15
Black-hole dynamics in extensions of general relativity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, King’s College London European Einstein Toolkit Workshop, IST Lisbon, 13 September 2018 H. Witek (KCL) 1 / 15

Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Black-hole dynamicsin extensions of general relativity

Helvi Witek

Theoretical Particle Physics and CosmologyDepartment of Physics,King’s College London

European Einstein Toolkit Workshop, IST Lisbon, 13 September 2018

H. Witek (KCL) 1 / 15

Page 2: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Why go beyond our standard models?

Gravity• Is general relativity correct?

• Where is it valid?

Cosmology• What is dark matter?

High-energy physics• Quantum gravity?

• Test general relativity in new regimes• Extensions of general relativity

• Beyond-standard model particle physics

⇒ Gravitational waves as search engines for new physics

H. Witek (KCL) 2 / 15

Page 3: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

A new observational window: gravitational waves

Groundbased detectors

Laser Interferometer Gravitational wave Observatory – Livingston

Spacebased detectors

Laser Interferometer Space Antenna – artistic impression

• sources: stellar-mass black holes,neutron stars, . . .

• sources: massive black holes,extreme mass-ratio inspirals, . . .

2015 2020s 2030s

LIGO

1st detection

LIGO/Virgo

KAGRA

LIGO India Einstein Telescope

Cosmic Explorer

LISA pathfinder LISA Decigo

Pulsar timing arrays

H. Witek (KCL) 3 / 15

Page 4: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

A need for theoretical predictions

• gravitational wave detections are theory-driven

• waveform templates needed for identification and interpretation of signal

• so far: (almost) only in GR, i.e., we are deaf to any “non-vanilla” models!

700 600 500 400 300 200 100 0 100 200(t tmerger rex)/M

0.10

0.05

0.00

0.05

0.10

r ex

4,22

Inspiral

post-Newtonian/effective-one-bodysome extensions known

Merger

NumericalRelativityscarce!

?Ringdown

perturbationtheory

(credit: Witek '18)

Gravitational wave signal of a black hole binary

H. Witek (KCL) 4 / 15

Page 5: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

State-of-the-art in NumRel beyond GR

-6x10-5

-4x10-5

-2x10-5

0

2x10-5

4x10-5

6x10-5

8x10-5

0.0001

0 200 400 600 800 1000

r ex Ψ

4,2

2

(t - rex) / M0

(a/M)0 = 0.90(a/M)0 = 0.95

(Witek & Zilhao, in prep.)

Black holes and light fundamental fields(Witek et al ’12; Okawa, Witek, Cardoso ’14; Zilhao, Witek, Cardoso ’15; East ’17, ’18 )

• formation of scalar/vector condensates dueto superradiant instability

• monochromatic gravitational radiation

⇒ search for beyond standard model particles

NOTE: thorns publicly available

• in Canuda (https://bitbucket.org/canuda/)

• soon in Einstein Toolkit (under revision by P. Diener, E. Schnetter & ETK Maintainer team)

see also:

• compact binaries in scalar-tensor theory (Barausse et al ’12, Shibata et al ’13, Healy et al ’11, Berti et al ’13 )

• boson stars (Liebling & Palenzuela ’12, Palenzuela et al ’17, Helfer et al ’18, . . . ), Proca stars (Sanchis-Gual et al ’18)

• Einstein-Maxwell-Dilaton models (Hirschmann et al ’17)

• dynamical Chern-Simons gravity (Okounkova et al ’17)

H. Witek (KCL) 5 / 15

Page 6: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Here:

Einstein-dilaton Gauss-Bonnetgravity

(in prep. with L. Gualtieri, P. Pani, T. Sotiriou)

action in quadratic gravity (e.g. Kanti et al ’95, Alexander & Yunes ’09, Yunes & Siemens ’13, . . . )

S =1

16π

∫d4x√−g(

(4)R + 2αGBf (Φ)RGB + αCSh(Ψ) ∗R R − 1

2(∇Φ)2

)

Gab =1

2TΦab − αGBGGB

ab ,

Φ =− 2αGBf′(Φ)RGB

• RGB = R2 − 4RabRab + RabcdR

abcd

• typically: f (Φ) ∼ eΦ

1 21see Okounkova et al ’17 for parity violating (dynamical Chern-Simons) sector2use geometric units c = 1 = G

H. Witek (KCL) 6 / 15

Page 7: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Why EdGB gravity?

High-energy physics

• higher curvature correctionsrelevant in strong-curvature regime

• low-energy limit of some string theories(Gross & Sloan ’87, Kanti et al ’95, Moura & Schiappa 06)

• compactification of Lovelock gravity(Charmousis ’14)

• representative for more involved theories

H. Witek (KCL) 7 / 15

Page 8: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Black holes in EdGB

• black holes have scalar hair (of the second kind)!(Kanti et al ’95, Pani et al ’09, ’11, Stein et al ’11, Sotiriou & Zhou ’14, Ayzenberg & Yunes ’14, Maselli et al ’15, . . . )

• black holes can exceed the Kerr bound (Kleihaus et al ’11, ’14)

• signatures in black hole binaries:• scalar dipole radiation⇒ shift in binding energy⇒ shift in orbital frequency

• ringdown signature?• effects in nonlinear regime?

Constraints on coupling

• regular BH horizons & lightest observed BHs M ∼ 5M:√|αGB| . 7km

• x-ray binary A0620-00 :√|αGB| . 10km (Yagi ’12)

• inspiral of GW151226 :√|αGB| . 27km (Yagi, Yunes & Pretorius ’16)

H. Witek (KCL) 8 / 15

Page 9: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

EdGB as effective field theory

Mathematical considerations:

• recall: well-posed initial value formulation necessary for numerical stability

• field equations are second order ⇒ potential for well-posed PDE system?• in a generalized harmonic gauge only weakly hyperbolic (Papallo & Reall ’17, Papallo ’17)

• good chances as effective field theory (Choquet-Bruhat ’88, Delsate, Hilditch & Witek ’14)

• expansion gab = g(0)ab + εg

(1)ab +O(ε2), Φ = Φ(0) + εΦ(1) +O(ε2)

• ε 1 and αGB/M2 ∼ O(ε)

• note: vacuum, i.e., Tab = Tab(Φ)

ε0 : G(0)ab =

1

2T

(0)ab , (0)Φ(0) = 0 ⇒ (g

(0)ab ,Φ

(0)) = (gGRab , 0)

ε1 : G(1)ab = 0 , (0)Φ(1) = −f ′R(0)

GB ⇒ (g(1)ab ,Φ

(1)) = (0,Φ(1))3

3Note: drop superscript in the following and remember gab ≡ gGRab , Φ ≡ Φ(1)

H. Witek (KCL) 9 / 15

Page 10: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Numerical implementation

• EFT approach up to O(ε)⇒ evolve scalar field & GR background simultaneously

• implemented in Einstein Toolkit & Canuda(https://bitbucket.org/canuda/) einsteintoolkit.org

GR code – ETK & Canuda

ADMBasedefines metric gfs

TwoPuncturesmetric initial data

McLachlan or Canuda-Leanmetric evolution

AHFinderDirect,WeylScal4 or Canuda-NPScalars

Multipole

EdGB code – Canuda

EdGB Basedefines scalar gfs

EdGB Initscalar field initial data

EdGB Evolscalar field evolution

H. Witek (KCL) 10 / 15

Page 11: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Numerical simulations in EdGB

Setup

• ε(0): non-spinning BH binary with d/M = 10 and mass-ratiosq = m1/m2 = 1, 1/2, 1/4

• ε(1): zero initial scalar field or superposition of solutions

Scalar field evolution

H. Witek (KCL) 11 / 15

Page 12: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Scalar radiation

measured at rex/M = 100

q = 1

0.5

0.0

0.5

r ex

22

NRPN 10 4

10 2

100

0.05

0.00

0.05

r ex

44

NRPN

10 4

10 2

800 600 400 200 0t/M

0.05

0.00

0.05

r ex

4,22

4, 22

50 0 50 100t/M

10 6

10 4

10 2

q = 1/2

101

r ex

11

10 3

100

0.50.00.5

r ex

22

10 3

100

0.20.00.2

r ex

33

10 3

100

0.1

0.0

0.1

r ex

44

10 3

100

800 600 400 200 0t/M

0.050.000.05

r ex

4,22

0 50 100t/M

10 6

10 3

• early inspiral: agreement with PN prediction (Yagi et al ’11)

• modulated ringdown (frequency domain so far only for Schwarzschild!)

• superposition of scalar-led and gravitational-led modes• quality factors different for pure Kerr and Kerr + GWs

H. Witek (KCL) 12 / 15

Page 13: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Validity of EFT approach

estimate second order effects: G(2)ab = 1

2Teffab

(g

(0)ab ,Φ

(1))

Instantaneous validity

• compare energy fluxes

• |εInst| .√

2 EGW

E (2)

Secular effects

• compare phase evolution

• |εSec| .√

2φ(0)(t)φ(2)(t)

with φ(k) =∫dtΩ(k)

800 700 600 500 400 300 200 100 0(t tmerger)/M

10 2

10 1

100

||

Inst, q = 1sec, q = 1

Inst, q = 1/2sec, q = 1/2

Inst, q = 1/4sec, q = 1/4

H. Witek (KCL) 13 / 15

Page 14: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Observational constraints

non-detection of dephasing ⇒ bound on GB coupling: |ε| = |αGB

4M2 | .√

∆φdet

φ(2)

104

105

|GB

| [km

] M = 105MLISA, q = 1LISA, q = 1/2LISA, q = 1/4

800 700 600 500 400 300 200 100 0(t tmerger)/M

100

101

102

|GB

| [km

] M = 20M LIGO, q = 1LIGO, q = 1/2LIGO, q = 1/4

3G, q = 13G, q = 1/23G, q = 1/4

• e.g.: GW151226-type system: αGB,LIGO . 2.7km αGB,3G . 1.5km

⇒ 2− 4 times better than exisiting constraints

• bounds improve for smaller-mass systems & smaller mass ratio

H. Witek (KCL) 14 / 15

Page 15: Black-hole dynamics in extensions of general relativity€¦ · EdGB Init scalar eld initial data EdGB Evol scalar eld evolution H. Witek (KCL) 10 / 15. Numerical simulations in EdGB

Take home message• GWs as new observational channel for beyond-standard model physics

• BUT: limited by our lack of knowledge of the merger phase in beyond-GR⇒ need novel analytic & numerical methods to model waveforms

• interested?consider joining the Einstein Toolkit group “Cosmology and particles”

• here: first binary black hole evolutions in EdGB• numerical infrastructure available in Canuda• most stringent observational bounds so far• improvement for 3G detections (smaller mass with higher SNR)

• next steps to connect theories with observations⇒ more detailed analysis and comparison with observations⇒ complete waveforms (PN+NR+perturbations)⇒ actual searches or novel constraints

Thank you!

acknowledgements:

H. Witek (KCL) 15 / 15