88
Black Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob McNees Daniel Grumiller Center for Theoretical Physics Massachusetts Institute of Technology QFEXT07, Leipzig, September 2007 hep-th/0703230

Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Hole Thermodynamics

and Hamilton-Jacobi CountertermBased upon work with Bob McNees

Daniel Grumiller

Center for Theoretical PhysicsMassachusetts Institute of Technology

QFEXT07, Leipzig, September 2007

hep-th/0703230

Page 2: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Outline

Black Hole Thermodynamics from Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics 2/25

Page 3: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Outline

Black Hole Thermodynamics from Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 3/25

Page 4: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Hole Thermodynamics – Recapitulation

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 4/25

Page 5: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Hole Thermodynamics – Recapitulation

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 4/25

Page 6: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Hole Thermodynamics – Recapitulation

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 4/25

Page 7: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Hole Thermodynamics – Recapitulation

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 4/25

Page 8: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Hole Thermodynamics – Recapitulation

B-H: S = A4GN

, 1st: dE = T dS + work, 2nd: dS ≥ 0

Classical General Relativity

I Four Laws (Bardeen, Carter, Hawking, 1973)

I Gedankenexperiments with entropy(Bekenstein, 1973)

Black Hole Analogues

I Sonic Black Holes (Unruh, 1981)

I Hawking effect in condensed matter?

Black Hole Thermodynamics

Quantum Gravity

I Semiclassical approximation?

I Microstate counting (Strominger, Vafa, 1996;

Ashtekar, Corichi, Baez, Krasnov, 1997)

Dual Formulations

I AdS/CFT (Maldacena 1997, Gubser, Klebanov,

Polyakov 1998, Witten 1998)

I Hawking-Page transition

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 4/25

Page 9: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Euclidean Path Integral – Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 5/25

Page 10: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Euclidean Path Integral – Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 5/25

Page 11: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Euclidean Path Integral – Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 5/25

Page 12: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Euclidean Path Integral – Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 5/25

Page 13: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Euclidean Path Integral – Main Idea

Consider Euclidean path integral (Gibbons, Hawking, 1977)

Z =∫

DgDX exp(−1

~IE [g,X]

)

I g: metric, X: scalar field

I Semiclassical limit (~ → 0): dominated by classical solutions (?)

I Exploit relationship between Z and Euclidean partition function

Z ∼ e−β Ω

I Ω: thermodynamic potential for appropriate ensemble

I β: periodicity in Euclidean time

Requires periodicity in Euclidean time andaccessibility of semi-classical approximation

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 5/25

Page 14: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 6/25

Page 15: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 6/25

Page 16: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 6/25

Page 17: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 6/25

Page 18: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Semiclassical Approximation

Consider small perturbation around classical solution

IE [gcl + δg,Xcl + δX] =IE [gcl, Xcl] + δIE [gcl, Xcl; δg, δX]

+12δ2IE [gcl, Xcl; δg, δX] + . . .

I The leading term is the ‘on-shell’ action.

I The linear term should vanish on solutions gcl and Xcl.

I The quadratic term represents the first corrections.

If nothing goes wrong:

Z ∼ exp(−1

~IE [gcl, Xcl]

) ∫DδgDδX exp

(− 1

2~δ2IE

)× . . .

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 6/25

Page 19: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 7/25

Page 20: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞

2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 7/25

Page 21: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 0

3. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 7/25

Page 22: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

What could go Wrong?

...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 0

3. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 7/25

Page 23: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

What could go Wrong?...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 7/25

Page 24: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

What could go Wrong?...everything!

Accessibility of the semiclassical approximation requires

1. IE [gcl, Xcl] > −∞2. δIE [gcl, Xcl; δg, δX] = 03. δ2IE [gcl, Xcl; δg, δX] ≥ 0

Typical gravitational actions evaluated on black hole solutions:

1. Violated: Action unbounded from below

2. Violated: First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

δIE∣∣EOM

∼∫

∂Mdx√γ[πab δγab + πX δX

]6= 0

3. Frequently violated: Gaussian integral may diverge

Focus in this talk on the second problem!

D. Grumiller — Black Hole Thermodynamics Black Hole Thermodynamics from Euclidean Path Integral 7/25

Page 25: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Outline

Black Hole Thermodynamics from Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 8/25

Page 26: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]

−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!For later: Q(X) :=

∫ XU , w(X) :=

∫ XeQV

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 9/25

Page 27: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]

−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!For later: Q(X) :=

∫ XU , w(X) :=

∫ XeQV

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 9/25

Page 28: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]

−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

For later: Q(X) :=∫ X

U , w(X) :=∫ X

eQV

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 9/25

Page 29: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K

−∫

∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!

For later: Q(X) :=∫ X

U , w(X) :=∫ X

eQV

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 9/25

Page 30: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Action...for a review cf. e.g. DG, W. Kummer and D. Vassilevich, hep-th/0204253

Standard form of the action:

IE =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K−

∫∂Mdx√γL(X)

I Dilaton X defined via coupling to Ricci scalar

I Model specified by kinetic and potential functions for dilaton

I Dilaton gravity analog of Gibbons-Hawking-York boundary term:coupling of X to extrinsic curvature of (∂M, γ)

Variational principle: fix X and induced metric γ at ∂M

Note: additional boundary term allowed consistent with classical solutions,variational principle and symmetries!For later: Q(X) :=

∫ XU , w(X) :=

∫ XeQV

D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 9/25

Page 31: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Selected List of ModelsBlack holes in (A)dS, asymptotically flat or arbitrary spaces

Model U(X) V (X)

1. Schwarzschild (1916) − 12X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX3. Witten Black Hole (1991) − 1

X−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − aX

BX6. Rindler ground state (1996) − a

XBXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − aX

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordstrom (1916) − 12X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 12X

−λ2 − `X13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X− J

4X3 − ΛX15. KK reduced CS (2003) 0 1

2X(c−X2)

16. KK red. conf. flat (2006) − 12

tanh (X/2) A sinh X

17. 2D type 0A string Black Hole − 1X

−2b2X + b2q2

Models of interest: Boundary at X →∞, w(X →∞)→∞D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 10/25

Page 32: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Selected List of ModelsBlack holes in (A)dS, asymptotically flat or arbitrary spaces

Model U(X) V (X)

1. Schwarzschild (1916) − 12X

−λ2

2. Jackiw-Teitelboim (1984) 0 ΛX3. Witten Black Hole (1991) − 1

X−2b2X

4. CGHS (1992) 0 −2b2

5. (A)dS2 ground state (1994) − aX

BX6. Rindler ground state (1996) − a

XBXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − aX

BXa+b

10. Liouville gravity a beαX

11. Reissner-Nordstrom (1916) − 12X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 12X

−λ2 − `X13. Katanaev-Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro-Ortiz (1993) 0 Q2

X− J

4X3 − ΛX15. KK reduced CS (2003) 0 1

2X(c−X2)

16. KK red. conf. flat (2006) − 12

tanh (X/2) A sinh X

17. 2D type 0A string Black Hole − 1X

−2b2X + b2q2

Models of interest: Boundary at X →∞, w(X →∞)→∞D. Grumiller — Black Hole Thermodynamics Dilaton Gravity in 2D 10/25

Page 33: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Outline

Black Hole Thermodynamics from Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Free Energy 11/25

Page 34: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Free Energy?

Not yet!

Given the black hole solution, can we calculate the free energy?

Z ∼ exp(−1

~IE [gcl, Xcl]

)∼ e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 12/25

Page 35: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 12/25

Page 36: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 12/25

Page 37: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 12/25

Page 38: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Free Energy? Not yet!

Given the black hole solution, can we calculate the free energy?

Z exp(−1

~IE [gcl, Xcl]

) e−β F

Need a limiting procedure to calculate the action. Implement this in acoordinate-independent way by putting a regulator on the dilaton.

X ≤ Xreg

Evaluating the on-shell action leads to three problems

1. On-shell action unbounded from below (cf. second assumption)

I regE = β

(2M − w(Xreg)− 2πXh T

)→ −∞

2. First variation of action not zero for all field configurationscontributing to path integral due to boundary terms

3. Second variation of action may lead to divergent Gaussian integral

D. Grumiller — Black Hole Thermodynamics Free Energy 12/25

Page 39: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Square of Killing norm: ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Because ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 13/25

Page 40: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

Square of Killing norm: ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Because ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 13/25

Page 41: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Square of Killing norm: ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Because ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 13/25

Page 42: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Square of Killing norm: ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Because ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 13/25

Page 43: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Variational Properties of the Action

δIE =

ZMd2x

√g

hEµνδgµν + EXδX

i| z

=0(EOM)

+

Z∂M

dx√

γhπabδγab + πXδX

i| z

=0?

6=0

Does this vanish on-shell? Ignore πXδX and focus on πabδγab

δIE =

Zdτ

»−1

2∂rX δξ + . . .

–Square of Killing norm: ξ(X) = w(X)eQ(X) − 2MeQ(X)

Assume that boundary conditions preserved by variations

δξ ∼ δM eQ(X)

Because ∂rX = e−Q we get

δIE =∫dτδM 6= 0

D. Grumiller — Black Hole Thermodynamics Free Energy 13/25

Page 44: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 14/25

Page 45: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 14/25

Page 46: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 14/25

Page 47: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Boundary Counterterms

I Same idea as boundary counterterms in AdS/CFT (Balasubramanian, Kraus 1999;

Emparan, Johnson, Myers 1999; Henningson, Skenderis 1998)

I More recently in asymptotically flat spacetimes (Kraus, Larsen, Siebelink 1999; Mann,

Marolf 2006)

I Covariant version of surface terms in 3 + 1 gravity (ADM 1962; Regge, Teitelboim

1974)

I Black Holes in 2D: IE = Γ + ICT

1. Witten Black Hole/2D type 0A strings (J. Davis, R. McNees, hep-th/0411121)

2. Generic 2D dilaton gravity (DG, R. McNees, hep-th/0703230)

Γ =− 12

∫Md2x√g[X R− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K −

∫∂Mdx√γL(X)︸ ︷︷ ︸

ICT

How to determine the boundary counterterm?

D. Grumiller — Black Hole Thermodynamics Free Energy 14/25

Page 48: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 15/25

Page 49: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 15/25

Page 50: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 15/25

Page 51: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 15/25

Page 52: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 15/25

Page 53: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hamilton-Jacobi Equation

Boundary counterterm ICT is solution of the Hamilton-Jacobi equation

1. Begin with ‘Hamiltonian’ associated with radial evolution.

H = 2πXγab πab + 2U(X)

(γab π

ab)2

+ V (X) = 0

2. Momenta are functional derivatives of the on-shell action

πab =1√γ

δ

δ γabIE

∣∣∣EOM

πX =1√γ

δ

δ XIE

∣∣∣EOM

3. Obtain non-linear functional differential equation for on-shell action

4. 2D: simplifies to first order ODE – can solve (essentially uniquely) forICT !

ICT = −∫

∂Mdx√γ√w(X) e−Q(X)

D. Grumiller — Black Hole Thermodynamics Free Energy 15/25

Page 54: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 16/25

Page 55: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE

2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 16/25

Page 56: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 16/25

Page 57: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

The Improved Action

The correct action for 2D dilaton gravity is

Γ =− 12

∫Md2x√g[XR− U(X) (∇X)2 − 2V (X)

]−∫

∂Mdx√γ X K +

∫∂Mdx√γ√w(X) e−Q(X)

Properties:

1. Yields the same EOM as IE2. Finite on-shell (solves first problem)

Γ∣∣EOM

= β (M − 2πXh T )

3. First variation δΓ vanishes on-shell ∀ δgµν and δX that preserve theboundary conditions (solves second problem)

δΓ∣∣EOM

= 0

Note: counterterm requires specification of integration constant w0, i.e., choice of ground state, but is independent from Q0

D. Grumiller — Black Hole Thermodynamics Free Energy 16/25

Page 58: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Free Energy

Γ(Tc, Xc) = βc Fc(Tc, Xc)

Explicitly:

Fc(Tc, Xc) =√wc e−Qc

(1−

√1− 2M

wc

)︸ ︷︷ ︸

=Ec(Tc,Xc)

− 2πXhTc︸ ︷︷ ︸=STc

Entropy follows immediately (Bekenstein-Hawking law):

S = − ∂Fc

∂Tc

∣∣∣∣Xc

= 2πXh

Entropy determined by dilaton evaluated at the horizon (Gegenberg, Kunstatter,

Louis-Martinez, 1995)

Similarly: dilaton chemical potential (surface pressure) ψc = −∂Fc/∂Xc|Tc

D. Grumiller — Black Hole Thermodynamics Free Energy 17/25

Page 59: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0

D. Grumiller — Black Hole Thermodynamics Free Energy 18/25

Page 60: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0

D. Grumiller — Black Hole Thermodynamics Free Energy 18/25

Page 61: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0

D. Grumiller — Black Hole Thermodynamics Free Energy 18/25

Page 62: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Other Thermodynamical Quantities

Standard thermodynamics in canonical ensemble: internal energy,enthalpy, free enthalpy, specific heats, isothermal compressibility, ...

1. Internal energy

Ec = Fc + Tc S = e−Qc

(√ξgc −

√ξc

)≥ 0

Models with Minkowski ground state (ξgc = 1): M = Ec − E2

c2 wc

2. First lawdEc = Tc dS − ψc dXc

Properly accounts for non-linear effects of gravitational binding energy

3. Specific heat at constant dilaton charge Xc

CD = 2πw′hw′′h

1

1 + (w′h)2

2w′′h(wc−2M)

Allows to check for thermodynamic stability: CD(Xc = Xh + ε) > 0D. Grumiller — Black Hole Thermodynamics Free Energy 18/25

Page 63: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Outline

Black Hole Thermodynamics from Euclidean Path Integral

Dilaton Gravity in 2D

Free Energy

Applications

D. Grumiller — Black Hole Thermodynamics Applications 19/25

Page 64: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1

DG2

spherical reduction

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 20/25

Page 65: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 20/25

Page 66: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd?- EHd+1 + GHYd + HJd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

? !- DG2 + ′GHY′1 + HJ1

?

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 20/25

Page 67: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd?- EHd+1 + GHYd + HJd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

? !- DG2 + ′GHY′1 + HJ1

?

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 20/25

Page 68: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Higher Dimensional Black HolesSchwarzschild, Reissner-Nordstrom, BTZ, Schwarzschild-AdS, ...

EHd+1bound.

- EHd+1 + GHYd?- EHd+1 + GHYd + HJd

DG2

spherical reduction

? bound.- DG2 + ′GHY′1

spherical reduction

? !- DG2 + ′GHY′1 + HJ1

?

?

It works, regardless of the asymptotics... But nearly no info about HJd!

Main message

Example: Schwarzschild-AdS in d+ 1 dimensions:

U(X) = −(d− 2d− 1

)1X, V (X) = −(const.)X

d−3d−1 − d(d− 1)

2 `2X

D. Grumiller — Black Hole Thermodynamics Applications 20/25

Page 69: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Hawking-Page TransitionSpherically symmetric AdS Black Holes in d + 1 dimensions

CD: specific heat at constant dilaton; rh: horizon radius; `: AdS radiusD. Grumiller — Black Hole Thermodynamics Applications 21/25

Page 70: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 71: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 72: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 73: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 74: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)

I Need finite k corrections (α′ corrections): exact string Black Hole(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 75: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 76: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Black Holes in 2D String Theory

Black holes with exact CFT description (SL(2,R)/U(1) gauged WZWmodel) (Witten 1991)

I Large level k: Witten Black Hole (U = −1/X, V ∝ X)Recover well-known results (Gibbons, Perry 1992; Nappi, Pasquinucci 1992)

I Adding D-branes: 2D type 0A stringsDropping (Coulomb-) divergences is wrong! (Davies, McNees 2004)

Problem: have to move the ’cavity’ to infinity in string theory

I Witten Black Hole: cannot remove cavity! (specific heat diverges)I Need finite k corrections (α′ corrections): exact string Black Hole

(Dijkgraaf, Verlinde, Verlinde, 1992)

Exact string Black Hole allows removal of cavity!

String theory is its own reservoir

D. Grumiller — Black Hole Thermodynamics Applications 22/25

Page 77: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 23/25

Page 78: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 23/25

Page 79: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 23/25

Page 80: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 23/25

Page 81: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Thermodynamics of the Exact String Black Hole

Interesting geometry: asymptotically flat, one Killing horizon, nosingularity (dilaton violates energy conditions)Singular limits:

I k →∞: singularity appears (Witten Black Hole)I k → 2: horizon disappears (Jackiw-Teitelboim, AdS2)

Thermodynamical properties

1. Positive specific heat CD = # k2T (like degenerate Fermi gas)

2. Hawking temperature T = TH

√1− 2

k (TH : Hagedorn temperature)

3. Logarithmic α′ corrections to entropy (DG 2005)

S = 2π(√

k(k − 2) + arcsinh (√k(k − 2))

)= 2πk + 2π ln k + . . .

4. Partition function for critical value k = 9/4 (setting GN = 1/4)

Z = earcsinh (3/4) = 2

Relations: α′b2 = 1/(k − 2), Dim− 26 + 6α′b2 = 0

D. Grumiller — Black Hole Thermodynamics Applications 23/25

Page 82: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 24/25

Page 83: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 24/25

Page 84: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 24/25

Page 85: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 24/25

Page 86: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 24/25

Page 87: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Conclusions...for more info see DG, R. McNees, hep-th/0703230

Main results presented:

I Constructed Hamilton-Jacobi counterterm for generic 2D dilatongravity (with two working assumptions!)

I Derived free energy and its thermodynamic descendants (entropy,internal energy, specific heat, ...)

I Applied it to numerous black holes in various dimensions

Main results not presented:

I Extensitivity and scaling properties

I Nonperturbative stability analysis (tunneling)

I Inclusion of Maxwell fields (charge, spin, ...)

Next steps envisaged:

I Relax working assumptions (dS!)

I Consider matter fields (reconsider counterterm!)

I Impact on quantum theory?

D. Grumiller — Black Hole Thermodynamics Applications 24/25

Page 88: Black Hole Thermodynamics and Hamilton-Jacobi …quark.itp.tuwien.ac.at/~grumil/pdf/leipzig2007.pdfBlack Hole Thermodynamics and Hamilton-Jacobi Counterterm Based upon work with Bob

Thanks for the attention...

...and thanks to Bob McNees for the style and source files of his talk!D. Grumiller — Black Hole Thermodynamics Applications 25/25