the  framing.  Also,  we  will  assume  the  built  up  roof  membrane  to  simply  be  felt                                    

Page 8: BLDG 476 - HEAT TRANSFER

  8  

3.  Draw  electrical    Walls    

                                   

Page 9: BLDG 476 - HEAT TRANSFER

  9  

Roof    

     Floor    

     

Page 10: BLDG 476 - HEAT TRANSFER

  10  

4.  Determine  Equations    Walls    Point  1:  Energy  law  with  solar  radiation,  conduction  and  convection    

!"  ×  !  ×   !" − !1 + !"×! + (!"!" × !2− !1 = 0  

 Point  2:  Energy  law  with  conduction    

!×!"!" × !1− !2 + !×

!"!" × !3− !2 = 0  

   Point  3:  Energy  law  with  conduction    

!×!"!" × !2− !3 + !×

!"!" × !4− !3 = 0  

   Point  4:  Energy  law  with  conduction  and  convection    

!×!"!" × !3− !4 + (!"×!× !" − !4 ) = 0  

   Roof    Point  1:  Energy  law  with  solar  radiation,  conduction  and  convection    

!"  ×  !  ×   !" − !1 + !"×! + (!"#$!"#$ × !2− !1 = 0  

 Point  2:  Energy  law  with  conduction    

!×!"#$!"#$ × !1− !2 + !×

!"!" × !3− !2 = 0  

   

Page 11: BLDG 476 - HEAT TRANSFER

  11  

Point  3:  Energy  law  with  conduction    

!×!"!" × !2− !3 + !×

!"!" × !4− !3 = 0  

   Point  4:  Energy  law  with  conduction  and  convection    

!×!"!" × !3− !4 + (!"×!× !" − !4 ) = 0  

   Floor    Energy  law  with  conduction  through  floor  composition  (assumed  to  be  constant),  convection  and  solar  radiation  from  the  windows.        

(Q×Awindow×Trans)!

!!!

+ !"×!"#$$%× !" − !"#$$%

+!"#!" × !"#$%&"'(#$ − !"#$$% = 0  

   Room  Temperature    Energy  law  with  convection,  air  exchange  rate  and  input  energies  from  occupants  and  cooking.      

Hi×A× T4− Ti + !"#$%&' + !"##$%&' +!!!! !"#$×!"× !" − !" = 0    

       See  Matlab  program  (Appendix  2)for  a  listing  and  description  of  thermal  conduction  values,  thicknesses,  areas,  solar  radiation  values  etc.                

Page 12: BLDG 476 - HEAT TRANSFER

  12  

5.  Create  Matrix    To  solve  for  temperatures,  we  need  to  create  a  matrix.  The  matrix  will  be  composed  of  a  coefficient  matrix,  an  unknown  variable  matrix  and  the  solution  matrix.    The  coefficient  matrix  will  be  a  22x22  matrix  and  will  be  composed  of  the  constants  of  thermal  conduction,  areas,  widths  etc.  that  are  multiplied  with  the  unknowns  (T1,  T2,  T3…).  The  unknown  variable  matrix  will  be  a  1x22  matrix  composed  of  the  temperature  variables  at  each  point  in  each  wall,  the  room  temperatures  ,  the  roof  temperatures  and  floor  temperatures.  Finally,  the  solution  matrix  will  be  composed  of  the  constants  multiplied  by  the  outdoor  temperatures  that  are  known  for  each  hour.  See  Table  5  in  the  Appendix  1.                                                            

Page 13: BLDG 476 - HEAT TRANSFER

  13  

3.  Results    3.1  Temperature  Distribution  –  North  Wall    

     3.2  Temperature  Distribution  –  South  Wall    

     

0  5  10  15  20  25  30  35  40  45  

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  

Temperature  (F)  

Time  (Hour)  

North  Wall  

Point  1  

Point  2  

Point  3  

Point  4  

0  

20  

40  

60  

80  

100  

120  

1   3   5   7   9   11   13   15   17   19   21   23  

Temperature  (F)  

Time  (Hour)  

South  Wall  

Point  1  

Point  2  

Point  3  

Point  4  

Page 14: BLDG 476 - HEAT TRANSFER

  14  

3.3  Temperature  Distribution  –  East  Wall    

   3.4  Temperature  Distribution  –  West  Wall    

     

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  

Temperature  (F)  

Time  (Hour)  

East  Wall  

Point  1  

Point  2  

Point  3  

Point  4  

0  

20  

40  

60  

80  

100  

120  

140  

160  

1   3   5   7   9   11   13   15   17   19   21   23  

Temperature  (F)  

Time  (Hour)  

West  Wall  

Point  1  

Point  2  

Point  3  

Point  4  

Page 15: BLDG 476 - HEAT TRANSFER

  15  

3.5  Temperature  Distribution  –  Roof    

                                           

0  10  20  30  40  50  60  70  80  90  100  

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  

Temperature  (F)  

Time  (Hour)  

Roof  Temperature  Distributions  

Point  1  

Point  2  

Point  3  

Point  4  

Page 16: BLDG 476 - HEAT TRANSFER

  16  

3.6  Temperature  Distribution  –  Floor    

   3.7  Temperature  Distribution  -­‐  Room    

   

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  

Temperature  (F)  

Time  (Hour)  

Floor  Temperature  Distribution  

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  

Temperature  (F)  

Room  Temperature  Distribution  

Page 17: BLDG 476 - HEAT TRANSFER

  17  

4.  Discussion    North  Wall    Analyze:    From  the  curve,  we  can  see  that  the  4  points  in  the  wall  show  more  or  less  the  same  trend.  The  temperature  distributions  for  the  exterior  face  brick  and  interior  of  brick  are  almost  identical  to  each  other.  There  are  temperature  spikes  mainly  in  Point  2  and  Point  4.  These  spike  occurs  within  the  two  hours  of  cooking.  From  the  tables,  we  can  see  that  the  lowest  temperature  is  19  degrees  Celsius  at  3  am  and  the  highest  occurs  at  38  at  5  pm  in  terms  of  the  interior  temperature  of  surface  of  walls.    The  temperatures  at  point  4  rise  substantially  during  the  hours  of  occupant  activity.  The  North  Wall  experiences  peak  temperatures  at  the  surfaces  at  6  am  and  at  6  pm.    Explain:    The  trend  lines  of  a  regular  temperature  distribution  curve  should  follow  each  other  more  or  less  depending  on  factors  such  as  seasons,  activities,  location  etc.  Also  keep  in  note  that  there  is  no  mechanical  ventilation/  air  conditioning  system  to  regulate  temperature  fluctuations.  During  the  summer,  point  1  should  experience  the  highest  temperature  due  to  solar  radiation,  convection  and  conduction.  From  the  given  information,  the  highest  temperature  should  occur  at  3  pm  and  the  lowest  at  3  pm.  According  to  Table  1  in  the  Appendix,  the  peak  solar  radiation  value  should  be  at  12  pm  in  the  North  Wall.      Justify:    The  lowest  temperature  in  the  North  Wall  does  occur  at  3  am  however  the  temperature  spike  at  5  pm  instead  of  3  pm  may  be  due  to  occupant  activity  (2  people)  increasing.    The  2  peaks  at  6  am  and  6  pm  for  solar  radiation  on  the  exterior  face  brick  have  an  identical  solar  radiation  value  of  57.  The  reasoning  of  these  peaks  is  unknown,  however  they  probably  are  related  to  the  sunset  and  sunrise  times.      South  Wall    Analyze:    From  the  curve,  we  notice  that  the  shape  of  the  trends  are  very  similar.  We  also  notice  that  the  point  4  curve  temperature  distributions  are  much  lower  and  the  slope  is  almost  flat.    At  point  4  (inside  surface),  the  lowest  temperature  occurs  at  3  am  and  it  is  21  degrees  Celsius  and  the  highest  temperature  occurs  at  5  pm  and  it  is  41  degrees  Celsius.  On  the  exterior  façade  at  point  1,  the  lowest  temperature  occurs  at  3  am  and  it  is  49  degrees  Celsius  and  the  highest  one  occurs  at  12  pm  and  is  108  

Page 18: BLDG 476 - HEAT TRANSFER

  18  

degrees  Celsius.  As  noticed  earlier  like  the  north  wall,  the  curve  rises  in  temperature  during  occupancy  increase  and  peaks  at  cooking  times  in  point  2.      Explain    The  temperatures  at  point  3  and  4  should  be  very  similar  because  the  thickness  of  the  gypsum  board  is  small  in  comparison  and  because  the  temperatures  are  mainly  affected  by  minor  changes  such  as  indoor  convection.  The  south  wall  should  experience  the  higher  temperature  distribution  than  the  other  walls  due  to  the  higher  solar  radiation  values  at  each  hour  during  the  summer.      Justify    The  main  issue  in  the  south  wall  comes  from  the  minimum  and  maximum  temperatures  that  hit  the  brick  façade.  The  minimum  temperature  of  49  degrees  and  the  max  temperature  of  108  seems  highly  unusual  even  though  brick  has  a  high  thermal  conductivity  value.  This  may  be  due  to  the  fact  that  considerations  such  as  shadings,  overhangs,  surrounding  buildings,  trees  etc.  were  not  taken.  Also  it  may  be  due  to  erroneous  temperature  values.    The  inside  temperatures  are  viable  because  the  south  wall  contains  a  large  window  which  increases  solar  heat  gains.      East  Wall    Analyze:    From  a  first  glance,  the  trend  of  the  curves  on  the  east  wall  does  not  match  at  all  and  contain  large  gaps  between.  Another  major  error  noticed  is  that  point  2  is  below  point  4  and  its  values  are  extremely  low.  There  is  a  large  temperature  peak  on  the  exterior  wall  at  8  am  with  a  temperature  of  80  degrees  Celsius.  The  interior  temperature  curve  (T4)  is  fairly  similar  to  the  other  walls  and  the  temperatures  are  fairly  average.    Explain:    The  east  wall  experiences  spikes  in  solar  radiation  especially  between  6  am  to  11  pm.  A  proper  reasoning  to  this  is  may  be  due  to  orientations.  According  to  the  Canada  Mortgage  and  Housing  Corporation’s  article  on  Solar  Energy  for  Buildings:  “Buildings  with  east  and  west  facing  orientations  have  greater  potential  for  overheating  in  the  non-­‐heating  season.”    Justification:    Since  the  other  walls  do  not  have  the  issue  of  point  2  being  lower  than  point  4,  the  error  must  either  come  from  solar  radiation  values  or  computation/input  errors    in  Matlab.      

Page 19: BLDG 476 - HEAT TRANSFER

  19  

West  Wall    Analyze:    From  the  graph,  the  trend  of  the  curves  seems  to  follow  fairly  through.  Point  3  and  point  4  are  almost  identical.  There  is  a  large  gap  that  varies  from  the  exterior  surfaces  to  the  interior  ones.  Also  at  first  glance,  we  can  see  that  the  west  wall  is  almost  symmetrical  to  the  east  wall.  The  west  wall  records  the  highest  temperature  on  the  exterior  surface  as  opposed  to  the  other  walls.  The  highest  recorded  temperature  is  at  4  pm  and  it  reads  140  degrees  Celsius.      Explain  &  Justify:    The  gap  between  the  exterior  surfaces  and  the  interior  surfaces  may  be  due  to  solar  radiation  values.  Only  the  north  wall  does  not  have  this  issue  because  of  its  lower  solar  radiation  values  during  the  summer  time.  The  reason  for  the  east  and  west  curves  being  symmetric  are  due  to  the  solar  radiation  values.  The  readings  on  the  east  wall  are  an  inverse  of  the  west  wall.  Also  we  can  use  the  simple  notion  that  the  sun  rises  north  or  south  of  due  east  and  sets  north  or  south  of  due  west.  The  reason  why  the  west  wall  reaches  the  highest  temperature  is  due  to  a  combination  of  solar  heat  gains  and  outdoor  temperature  readings.  The  west  and  east  wall  have  the  highest  solar  radiation  values  (up  to  679W/m^2).  When  this  occurs  at  4  pm,  the  temperature  is  already  around  33  degrees  which  is  almost  34  (the  maximum  outdoor  temperature).    Floor  &  Room    Analyze:    The  floor  and  indoor  temperature  distributions  are  very  similar  to  each  other.  The  highest  temperatures  occur  at  5  pm  and  are  around  40  degrees  Celsius.  The  lowest  temperatures  occur  at  3  am  and  are  around  19  degrees  Celsius.  The  two  peaks  occur  when  both  the  occupants  are  at  home  and  at  high  solar  radiation  values.  The  cooking  hours  have  a  low  impact  on  these  temperatures.  Both  graphs  resemble  the  T4  curves  of  each  wall,  since  it  is  the  indoor  surfaces.    Explain  &  Justify:    The  reason  for  both  graphs  being  similar  to  each  other  have  to  do  with  the  fact  these  formulas  indicates  similar  convection  values.  For  example:    

Hi ∗ A ∗ (T4− Ti) ≅ (Hi ∗ A ∗ Ti− Tf )    Where  T4  is  almost  equal  to  Tfloor  (for  indoor  surfaces)  Also  take  note  that  the  areas  are  identical  

Page 20: BLDG 476 - HEAT TRANSFER

  20  

We  also  note  that  the  0.5  ACH  value  does  not  have  a  big  impact  on  thermal  heat  gains  in  the  summer.  It  might  have  a  larger  impact  in  the  winter  with  heat  losses.  With  peak  temperatures  reaching  34  at  3  pm,  the  curve  should  reach  a  peak  at  3  pm  instead  of  5  pm.  However,  when  taking  into  consideration  solar  heat  gain  from  windows,  increasing  occupant  activity,  high  outdoor  temperature  and  cooking,  it  is  reasonable.      Roof    The  roof  graph  resembles  the  temperature  distributions  for  the  walls.  The  curves  are  more  dependent  on  the  solar  radiation  values  rather  than  interior  activities  and  materials.  We  can  see  that  the  curve  for  the  roof  surface  is  mainly  active  during  the  hours  of  sunlight.                                                    

Page 21: BLDG 476 - HEAT TRANSFER

  21  

5.  Conclusion    5.1  Real  Life  Scenario    After  conducting  this  experiment,  I  have  found  that  the  occupants  are  not  thermally  comfortable  especially  from  2pm  to  5  pm.  The  maximum  indoor  temperature  reaches  38  degrees  Celsius  which  is  about  4  degrees  higher  than  the  maximum  outdoor  temperature.  This  is  taking  into  consideration  only  cooking  activities  and  not  equipment  such  as  refrigerators,  televisions,  computers  etc.  that  might  be  on  for  a  long  time.  A  ventilation  system  is  required  to  exhaust  the  indoor  air  out  at  least  even  if  there  isn’t  an  air  conditioning  system.    5.2  Room  for  Improvement    Suggest  techniques  to  improve  the  thermal  comfort  without  the  use  of  a  mechanical  ventilation  system.      Various  techniques  can  be  used  to  improve  the  thermal  comfort  without  using  a  mechanical  ventilation  system  or  an  air  conditioning  system.      To  minimize  heat  gains  from  the  windows,  we  can  begin  by  adding  shading  systems  (roller  shades  and  venetians)  as  opposed  to  curtains  that  can  be  heavier.  This  will  cut  the  radiation  coming  from  the  sun  especially  through  the  south  wall.  Energy  efficient  windows  can  also  be  added.  For  the  sake  of  the  project,  we  used  double  glazed  windows  without  an  airspace.  There  are  now  double  glazed  windows  available  with  low  emissivity  coating.  This  coating  is  a  thin  metal  film  applied  to  the  glass  that  blocks  enough  solar  radiation  in  the  summer  but  also  allows  enough  heat  gains  in  the  winter.  Triple  glazed  windows  with  an  airspace  and  insulated  spacers  are  also  available  however  they  are  more  of  an  advantage  in  the  winter  time  as  they  provide  a  higher  R-­‐value.      Modifying  building  materials  is  also  another  way  to  improve  thermal  comfort.  Materials  with  a  lower  thermal  conductivity  will  provide  lower  heat  gains  through  the  walls.  Facades  that  are  made  of  stucco  or  of  concrete  finishing  systems  are  a  good  choice  because  they  have  a  higher  thermal  mass;  meaning  that  they  are  cooled  at  night  and  they  release  this  coolness  into  the  building  during  the  day.  Also  note  that  a  proper  air  and  vapor  barrier  are  crucial  to  an  overall  proper  envelope  system.      Another  solution  would  be  proper  roof  design.  An  overhang  would  help  in  shading  the  building  to  decrease  solar  radiation.  Heat  islands  from  roofs  are  being  eliminated  today  with  lighter  surfaces,  which  as  a  result  induce  a  higher  surface  reflectance.  Green  roofs  are  also  a  technique  used  to  reduce  heat  islands.    

Page 22: BLDG 476 - HEAT TRANSFER

  22  

6.  References    1.  http://www.greenbuildingadvisor.com/blogs/dept/musings/all-­‐about-­‐thermal-­‐mass    2.  http://energy.gov/energysaver/articles/insulation-­‐materials    3.http://www.awwd.ca/images/pdfs/Selecting_Energy_Efficient_Windows%5B1%5D.pdf    4.  http://www.europeanconcrete.eu/publications/energy-­‐efficiency/121-­‐concrete-­‐for-­‐energy-­‐efficient-­‐buildings-­‐the-­‐benefits-­‐of-­‐thermal-­‐mass    5.http://www.cmhcschl.gc.ca/en/inpr/bude/himu/coedar/upload/OAA_En_aug10.pdf    6.  http://solar-­‐center.stanford.edu/AO/sunrise.html    7.http://highered.mcgrawhill.com/sites/dl/free/0073398128/835451/Chapter16.pdf                                        

Page 23: BLDG 476 - HEAT TRANSFER

  23  

7.  Appendix  1    Table  1-­‐Solar  Radiation  Values  in  (W/m2)          

Time  (Hour)   North     East   South   West   Roof  

5   32   71   5   5   9  6   57   472   38   38   119  7   83   651   68   63   286  8   87   679   107   82   454  9   97   606   209   97   595  10   107   457   318   107   704  11   114   252   394   114   772  12   116   126   420   126   795  13   114   114   394   252   772  14   107   107   318   457   704  15   97   97   209   606   595  16   87   82   107   679   454  17   83   63   68   651   286  18   57   38   38   472   119  19   32   5   5   71   9  

 Table  2-­‐  Surface  Conductances  for  Air    

   

Page 24: BLDG 476 - HEAT TRANSFER

  24  

Table  3  –  Thermal  Properties  of  Materials    

     

Page 25: BLDG 476 - HEAT TRANSFER

  25  

Table  4  –  Outside  Hourly  Temperatures    

Time   Temperature  0   23.41866257  1   23.73686028  2   24.13655663  3   24.6109127  4   25.15181214  5   25.75  6   26.39524112  7   27.07649525  8   27.78210594  9   28.5  10   29.21789406  11   29.92350475  12   30.60475888  13   31.25  14   31.84818786  15   32.3890873  16   32.86344337  17   33.26313972  18   33.58133743  19   33.81259204  20   33.95294674  21   34  22   33.95294674  23   33.81259204  24   33.58133743  

                                 

Page 26: BLDG 476 - HEAT TRANSFER

  26  

Table  5-­‐Matrix                                                                                            

Page 27: BLDG 476 - HEAT TRANSFER

T1N T2N T3N T4N T1S T2S T3S T4S T1E T2E T3E T4E T1W T2W-­‐Anw*(-­‐Kb/Xb+ho) Anw(Kb/Xb) 0 0 0 0 0 0 0 0 0 0 0 0

Anw*Kb/Xb -­‐Anw*(Kb/Xb+Ki/Xi) Anw*Ki/Xi 0 0 0 0 0 0 0 0 0 0 00 Anw*Ki/Xi -­‐Anw*(Ki/Xi+Kg/Xg) Anw*Kg/Xg 0 0 0 0 0 0 0 0 0 00 0 (Anw*Kg/Xg) -­‐Anw(Kg/Xg+Hi) 0 0 0 0 0 0 0 0 0 00 0 0 0 -­‐Asw*(-­‐Kb/Xb+ho) Asw(Kb/Xb) 0 0 0 0 0 0 0 00 0 0 0 Asw*Kb/Xb -­‐Asw*(Kb/Xb+Ki/Xi) Asw*Ki/Xi 0 0 0 0 0 0 00 0 0 0 0 Asw*Ki/Xi -­‐Asw*(Ki/Xi+Kg/Xg) Asw*Kg/Xg 0 0 0 0 0 00 0 0 0 0 0 (Asw*Kg/Xg) -­‐Asw(Kg/Xg+Hi) 0 0 0 0 0 00 0 0 0 0 0 0 0 -­‐Aew*(-­‐Kb/Xb+ho) Aew(Kb/Xb) 0 0 0 00 0 0 0 0 0 0 0 Aew*Kb/Xb -­‐Aew*(Kb/Xb+Ki/Xi) Aew*Ki/Xi 0 0 00 0 0 0 0 0 0 0 0 Aew*Ki/Xi -­‐Aew*(Ki/Xi+Kg/Xg) Aew*Kg/Xg 0 00 0 0 0 0 0 0 0 0 0 (Aew*Kg/Xg) -­‐Aew(Kg/Xg+Hi) 0 00 0 0 0 0 0 0 0 0 0 0 0 -­‐Aww*(-­‐Kb/Xb+ho) Aww(Kb/Xb)0 0 0 0 0 0 0 0 0 0 0 0 Aww*Kb/Xb -­‐Aww*(Kb/Xb+Ki/Xi)0 0 0 0 0 0 0 0 0 0 0 0 0 Aww*Ki/Xi0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 Hi*Anw 0 0 0 Hi*Asw 0 0 0 Hi*Aew 0 0

Page 28: BLDG 476 - HEAT TRANSFER

T3W T4W TIROOF T2ROOF T3ROOF T4ROOF TFLOOR Ti TEMP-­‐VALUES SOLUTIONS0 0 0 0 0 0 0 0 T1  (north)  -­‐(Ho*A*To+Qsn*A)0 0 0 0 0 0 0 0 T2  (north) 00 0 0 0 0 0 0 0 T3  (north) 00 0 0 0 0 0 0 Hi*Anw T4  (north) 00 0 0 0 0 0 0 0 T1  (south)  -­‐(Ho*A*To+Qsn*A)0 0 0 0 0 0 0 0 T2  (south) 00 0 0 0 0 0 0 0 T3  (south) 00 0 0 0 0 0 0 Hi*Asw T4  (south) 00 0 0 0 0 0 0 0 T1  (east)  -­‐(Ho*A*To+Qsn*A)0 0 0 0 0 0 0 0 T2  (east) 00 0 0 0 0 0 0 0 T3  (east) 00 0 0 0 0 0 0 Hi*Aew T4  (east) 00 0 0 0 0 0 0 0 T1  (west)  -­‐(Ho*A*To+Qsn*A)

Aww*Ki/Xi 0 0 0 0 0 0 0 T2  (west) 0-­‐Aww*(Ki/Xi+Kg/Xg) Aww*Kg/Xg 0 0 0 0 0 0 T3  (west) 0

(Aww*Kg/Xg) -­‐Aww(Kg/Xg+Hi) 0 0 0 0 0 Hi*Aww T4  (west) 00 0 -­‐Ar*(-­‐Kb/Xb+ho) Ar(Kb/Xb) 0 0 0 0 T1(roof) (-­‐Ho*A*To)-­‐(Qsn*A)0 0 Ar*Kb/Xb -­‐Ar*(Kb/Xb+Ki/Xi) Ar*Ki/Xi 0 0 0 T2(roof) 00 0 0 Ar*Ki/Xi -­‐Ar*(Ki/Xi+Kg/Xg) Ar*Kg/Xg 0 0 T3(roof) 00 0 0 0 (Ar*Kg/Xg) -­‐Ar(Kg/Xg+Hi) 0 Hi*Ar T4(roof) 00 0 0 0 0 0 (-­‐Hi*Af)-­‐(Kso/Xf) Hi*Af Tfloor (-­‐Kso/Xf)*(Tcon)-­‐(Qe*Aew*Trans)-­‐(Qs*Asw*Trans)-­‐(Qw*Aww*Trans)0 Hi*Aww 0 0 0 Hi*Ar Hi*Af (Hi)*(-­‐Anw-­‐Asw-­‐Aew-­‐Aww-­‐Ar-­‐Af)-­‐(Ma*Cp) Ti (-­‐Qperson)-­‐(Qcooking)-­‐(Ma*Cp*To)

Page 29: BLDG 476 - HEAT TRANSFER

  27  

Table  6:  Results                                                                                            

Page 30: BLDG 476 - HEAT TRANSFER

North Wall - 1st Iteration

#1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 27.1234 26.62514 26.42584 26.62514 27.35042 28.52695 30.15511 31.30563 32.80262 34.28296 35.7143 36.80974 37.70735 38.1694 38.2835 37.98234 37.42378 36.49765 34.92401 33.30186 31.90672 30.51159 29.21611 28.02028

POINT 2 32.99645 32.50116 32.30305 32.50116 33.25024 34.61829 36.68749 37.5354 39.08558 40.59048 41.9962 43.06109 43.97733 44.45368 44.53368 44.17217 43.55832 42.88277 40.77852 39.13793 37.75115 36.36436 35.07663 33.88795

POINT 3 161.8722 161.4423 161.2704 161.4423 162.7179 168.3197 180.1369 174.2986 177.0258 179.0748 179.9155 180.3062 181.635 182.4278 181.7544 180.0589 178.2227 183.0839 169.252 167.2026 165.999 164.7953 163.6776 162.6459

POINT 4 167.8465 167.4196 167.2489 167.4196 168.7199 174.5198 186.7929 180.642 183.4243 185.4989 186.3133 186.6724 188.0206 188.8282 188.1196 186.3616 184.4682 189.5884 175.2079 173.1393 171.9442 170.749 169.6392 168.6148

North Wall - 10th Iteration

#10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 23.73172 23.23172 23.03172 23.23172 23.96242 25.16362 26.8441 27.96816 29.47686 30.96587 32.40047 33.49727 34.40048 34.86589 34.97689 34.66819 34.10154 33.19742 31.56246 29.93175 28.53174 27.13173 25.83173 24.63172

POINT 2 23.78626 23.28626 23.08626 23.28626 24.05008 25.48514 27.69646 28.4725 30.05449 31.58293 32.9975 34.06605 34.99752 35.48298 35.55456 35.17259 34.53677 33.92102 31.65017 29.98634 28.58632 27.18631 25.88629 24.68628

POINT 3 24.99049 24.4904 24.29037 24.4904 25.98529 32.58421 46.51636 39.60821 42.80845 45.20748 46.17967 46.62471 48.18003 49.10819 48.30944 46.30942 44.14647 49.8979 33.58666 31.19161 29.79136 28.39111 27.09087 25.89066

POINT 4 25.04673 24.54664 24.3466 24.54664 26.07566 32.91577 47.39534 40.1283 43.40412 45.84381 46.79534 47.21125 48.79571 49.74455 48.90515 46.82956 44.59529 50.6441 33.67709 31.24789 29.84763 28.44737 27.14712 25.9469

South Wall - 1st Iteration

#1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 27.1234 26.62514 26.42584 26.62514 27.17596 28.40417 30.05819 31.43486 33.52633 35.64638 37.52358 38.7741 39.51663 39.53282 39.00721 38.11158 37.32685 36.37487 34.74954 33.30186 31.90672 30.51159 29.21611 28.02028

POINT 2 32.99645 32.50116 32.30305 32.50116 33.08256 34.5003 36.59433 37.6596 39.78113 41.90085 43.73507 44.949 45.7162 45.76404 45.22923 44.29637 43.46516 42.76477 40.61084 39.13793 37.75115 36.36436 35.07663 33.88795

POINT 3 161.8722 161.4423 161.2704 161.4423 162.7001 168.3072 180.127 174.3118 177.0996 179.214 180.1002 180.5066 181.8197 182.567 181.8282 180.072 178.2128 183.0714 169.2342 167.2026 165.999 164.7953 163.6776 162.6459

POINT 4 167.8465 167.4196 167.2489 167.4196 168.7091 174.5122 186.7869 180.65 183.4691 185.5833 186.4253 186.7941 188.1327 188.9127 188.1644 186.3696 184.4622 189.5808 175.1971 173.1393 171.9442 170.749 169.6392 168.6148

South Wall - 10th Iteration

#10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 23.73172 23.23172 23.03172 23.23172 23.78796 25.04084 26.74718 28.0974 30.20058 32.3293 34.20976 35.46164 36.20977 36.22931 35.7006 34.79743 34.00462 33.07465 31.38799 29.93175 28.53174 27.13173 25.83173 24.63172

POINT 2 23.78626 23.28626 23.08626 23.28626 23.8824 25.36714 27.6033 28.59671 30.75005 32.89331 34.7364 35.954 36.73642 36.79336 36.25012 35.29679 34.44362 33.80302 31.48249 29.98634 28.58632 27.18631 25.88629 24.68628

POINT 3 24.99049 24.4904 24.29037 24.4904 25.96748 32.57168 46.50647 39.6214 42.88232 45.34665 46.36434 46.82521 48.3647 49.24735 48.38331 46.32261 44.13658 49.88537 33.56885 31.19161 29.79136 28.39111 27.09087 25.89066

POINT 4 25.04673 24.54664 24.3466 24.54664 26.06486 32.90816 47.38934 40.13631 43.44895 45.92827 46.90742 47.33294 48.90779 49.82901 48.94998 46.83756 44.58928 50.63649 33.66628 31.24789 29.84763 28.44737 27.14712 25.9469

West Wall - 1st Iteration

#1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 27.1234 26.62514 26.42584 26.62514 27.17596 28.40417 30.02588 31.27332 32.80262 34.28296 35.7143 36.87436 38.59907 40.431 41.57251 41.80767 41.09402 39.17925 35.17602 33.30186 31.90672 30.51159 29.21611 28.02028

POINT 2 32.99645 32.50116 32.30305 32.50116 33.08256 34.5003 36.56328 37.50435 39.08558 40.59048 41.9962 43.12319 44.83434 46.62727 47.6947 47.84864 47.08574 45.46003 41.02072 39.13793 37.75115 36.36436 35.07663 33.88795

POINT 3 161.8722 161.4423 161.2704 161.4423 162.7001 168.3072 180.1237 174.2953 177.0258 179.0748 179.9155 180.3127 181.726 182.6587 182.0901 180.4493 178.5973 183.3576 169.2777 167.2026 165.999 164.7953 163.6776 162.6459

POINT 4 167.8465 167.4196 167.2489 167.4196 168.7091 174.5122 186.7849 180.64 183.4243 185.4989 186.3133 186.6764 188.0759 188.9683 188.3233 186.5986 184.6956 189.7545 175.2235 173.1393 171.9442 170.749 169.6392 168.6148

West Wall - 10th Iteration

#10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 23.73172 23.23172 23.03172 23.23172 23.78796 25.04084 26.71487 27.93586 29.47686 30.96587 32.40047 33.56189 35.2922 37.1275 38.26591 38.49355 37.77181 35.87905 31.81447 29.93175 28.53174 27.13173 25.83173 24.63172

POINT 2 23.78626 23.28626 23.08626 23.28626 23.8824 25.36714 27.57225 28.44145 30.05449 31.58293 32.9975 34.12816 35.85455 37.6566 38.71563 38.84911 38.06425 36.49831 31.89237 29.98634 28.58632 27.18631 25.88629 24.68628

POINT 3 24.99049 24.4904 24.29037 24.4904 25.96748 32.57168 46.50317 39.60492 42.80845 45.20748 46.17967 46.6313 48.27105 49.33903 48.64515 46.69987 44.52109 50.17161 33.61238 31.19161 29.79136 28.39111 27.09087 25.89066

POINT 4 25.04673 24.54664 24.3466 24.54664 26.06486 32.90816 47.38733 40.1263 43.40412 45.84381 46.79534 47.21526 48.85095 49.88465 49.1089 47.06653 44.82265 50.81022 33.6927 31.24789 29.84763 28.44737 27.14712 25.9469

East Wall - 1st Iteration

#1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 27.1234 26.62514 26.42584 26.62514 27.60243 31.20855 33.82536 35.13095 36.09162 36.54455 36.60602 36.87436 37.70735 38.1694 38.2835 37.95003 37.29454 36.37487 34.74954 33.30186 31.90672 30.51159 29.21611 28.02028

POINT 2 32.99645 32.50116 32.30305 32.50116 33.49244 37.19555 40.21491 41.21187 42.2466 42.76407 42.85322 43.12319 43.97733 44.45368 44.53368 44.14112 43.43411 42.76477 40.61084 39.13793 37.75115 36.36436 35.07663 33.88795

POINT 3 161.8722 161.4423 161.2704 161.4423 162.7436 168.5934 180.5115 174.689 177.3615 179.3057 180.0066 180.3127 181.635 182.4278 181.7544 180.0556 178.2095 183.0714 169.2342 167.2026 165.999 164.7953 163.6776 162.6459

POINT 4 167.8465 167.4196 167.2489 167.4196 168.7355 174.6859 187.0203 180.8789 183.6281 185.639 186.3685 186.6764 188.0206 188.8282 188.1196 186.3596 184.4602 189.5808 175.1971 173.1393 171.9442 170.749 169.6392 168.6148

East Wall - 10 th Iteration

#10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 23.73172 23.23172 23.03172 23.23172 24.21443 27.84524 30.51437 31.79352 32.76589 33.22748 33.29219 33.56189 34.40048 34.86589 34.97689 34.63589 33.97231 33.07465 31.38799 29.93175 28.53174 27.13173 25.83173 24.63172

POINT 2 23.78626 23.28626 23.08626 23.28626 24.29228 28.06243 31.22394 32.14903 33.21556 33.75655 33.85453 34.12816 34.99752 35.48298 35.55456 35.14153 34.41256 33.80302 31.48249 29.98634 28.58632 27.18631 25.88629 24.68628

POINT 3 24.99049 24.4904 24.29037 24.4904 26.01101 32.85792 46.89098 39.99866 43.14416 45.43832 46.27069 46.6313 48.18003 49.10819 48.30944 46.30612 44.13328 49.88537 33.56885 31.19161 29.79136 28.39111 27.09087 25.89066

POINT 4 25.04673 24.54664 24.3466 24.54664 26.09128 33.08189 47.62271 40.36527 43.60787 45.98391 46.85058 47.21526 48.79571 49.74455 48.90515 46.82756 44.58728 50.63649 33.66628 31.24789 29.84763 28.44737 27.14712 25.9469

Page 31: BLDG 476 - HEAT TRANSFER

Roof - 1st Iteration

#1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 26.66911 26.16954 25.96971 26.16954 26.74354 28.45107 30.94393 33.20167 35.54697 37.67102 39.50511 40.74307 41.50339 41.56767 41.04224 39.89591 38.27637 36.39962 34.33701 32.86378 31.46498 30.06618 28.7673 27.56833

POINT 2 55.06101 54.57663 54.38288 54.57663 55.28166 57.74863 62.05727 62.76003 65.1881 67.30309 68.94633 70.01864 70.88384 71.08122 70.51625 69.25068 67.5737 66.99052 62.64419 61.06728 59.71102 58.35477 57.09539 55.93288

POINT 3 165.2838 164.8556 164.6844 164.8556 166.1321 171.8823 184.0127 178.0951 180.9194 183.0332 183.8915 184.2763 185.6042 186.3729 185.6292 183.8326 181.8808 186.8051 172.6403 170.5931 169.3942 168.1954 167.0821 166.0545

POINT 4 169.9174 169.4916 169.3213 169.4916 170.7924 176.6823 189.1456 182.9465 185.7878 187.9016 188.7267 189.0823 190.43 191.2229 190.4716 188.6523 186.6888 191.8472 177.2647 175.1974 174.0052 172.8129 171.7058 170.6839

Roof - 10th Iteration

#10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

POINT 1 23.77505 23.274 23.07358 23.274 23.85255 25.58068 28.11713 30.35313 32.70834 34.83977 36.67672 37.9159 38.68094 38.74799 38.21994 37.06727 35.44088 33.58222 31.46858 29.98813 28.58518 27.18222 25.87948 24.67695

POINT 2 23.98681 23.48649 23.28637 23.48649 24.24052 26.9296 31.70846 32.17614 34.71079 36.90494 38.57874 39.66408 40.58001 40.80741 40.21428 38.88039 37.12979 36.7422 31.84534 30.19074 28.78985 27.38896 26.08814 24.88738

POINT 3 25.02179 24.52166 24.32162 24.52166 26.02272 32.79424 47.09095 40.07783 43.38672 45.85913 46.85228 47.29288 48.85276 49.76008 48.88805 46.77945 44.49294 50.32869 33.62456 31.22329 29.82295 28.42261 27.12229 25.922

POINT 4 25.06572 24.56561 24.36556 24.56561 26.09838 33.04323 47.74407 40.41332 43.75508 46.23931 47.20356 47.61678 49.20401 50.14019 49.25632 47.11483 44.80557 50.90555 33.7001 31.26712 29.8668 28.46649 27.16619 25.96592

Floor - 1st Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

FLOOR 177.0263 176.6041 176.4353 176.6041 178.0923 185.0691 198.5067 192.0904 195.2123 197.464 198.1576 198.3602 199.8464 200.757 199.8563 197.7477 195.5482 200.6086 184.5095 182.2614 181.0793 179.8971 178.7995 177.7862

Floor - 10th Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

FLOOR 25.13355 24.63345 24.43341 24.63345 26.36497 34.44824 50.23282 42.62933 46.27612 48.91618 49.75569 50.01867 51.75609 52.81696 51.77722 49.33068 46.76858 52.81678 33.96649 31.33479 29.93451 28.53423 27.23397 26.03373

Room - 1st Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Room 177.0248 176.6026 176.4337 176.6026 177.941 184.047 197.0249 190.3909 193.2585 195.3726 196.1464 196.4569 197.8351 198.6657 197.9025 196.0482 194.0663 199.5865 184.3582 182.2598 181.0777 179.8956 178.7979 177.7847

Room - 10th Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Room 25.13355 24.63345 24.43341 24.63345 26.2152 33.42768 48.7525 40.93132 44.32383 46.82631 47.74593 48.11689 49.74633 50.72709 49.82493 47.63266 45.28826 51.79623 33.81672 31.33479 29.93451 28.53423 27.23397 26.03373

Page 32: BLDG 476 - HEAT TRANSFER

  28  

8.  Appendix  2    Matlab  Programming                                        

Page 33: BLDG 476 - HEAT TRANSFER
Page 34: BLDG 476 - HEAT TRANSFER
Page 35: BLDG 476 - HEAT TRANSFER
Page 36: BLDG 476 - HEAT TRANSFER
Page 37: BLDG 476 - HEAT TRANSFER
Page 38: BLDG 476 - HEAT TRANSFER
Page 39: BLDG 476 - HEAT TRANSFER
Page 40: BLDG 476 - HEAT TRANSFER
Page 41: BLDG 476 - HEAT TRANSFER
Page 42: BLDG 476 - HEAT TRANSFER
Page 43: BLDG 476 - HEAT TRANSFER
Page 44: BLDG 476 - HEAT TRANSFER
Page 45: BLDG 476 - HEAT TRANSFER
Page 46: BLDG 476 - HEAT TRANSFER
Page 47: BLDG 476 - HEAT TRANSFER
Page 48: BLDG 476 - HEAT TRANSFER
Page 49: BLDG 476 - HEAT TRANSFER
Page 50: BLDG 476 - HEAT TRANSFER
Page 51: BLDG 476 - HEAT TRANSFER