15
Black Hole Masses and accretion rates Thomas Boller Planck Institut für extraterrestrische Physik, Garc

Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

Embed Size (px)

Citation preview

Page 1: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

Black Hole Masses and accretion rates

Thomas BollerMax-Planck Institut für extraterrestrische Physik, Garching

Page 2: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

2

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

Analysis of individual NLS1 spectra

Supercritical accretion in 1H0707-495

Accretion-rates and Black hole masses in extreme accretion modes

Spectral complexity dependence on the accretion rate

Metallicity dependence on the accretion rate

Present knowledge on black hole masses and accretion rates

The effect of mass accretion rate on X-ray properties

Page 3: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

3

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

The effect of mass accretion rate on X-ray properties

Accretion-rate dependent differences may exist in AGN as well

Low accretion rate: hard state

Black holesin X-ray binaries

Canonical power-law with =1.7Rapid flux variation

rel a

tive fl

ux

rel a

tive fl

ux

Energy [keV]Energy [keV]

High accretion rate: soft state

Black body type soft excess and significantly steeper power-law(~2.2-2.5)

Energy [keV]Energy [keV]

Super-MassiveBlack Holes

Broad-line Seyfert 1 Narrow-Line Seyfert 1

rel a

tive fl

ux

rel a

tive fl

ux

Energy [keV]Energy [keV] Energy [keV]Energy [keV]

Canonical power-law with =1.7

Page 4: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

These features are typical for partial covering phenomenon, or reflection dominated X-ray spectra

Both show a common characteristic shape - strong soft X-ray excess - steep power-law with = 2.4~2.5

The hard tail gradually flattens towards high energies and abruptly drops at around 7-8 keV

IRAS 13224-3809

0.2 1 2 3 5 10 Energy [keV]

Analysis of individual NLS1 spectraC

oun

ts s

-1 k

eV-1

1H 0707-495

0.2 1 2 3 5 10 Energy [keV]

pn

MOS

Drop energy is time-dependent (7.1 keV in 2000, 7.5 in 2002), remains sharp even for 8.2 keV drop in 13224, no K UTA absorption, therefore high outflow v of neutral Fe of 0.05 and 0.15 c are required

7.1,7.5 keV 8.2 keV

Page 5: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

Supercritical accretion in 1H0707-495Slim disc model appliesapplies to such high accretion rates and high disc temperatures

Abramowicz 1988: Solutions for high accretion rates based on additional cooling due to horizontal advection of heat;adding a new branch to the Shakura-Sunyaev discin the - dM/dt plane

Mineshige 2000: All NLS1s from ASCA observations fall into the(dM/dt) / (LE/c2) = (10 – 20) slim disc region

Makishima 2000:Watarai 2001:

Lmin and Tbb give Mmin ~ 2.106 Msun

dM/dt ~ (10-20) (LE/c2) ~ 6.1024 g s-1

Page 6: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

Expected parameter changes due to black hole mass growth

assumptions: NLS1 evolution starts in the slim disc regime (L ~ Ledd) dM/dt remains constant for some time and then gradually decreases

Ionizing continuum decreases

4

12

M

M~tT

4

12

M

M~tT

FWHM of emission lines increases 16

32

4

1

e M

M2n~tFWHM

H

[A]

H [OIII]

Flux

[A]

Fe II Fe II

[OIII]

4

12

M

M~tT

rela

tive

flux

rela

tive

flux

Energy [keV]Energy [keV] Energy [keV]Energy [keV]

Huge soft X-ray excess in NLS1s

Moderate soft X-ray excessIn BLS1s

Soft and hard power-law indices decreases

Fe II multiplet emission decreases when ionizingcontinuum decreases

Page 7: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

Growth time [yr]8

Simple picture for the optical line widths evolution of Seyfert 1s

Assumptions: all galaxies go through an AGN phase the case for 1H0707 (a NLS1s starting with a small mass of ~2 . 106 Msun)

accretion rate: 6 . 1024 g . s-1 (10-3 earth mass per second) = 0.1 Msun/ yr FW

HM

H

[km

s-1]

2000 km s-1

25 Million years

60 Million years

4600 km s-1

10000 km s-1

90 Million years

NLS1 BLS1 phase

when high accretion rate ceased, 1H0707 become normal Seyfert 1s

within a few 10´s million yrNLS1 are the most rapidly growing black holes

exp.

gro

wth

linear growth

Comparison with SDSS EDRWilliams et al. 135 NLS1 out of 944 BLS1assuming ~108 yr AGN phasemean NLS1s phase ~15 Millions years

Page 8: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

8

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

Accretion-rates and Black hole masses in extreme accretion modes

Super-Eddington Accretion Low efficiency accretion

Name kT L M L/Ledd dM/dt [eV] [1044] [106] [Msun/yr]

PHL 1092 128 60 ~10 3 0.03 NAB 0205 120 24 ~6 3 0.03IRAS 13349 97 9 ~4 2 0.02Akn 564 129 7 ~2 2 0.02PG1211 117 4 ~2 2 0.021H0707 92 4 ~2 10 0.10IRAS 13224 130 3 ~1 2 0.02Mrk 335 130 3 ~1 2 0.02PG1204 120 3 ~1 1 0.01Mrk 1044 105 0.5 ~0.4 0.7 0.007NGC 4051 130 0.01 ~0.1 0.2 0.002

Name L M L/Ledd dM/dt [erg s-1] [Msun] [Msun/yr] NGC 0315 1.2 1043 1.3 109 1 10-4 1 10-6

NGC 1052 1.5 1043 2.0 108 6 10-4 1 10-6

NGC 2681 7.0 1039 5.6 107 1 10-6 1 10-8

3C 218 3.8 1043 7.6 108 5 10-4 1 10-6

NGC 2728 6.3 1039 4.0 107 1 10-4 1 10-6

M81 5.0 1041 6.1 107 7 10-5 7 10-7

NGC 3125 3.2 1041 5.9 105 4 10-3 4 10-5

NGC 3169 2.3 1041 7.2 107 3 10-5 3 10-7

NGC 3245 2.4 1040 2.4 108 1 10-6 1 10-8

NGC 3718 1.9 1042 8.5 107 2 10-4 2 10-6

NGC 4125 1.5 1040 3.1 108 3 10-7 3 10-9

NGC 4203 4.0 1041 7.9 107 4 10-5 4 10-11

NGC 4278 4-0 1041 1.6 109 2 10-6 2 10-13

…34 LINERS from Cariollo et al. 1999, Satypal 05, Dudek 05

Boller, Tanaka (in prep.)

Page 9: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

9

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

LINER galaxy IC 1459

Separation of nuclear emission from optically thin gas and point sources emissionto disentangle AGN contribution from other emission prosses

Balestra, Boller

Page 10: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

10

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

0 2 4 6 Time [109 yr]

106

1

08

1010

[Msu

n]IRAS 13224-3809

5 107 yr

1 108 yr

3 108 yr

5 108 yr

0 yr

0 yr

8 108 yr

2 109 yr

IRAS 13349

NGC 03150 yr

2 109 yr

NGC 27280 yr 2 109 yr

NGC 3125

0 yr

Black Hole growths for NLS1s and LINERs

Page 11: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

11

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

Accretion-rates dependence on Black hole masses

NLS1s

BLS1s

NLS1s

LINERs

BLS1s

LINERs

LINERcaveates:

- separate nuclear emission

-following Hagai´s comment: if SLOAN people are right, LINERs shift up

Page 12: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

12

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

Spectral Complexity in dependence on the accretion rate

Power-law fitto IRAS 13224-3809

strong residua

Null hypothesis value <0.1in 2-10 keV band

0.0 in 0.3 10 keV band

e.g. low Null hypothesisvalues indicative forspectral complexityas soft excess, lines…

Page 13: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

13

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

fit in the 2-10 keV range

LINERS often as a simple power-law

NLS1s more complex - soft excess - spectral curvature - sharp spectral drops

Spectral complexity correlates with accretion rate

Page 14: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

14

AGN Workshop of the Israel Science Foundation: in celebration of Hagai Netzer´s 60th birthday

Metallicity dependence on the accretion rate

13224 with super-Eddington accretion

Fe overabundance 3-10 required in all NLS1s with sharp spectral drop, even for reflection dominated model

Boller et al. 2003 Netzer et al. 2004

Clear trend of FeII/H with accretion rate for NLS1 and high-z QSO

optical Fe II emission increases withaccretion rate

Page 15: Black Hole Masses and accretion rates Thomas Boller Max-Planck Institut für extraterrestrische Physik, Garching

Summary

X-ray observations on the disc temperature and the luminosity allow to measure black hole masses and accretion rate, independent from optical line width relations

The NLS1s are accreting at luminosities close or above the Eddington luminosity Lmin/ Ledd ~ 1-2

The black body temperature is high: 90-120 eV and exceeds the limit from standard geometrically thin accretion discs

The objects have relatively low black hole masses of ~106 Msun and are rapidly growing in mass with ~ dM/dt ~ (1-20) (LE/c2)

When the high accretion rates are ceased NLS1s become normal Seyfert 1s within a few 10´s Million years

NLS1s are the most rapdily growing black holes in the universe

LINERS accrete at extreme low Eddington luminosity ratios