1
Black Carbon Stocks in the United States Verena Jauss 1 , Johannes Lehmann 1 , Evelyn Krull 2 , Davit Solomon 1 , Bente Foereid 1 1 Crop and Soil Sciences, Cornell University, USA, 2 CSIRO Land and Water, Australia in gradients at LTER sites Conclusions BC content in top-soil was highest in the Alaska LTER site, BC content decreased with soil depth at most sites Black carbon content cannot be predicted from total carbon content Adirondacks mountain range in the north-east of New York State showed higher BC contents than adjacent lowland areas Results ndon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379 ndon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379 ndon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379 ndon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379 ndon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379 ockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Tech DOI: 10.1021/es903016y Black carbon (BC) is produced in fires and is ubiquitous in the environment BC degrades slowly in the environment, and is therefore important in the carbon cycle To model black carbon in the carbon cycle, current stocks must be known Here we estimate BC stocks in the United States Total C arbon Organic C arbon Black C arbon -80 -78 -76 -74 -72 -70 -68 40 42 44 46 48 50 Longitude Latitude P redicted B lack C arbon C oncentrations in the N ortheastU nited S tates Concentration 0 0.5 1 1.5 0.4 0.3 0.2 0 0.7 1.4 0 0.2 0.5 0.3 0.6 0.4 0.2 0.5 0.1 0.6 0.4 0.3 0.3 0.4 0.3 0.4 0.3 0.2 0.2 0.3 0.6 0.3 0.3 0.4 0.3 0.7 0.6 0.3 0.3 0.5 0.2 0.5 0.4 0.7 0.4 0.2 0.2 0.3 0.6 0.4 0.3 0.3 0.7 0.3 0.5 0.1 0.3 0.4 0.3 0.5 0.6 1 0.6 0.1 0.3 0.2 0.5 0.7 0.6 0.3 0.3 0.5 0.2 0.6 0.1 0.3 0.3 0.8 0 0.2 0.1 0.5 0.3 0.5 1.1 0.4 0.3 0.2 0.5 0.5 0.5 0.4 0.5 0.5 0.3 0.4 0.4 0.3 0.6 0.4 0.2 0.1 0.4 0 0.4 0.2 0 0.6 0.3 0.2 0 0.2 0.7 0.4 0.1 0.3 0.4 0.2 0.5 0.3 0.5 0.4 0.2 0.6 0 0.3 0.5 0.2 0.1 0.4 0.9 0.5 0.4 0.3 0.9 1.1 0.6 0.2 0.1 0.3 0.4 0.3 0.4 0.8 0.2 0.4 0.2 0.7 0.2 0.1 0.3 0.6 0.2 0.6 0.2 0.4 0.5 0.6 0.5 0.2 0 0.7 0.5 0.2 0.1 0.4 0.6 0.6 0.2 0.2 0.6 Soil depth (cm) 0 50 100 150 200 250 Charcontent (% ) -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Alaska Oregon Kansas Georgia New M exico C in USGS stored samples 0 2 4 6 8 10 12 14 0.0 0.4 0.8 1.2 OC Char 0 5 10 15 0.0 0.4 0.8 1.2 C Char -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.4 0.8 1.2 TotN Char 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.4 0.8 1.2 S Char distance sem ivariance 0.01 0.02 0.03 0.04 0.05 0.06 1 2 3 4 BC as a function of soil carbon at the Alaska LTER site BC content as a function of soil depth at the visited LTER sites Interpolated soil BC content for New York State based on interpolation of USGS samples Interpolated maps from Coweeta LTER site

Black Carbon Stocks in the United States

  • Upload
    lieu

  • View
    28

  • Download
    3

Embed Size (px)

DESCRIPTION

Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16 :1366-1379. - PowerPoint PPT Presentation

Citation preview

Page 1: Black Carbon Stocks in the United States

Black Carbon Stocks in the United StatesVerena Jauss1, Johannes Lehmann1, Evelyn Krull2, Davit Solomon1, Bente Foereid1

1Crop and Soil Sciences, Cornell University, USA, 2CSIRO Land and Water, Australia

BC in gradients at LTER sites

Conclusions•BC content in top-soil was highest in the Alaska LTER site, BC content decreased with soil depth at most sites•Black carbon content cannot be predicted from total carbon content•Adirondacks mountain range in the north-east of New York State showed higher BC contents than adjacent lowland areas

Results

Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379Major J, Lehmann J, Rondon M, Goodale C (2010a) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16:1366-1379Nguyen B, Lehmann J, Hockaday WC, Joseph S, Masiello CA (2010) Temperature sensitivity of black carbon decomposition and oxidation. Environ Sci Tech DOI: 10.1021/es903016y

•Black carbon (BC) is produced in fires and is ubiquitous in the environment•BC degrades slowly in the environment, and is therefore important in the carbon cycle•To model black carbon in the carbon cycle, current stocks must be known•Here we estimate BC stocks in the United States

Total CarbonOrganic Carbon

Black Carbon

-80 -78 -76 -74 -72 -70 -68

4042

4446

4850

Longitude

Latit

ude

Predicted Black Carbon Concentrationsin the Northeast United States

Concentration

00.511.5

0.4

0.3

0.2

0

0.7

1.4

0

0.2

0.5

0.3

0.6

0.4

0.2

0.5

0.1

0.6

0.4

0.3

0.3

0.4

0.3

0.4

0.3

0.2

0.2

0.3

0.6

0.3

0.3

0.4

0.3

0.7

0.6

0.3

0.3

0.5

0.2

0.5

0.4

0.7

0.4

0.2

0.2 0.30.6

0.4

0.3

0.30.7

0.3

0.5

0.1

0.3

0.4

0.3

0.5

0.6

1

0.6

0.1

0.3

0.2

0.5

0.7

0.6

0.3

0.3

0.5

0.2

0.6

0.1

0.3

0.3

0.8

0

0.2

0.1

0.5

0.3

0.5

1.1

0.4

0.3

0.2

0.5

0.5

0.5

0.4

0.5

0.5

0.3

0.4

0.4

0.30.6

0.4

0.2

0.1

0.4

0

0.4

0.2

0

0.6

0.3

0.2

00.2

0.7

0.4

0.1

0.3

0.4

0.2

0.5

0.3

0.5

0.4

0.2

0.6

0

0.3

0.5

0.2

0.1

0.40.9

0.5

0.4

0.3

0.9

1.1

0.6

0.2

0.1

0.3

0.4

0.3

0.4

0.8

0.2

0.4

0.2

0.7

0.2

0.1

0.3

0.6

0.2

0.6

0.2

0.4

0.5

0.6

0.5

0.2

0

0.7

0.5

0.2

0.1

0.4

0.6

0.60.2

0.2

0.6

Soil depth (cm)

0 50 100 150 200 250

Cha

r con

tent

(%)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AlaskaOregon KansasGeorgiaNew Mexico

BC in USGS stored samples

0 2 4 6 8 10 12 14

0.0

0.4

0.8

1.2

OC

Cha

r

0 5 10 15

0.0

0.4

0.8

1.2

C

Cha

r

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

1.2

TotN

Cha

r

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.4

0.8

1.2

S

Cha

r

distance

sem

ivar

ianc

e

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4

BC as a function of soil carbon at the Alaska LTER site

BC content as a function of soil depth at the visited LTER sites

Interpolated soil BC content for New York State based on interpolation of USGS samples

Interpolated maps from Coweeta LTER site