16
Black Body Radiation 2 3 8 (,) osc Td E d c Spectral Density Function osc E ve. energy of an scillating dipole osc E kT 2 3 8 (,) Td kT d c Energy emitted per unit volume, in over frequency range dv at v, as a function of temperature. osc E nh rgy is quantized, and proportional to frequency 1 osc h kT h E e 3 3 8 1 (,) 1 h kT h Td d c e 2 3 0 8 / 0 0 0 0 0 0 0 T kT c d T T T Classical Theory predicts that total energy emitted is infinite above 0 K

Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

Black Body Radiation

2

3

8( , ) oscT d E d

c

Spectral Density Function

oscEAve. energy of anoscillating dipole

oscE kT

2

3

8( , )T d kT d

c

Energy emitted per unit volume, in over frequency range dv at v, as a function of temperature.

oscE nhEnergy is quantized, and proportional to frequency

1osc h

kT

hE

e

3

3

8 1( , )

1h

kT

hT d d

ce

2 3 08 /

0 00

00

00

TkT c d

T

T

T

Classical Theory predicts that total energy emitted is infinite above 0 K

Page 2: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

Photoelectric EffectClassical predictions fail to account for experimental observations

E hE

slope==h

Page 3: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

De Broglie Relation

h

p

Why not for particles?

For light

A proton moving at 0.001 C has wavelength?

34

12

27 5

6.626 101.33 10

1.66 10 3.0 10

h h Jsm

mp mv kg s

A 100 g baseball moving at 10 m/s has wavelength?

34

346.626 106.626 10

0.1 10 /

h h Jsm

p mv kg m s

~1000 times its radius

Page 4: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

Diffraction

sinn

a

b a

Page 5: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

The Double Slit Experiment

A single electron exhibits interference behaviour ???

Page 6: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

Emission Spectrum of H

Classical theory predicts that any orbital trajectoryof an electron is unstable as it looses energy through radiation.

Page 7: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

13_01fig_PChem.jpg

Energy Levels and The Boltzmann Distribution

System behaves as having a continuous energy spectrum when E≤kT

1i

j

if E kTn

if E kTn

Page 8: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

The Schrödinger Equation

2( ( ))( ( )) ( ( )) 2 ( ( ( )))

2n

n n n n n

p x tE V x t p x t m E V x t

m

2 ( )n

h h

p m E V

2 2

2 2 2

1 ( , ) ( , )d x t d x t

v dt dx

22

2

( )( ) 0

d xk x

dx

2 2

2 2

( ) 4( ) 0

d xx

dx

( , ) ( ) ( )x t x t

2k

Consider the space p dependent

Recall

1st Harmonic

Page 9: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

The Schrödinger Equation22

2 2

8 ( ( ))( )( ) 0nm E V xd xx

dx h

2 2

2 2

( )( ( )) ( ) 0

8 n

h d xE V x x

m dx

2 2

2

( )( ) ( ) ( )

2 n

d xV x x E x

m dx

( ) ( )n n nH x E x

2 2 2

2

ˆˆ ( ) ( )2 2

d pH V x V x

m dx m

Eigen Relationship

ˆd

p idx

Page 10: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

The Time Dependent Schrödinger Equation

22 2

2

( )( ) 0nn

d tv k t

dt

Consider the time dependent part

22

2

( )( ) 0n

n n

d tt

dt

22

2( ) ( ) 0n n n n n

d d dt i i t

dt dt dt

( ) 0 ( ) ( )n n n n n

d di t i t t

dt dt

( ( )) ( )n n n

di i t i t

dt

( ) ( )n n n n

dt i t

dt n nE

Page 11: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

( ) ( )n n n

dE t i t

dt

( ) ( ) ( ) ( )n n n n n

dx E t x i t

dt

( ) ( ) ( ) ( )n n n n n

dE x t i x t

dt

ˆ ( ) ( ) ( ) ( )n n n n

dH x t i x t

dt

ˆ ( , ) ( , )n n

dH x t i x t

dt

2

2( ) ( , ) ( , )

2 n n

d dV x x t i x t

m dx dt

The Time Dependent Schrödinger Equation

H Propagates the wave function through time

Page 12: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

( ) ( )n n n

dE t i t

dt

The Time Dependent Schrödinger Equation

( ) ( ) 0nn n

Edt t

dt i

( ) ( ) 0

( ) (0) n

n

i tn n

dt i t

dt

t e

( , ) ( ) ( ) (0) ( )ni tn n n n nx t x t e x

nn

E

* 2(0) such that (0) (0) 1 is constant in timen n n or

Im

Re

t

( )t(0)o

ro

Norm is preserved over time

Page 13: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

ˆ ( , ) ( , )d

H x t i x tdt

Propagators( )

( ) ( )df t

f t dt f t dtdt

ˆ( , ) ( , ) ( , ) ( , ) ( , )d i

x t dt x t x t dt x t H x t dtdt

ˆ1 ( , )iHdt x t

ˆ( , ) 1 ( , )

n

i Hx t x t

n

ˆ ˆ( , ) lim 1 ( , ) exp ( , )

n

n

i H iHx t x t x t

n

lim 1 exp( )n

n

xx

n

dtn

ˆ ( ) ( , )U x t

Page 14: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

ˆˆ ( , ) ( , ) ( , ) ( , )

d d HH x t i x t x t x t

dt dt i

Propagators

(0)( )

!

n n

nn

d f tf t

dt n

2 2

2 2

ˆ ˆ ˆ( , ) ( , ) ( , )

d H H Hx t x t x t

dt i i

ˆ

( , ) ( , )n n

n n n

d Hx t x t

dt i

ˆ( ,0)

( , ) ( ,0)! !

n n n n

n n nn n

d x t H tx t x

dt n i n

ˆ( ,0)

!

n n

n nn

H tx

i n

ˆ ( ) ( ,0) ( , ), such that ( ,0) ( , )U t x x t x x t

ˆˆ 1 ˆ( ,0) ( ,0) ( ) ( ,0)

!

n iHt

n

iHtx e x U t x

n

Unitary Transformation

Page 15: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

Summary

( ) ( )n n nH E r r

ˆ ( , ) ( , )d

H t i tdt

r r

( , ) (0) ( )i tt e r r

( , ) ( ) ( )t t r r

ˆ( , ) ( ) ( , )t U t r r

2

ˆ ˆ ˆ ˆ ( )2

H Vm

r

( ) ( )n n nH x E x

( , ) ( ) ( )x t x t

2 2

2ˆ ˆ( )

2

dH V x

m dx

ˆ( , ) ( ) ( , )x t U x t

ˆ ( , ) ( , )d

H x t i x tdt

( , ) (0) ( )i tx t e x

Page 16: Black Body Radiation Spectral Density Function Ave. energy of an oscillating dipole Energy emitted per unit volume, in over frequency range dv at v, as

Quantum Mechanics for Many Particles

1 2 3 1 2 3( , , ,..., ) ( , , ,..., )n k n n kH E r r r r r r r r

2

,

ˆ ˆ ˆ ˆ ( , )2 i i ij i j

i i ji

H Vm

r r

1 2 3 1 2 3( , , ,..., , ) ( , ) ( , ) ( , )... ( , )k kt t t t t r r r r r r r r

( , ) ( ) ( )i i it t r r

1r

(0,0,0)

3r

2r4r

m1m3

m2m4

z1z3

z4z2

2

2ˆ ( , )

4

i jij i j i j

o i j

z z eV

r r r r

r r