95
. . . . . . . . . Recap . . . . . . Karlin-Rabin . . . . . . . . . Asymptotics of LRT . . . . . Wald Test . Summary . . Biostatistics 602 - Statistical Inference Lecture 21 Asymptotics of LRT Wald Test Hyun Min Kang April 2nd, 2013 Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 1 / 25

Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

.

......

Biostatistics 602 - Statistical InferenceLecture 21

Asymptotics of LRTWald Test

Hyun Min Kang

April 2nd, 2013

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 1 / 25

Page 2: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Last Lecture

• What is a Uniformly Most Powerful (UMP) Test?• Does UMP level α test always exist for simple hypothesis testing?• For composite hypothesis, which property makes it possible to

construct a UMP level α test?• What is a sufficient condition for an exponential family to have MLR

property?• For one-sided composite hypothesis testing, if a sufficient statistic

satisfies MLR property, how can a UMP level α test be constructed?

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 2 / 25

Page 3: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Last Lecture

• What is a Uniformly Most Powerful (UMP) Test?

• Does UMP level α test always exist for simple hypothesis testing?• For composite hypothesis, which property makes it possible to

construct a UMP level α test?• What is a sufficient condition for an exponential family to have MLR

property?• For one-sided composite hypothesis testing, if a sufficient statistic

satisfies MLR property, how can a UMP level α test be constructed?

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 2 / 25

Page 4: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Last Lecture

• What is a Uniformly Most Powerful (UMP) Test?• Does UMP level α test always exist for simple hypothesis testing?

• For composite hypothesis, which property makes it possible toconstruct a UMP level α test?

• What is a sufficient condition for an exponential family to have MLRproperty?

• For one-sided composite hypothesis testing, if a sufficient statisticsatisfies MLR property, how can a UMP level α test be constructed?

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 2 / 25

Page 5: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Last Lecture

• What is a Uniformly Most Powerful (UMP) Test?• Does UMP level α test always exist for simple hypothesis testing?• For composite hypothesis, which property makes it possible to

construct a UMP level α test?

• What is a sufficient condition for an exponential family to have MLRproperty?

• For one-sided composite hypothesis testing, if a sufficient statisticsatisfies MLR property, how can a UMP level α test be constructed?

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 2 / 25

Page 6: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Last Lecture

• What is a Uniformly Most Powerful (UMP) Test?• Does UMP level α test always exist for simple hypothesis testing?• For composite hypothesis, which property makes it possible to

construct a UMP level α test?• What is a sufficient condition for an exponential family to have MLR

property?

• For one-sided composite hypothesis testing, if a sufficient statisticsatisfies MLR property, how can a UMP level α test be constructed?

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 2 / 25

Page 7: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Last Lecture

• What is a Uniformly Most Powerful (UMP) Test?• Does UMP level α test always exist for simple hypothesis testing?• For composite hypothesis, which property makes it possible to

construct a UMP level α test?• What is a sufficient condition for an exponential family to have MLR

property?• For one-sided composite hypothesis testing, if a sufficient statistic

satisfies MLR property, how can a UMP level α test be constructed?

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 2 / 25

Page 8: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Uniformly Most Powerful Test (UMP)

.Definition..

......

Let C be a class of tests between H0 : θ ∈ Ω vs H1 : θ ∈ Ωc0. A test in C,

with power function β(θ) is uniformly most powerful (UMP) test in class Cif β(θ) ≥ β′(θ) for every θ ∈ Ωc

0 and every β′(θ), which is a powerfunction of another test in C..UMP level α test..

......Consider C be the set of all the level α test. The UMP test in this class iscalled a UMP level α test.

UMP level α test has the smallest type II error probability for any θ ∈ Ωc0

in this class.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 3 / 25

Page 9: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Uniformly Most Powerful Test (UMP)

.Definition..

......

Let C be a class of tests between H0 : θ ∈ Ω vs H1 : θ ∈ Ωc0. A test in C,

with power function β(θ) is uniformly most powerful (UMP) test in class Cif β(θ) ≥ β′(θ) for every θ ∈ Ωc

0 and every β′(θ), which is a powerfunction of another test in C..UMP level α test..

......Consider C be the set of all the level α test. The UMP test in this class iscalled a UMP level α test.

UMP level α test has the smallest type II error probability for any θ ∈ Ωc0

in this class.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 3 / 25

Page 10: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Uniformly Most Powerful Test (UMP)

.Definition..

......

Let C be a class of tests between H0 : θ ∈ Ω vs H1 : θ ∈ Ωc0. A test in C,

with power function β(θ) is uniformly most powerful (UMP) test in class Cif β(θ) ≥ β′(θ) for every θ ∈ Ωc

0 and every β′(θ), which is a powerfunction of another test in C..UMP level α test..

......Consider C be the set of all the level α test. The UMP test in this class iscalled a UMP level α test.

UMP level α test has the smallest type II error probability for any θ ∈ Ωc0

in this class.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 3 / 25

Page 11: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Neyman-Pearson Lemma.Theorem 8.3.12 - Neyman-Pearson Lemma..

......

Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmfcorresponding the θi is f(x|θi), i = 0, 1, using a test with rejection regionR that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0) (8.3.1) andx ∈ Rc if f(x|θ1) < kf(x|θ0) (8.3.2)

For some k ≥ 0 and α = Pr(X ∈ R|θ0), Then,• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α

test• (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k > 0,

then every UMP level α test is a size α test (satisfies 8.3.2), andevery UMP level α test satisfies 8.3.1 except perhaps on a set Asatisfying Pr(X ∈ A|θ0) = Pr(X ∈ A|θ1) = 0.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 4 / 25

Page 12: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Neyman-Pearson Lemma.Theorem 8.3.12 - Neyman-Pearson Lemma..

......

Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmfcorresponding the θi is f(x|θi), i = 0, 1, using a test with rejection regionR that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0) (8.3.1) and

x ∈ Rc if f(x|θ1) < kf(x|θ0) (8.3.2)

For some k ≥ 0 and α = Pr(X ∈ R|θ0), Then,• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α

test• (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k > 0,

then every UMP level α test is a size α test (satisfies 8.3.2), andevery UMP level α test satisfies 8.3.1 except perhaps on a set Asatisfying Pr(X ∈ A|θ0) = Pr(X ∈ A|θ1) = 0.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 4 / 25

Page 13: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Neyman-Pearson Lemma.Theorem 8.3.12 - Neyman-Pearson Lemma..

......

Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmfcorresponding the θi is f(x|θi), i = 0, 1, using a test with rejection regionR that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0) (8.3.1) andx ∈ Rc if f(x|θ1) < kf(x|θ0) (8.3.2)

For some k ≥ 0 and α = Pr(X ∈ R|θ0), Then,• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α

test• (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k > 0,

then every UMP level α test is a size α test (satisfies 8.3.2), andevery UMP level α test satisfies 8.3.1 except perhaps on a set Asatisfying Pr(X ∈ A|θ0) = Pr(X ∈ A|θ1) = 0.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 4 / 25

Page 14: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Neyman-Pearson Lemma.Theorem 8.3.12 - Neyman-Pearson Lemma..

......

Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmfcorresponding the θi is f(x|θi), i = 0, 1, using a test with rejection regionR that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0) (8.3.1) andx ∈ Rc if f(x|θ1) < kf(x|θ0) (8.3.2)

For some k ≥ 0 and α = Pr(X ∈ R|θ0), Then,

• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level αtest

• (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k > 0,then every UMP level α test is a size α test (satisfies 8.3.2), andevery UMP level α test satisfies 8.3.1 except perhaps on a set Asatisfying Pr(X ∈ A|θ0) = Pr(X ∈ A|θ1) = 0.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 4 / 25

Page 15: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Neyman-Pearson Lemma.Theorem 8.3.12 - Neyman-Pearson Lemma..

......

Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmfcorresponding the θi is f(x|θi), i = 0, 1, using a test with rejection regionR that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0) (8.3.1) andx ∈ Rc if f(x|θ1) < kf(x|θ0) (8.3.2)

For some k ≥ 0 and α = Pr(X ∈ R|θ0), Then,• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α

test

• (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k > 0,then every UMP level α test is a size α test (satisfies 8.3.2), andevery UMP level α test satisfies 8.3.1 except perhaps on a set Asatisfying Pr(X ∈ A|θ0) = Pr(X ∈ A|θ1) = 0.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 4 / 25

Page 16: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Neyman-Pearson Lemma.Theorem 8.3.12 - Neyman-Pearson Lemma..

......

Consider testing H0 : θ = θ0 vs. H1 : θ = θ1 where the pdf or pmfcorresponding the θi is f(x|θi), i = 0, 1, using a test with rejection regionR that satisfies

x ∈ R if f(x|θ1) > kf(x|θ0) (8.3.1) andx ∈ Rc if f(x|θ1) < kf(x|θ0) (8.3.2)

For some k ≥ 0 and α = Pr(X ∈ R|θ0), Then,• (Sufficiency) Any test that satisfies 8.3.1 and 8.3.2 is a UMP level α

test• (Necessity) if there exist a test satisfying 8.3.1 and 8.3.2 with k > 0,

then every UMP level α test is a size α test (satisfies 8.3.2), andevery UMP level α test satisfies 8.3.1 except perhaps on a set Asatisfying Pr(X ∈ A|θ0) = Pr(X ∈ A|θ1) = 0.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 4 / 25

Page 17: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Monotone Likelihood Ratio

.Definition..

......

A family of pdfs or pmfs g(t|θ) : θ ∈ Ω for a univariate random variableT with real-valued parameter θ have a monotone likelihood ratio if g(t|θ2)

g(t|θ1)is an increasing (or non-decreasing) function of t for every θ2 > θ1 ont : g(t|θ1) > 0 or g(t|θ2) > 0.

Note: we may define MLR using decreasing function of t. But all followingtheorems are stated according to the definition.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 5 / 25

Page 18: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Monotone Likelihood Ratio

.Definition..

......

A family of pdfs or pmfs g(t|θ) : θ ∈ Ω for a univariate random variableT with real-valued parameter θ have a monotone likelihood ratio if g(t|θ2)

g(t|θ1)is an increasing (or non-decreasing) function of t for every θ2 > θ1 ont : g(t|θ1) > 0 or g(t|θ2) > 0.

Note: we may define MLR using decreasing function of t. But all followingtheorems are stated according to the definition.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 5 / 25

Page 19: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Karlin-Rabin Theorem

.Theorem 8.1.17..

......

Suppose T(X) is a sufficient statistic for θ and the family g(t|θ) : θ ∈ Ωis an MLR family. Then

..1 For testing H0 : θ ≤ θ0 vs H1 : θ > θ0, the UMP level α test is givenby rejecting H0 is and only if T > t0 where α = Pr(T > t0|θ0).

..2 For testing H0 : θ ≥ θ0 vs H1 : θ < θ0, the UMP level α test is givenby rejecting H0 if and only if T < t0 where α = Pr(T < t0|θ0).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 6 / 25

Page 20: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Karlin-Rabin Theorem

.Theorem 8.1.17..

......

Suppose T(X) is a sufficient statistic for θ and the family g(t|θ) : θ ∈ Ωis an MLR family. Then

..1 For testing H0 : θ ≤ θ0 vs H1 : θ > θ0, the UMP level α test is givenby rejecting H0 is and only if T > t0 where α = Pr(T > t0|θ0).

..2 For testing H0 : θ ≥ θ0 vs H1 : θ < θ0, the UMP level α test is givenby rejecting H0 if and only if T < t0 where α = Pr(T < t0|θ0).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 6 / 25

Page 21: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Karlin-Rabin Theorem

.Theorem 8.1.17..

......

Suppose T(X) is a sufficient statistic for θ and the family g(t|θ) : θ ∈ Ωis an MLR family. Then

..1 For testing H0 : θ ≤ θ0 vs H1 : θ > θ0, the UMP level α test is givenby rejecting H0 is and only if T > t0 where α = Pr(T > t0|θ0).

..2 For testing H0 : θ ≥ θ0 vs H1 : θ < θ0, the UMP level α test is givenby rejecting H0 if and only if T < t0 where α = Pr(T < t0|θ0).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 6 / 25

Page 22: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known MeanXi

i.i.d.∼N (µ0, σ2) where σ2 is unknown and µ0 is known. Find the UMP

level α test for testing H0 : σ2 ≤ σ2

0 vs. H1 : σ2 > σ2

0. LetT =

∑ni=1(Xi − µ0)

2 is sufficient for σ2.

To check whether T has MLRproperty, we need to find g(t|σ2).

Xi − µ0

σ∼ N (0, 1)(

Xi − µ0

σ

)2

∼ χ21

Y = T/σ2 =n∑

i=1

(Xi − µ0

σ

)2

∼ χ2n

fY(y) =1

Γ(n2

)2n/2 y

n2−1e−

y2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 25

Page 23: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known MeanXi

i.i.d.∼N (µ0, σ2) where σ2 is unknown and µ0 is known. Find the UMP

level α test for testing H0 : σ2 ≤ σ2

0 vs. H1 : σ2 > σ2

0. LetT =

∑ni=1(Xi − µ0)

2 is sufficient for σ2. To check whether T has MLRproperty, we need to find g(t|σ2).

Xi − µ0

σ∼ N (0, 1)(

Xi − µ0

σ

)2

∼ χ21

Y = T/σ2 =n∑

i=1

(Xi − µ0

σ

)2

∼ χ2n

fY(y) =1

Γ(n2

)2n/2 y

n2−1e−

y2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 25

Page 24: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known MeanXi

i.i.d.∼N (µ0, σ2) where σ2 is unknown and µ0 is known. Find the UMP

level α test for testing H0 : σ2 ≤ σ2

0 vs. H1 : σ2 > σ2

0. LetT =

∑ni=1(Xi − µ0)

2 is sufficient for σ2. To check whether T has MLRproperty, we need to find g(t|σ2).

Xi − µ0

σ∼ N (0, 1)

(Xi − µ0

σ

)2

∼ χ21

Y = T/σ2 =n∑

i=1

(Xi − µ0

σ

)2

∼ χ2n

fY(y) =1

Γ(n2

)2n/2 y

n2−1e−

y2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 25

Page 25: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known MeanXi

i.i.d.∼N (µ0, σ2) where σ2 is unknown and µ0 is known. Find the UMP

level α test for testing H0 : σ2 ≤ σ2

0 vs. H1 : σ2 > σ2

0. LetT =

∑ni=1(Xi − µ0)

2 is sufficient for σ2. To check whether T has MLRproperty, we need to find g(t|σ2).

Xi − µ0

σ∼ N (0, 1)(

Xi − µ0

σ

)2

∼ χ21

Y = T/σ2 =n∑

i=1

(Xi − µ0

σ

)2

∼ χ2n

fY(y) =1

Γ(n2

)2n/2 y

n2−1e−

y2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 25

Page 26: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known MeanXi

i.i.d.∼N (µ0, σ2) where σ2 is unknown and µ0 is known. Find the UMP

level α test for testing H0 : σ2 ≤ σ2

0 vs. H1 : σ2 > σ2

0. LetT =

∑ni=1(Xi − µ0)

2 is sufficient for σ2. To check whether T has MLRproperty, we need to find g(t|σ2).

Xi − µ0

σ∼ N (0, 1)(

Xi − µ0

σ

)2

∼ χ21

Y = T/σ2 =n∑

i=1

(Xi − µ0

σ

)2

∼ χ2n

fY(y) =1

Γ(n2

)2n/2 y

n2−1e−

y2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 25

Page 27: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known MeanXi

i.i.d.∼N (µ0, σ2) where σ2 is unknown and µ0 is known. Find the UMP

level α test for testing H0 : σ2 ≤ σ2

0 vs. H1 : σ2 > σ2

0. LetT =

∑ni=1(Xi − µ0)

2 is sufficient for σ2. To check whether T has MLRproperty, we need to find g(t|σ2).

Xi − µ0

σ∼ N (0, 1)(

Xi − µ0

σ

)2

∼ χ21

Y = T/σ2 =n∑

i=1

(Xi − µ0

σ

)2

∼ χ2n

fY(y) =1

Γ(n2

)2n/2 y

n2−1e−

y2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 7 / 25

Page 28: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)

fT(t) =1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ2

∣∣∣∣dydt

∣∣∣∣ dt

=1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ21

σ2dt

=t n2−1

Γ(n2

)2n/2

(1

σ2

) n2

e−t

2σ2 dt

= h(t)c(σ2) exp[w(σ2)t]

where w(σ2) = − 12σ2 is an increasing function in σ2. Therefore,

T =∑n

i=1(Xi − µ)2 has the MLR property.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 8 / 25

Page 29: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)

fT(t) =1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ2

∣∣∣∣dydt

∣∣∣∣ dt

=1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ21

σ2dt

=t n2−1

Γ(n2

)2n/2

(1

σ2

) n2

e−t

2σ2 dt

= h(t)c(σ2) exp[w(σ2)t]

where w(σ2) = − 12σ2 is an increasing function in σ2. Therefore,

T =∑n

i=1(Xi − µ)2 has the MLR property.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 8 / 25

Page 30: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)

fT(t) =1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ2

∣∣∣∣dydt

∣∣∣∣ dt

=1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ21

σ2dt

=t n2−1

Γ(n2

)2n/2

(1

σ2

) n2

e−t

2σ2 dt

= h(t)c(σ2) exp[w(σ2)t]

where w(σ2) = − 12σ2 is an increasing function in σ2. Therefore,

T =∑n

i=1(Xi − µ)2 has the MLR property.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 8 / 25

Page 31: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)

fT(t) =1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ2

∣∣∣∣dydt

∣∣∣∣ dt

=1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ21

σ2dt

=t n2−1

Γ(n2

)2n/2

(1

σ2

) n2

e−t

2σ2 dt

= h(t)c(σ2) exp[w(σ2)t]

where w(σ2) = − 12σ2 is an increasing function in σ2.

Therefore,T =

∑ni=1(Xi − µ)2 has the MLR property.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 8 / 25

Page 32: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)

fT(t) =1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ2

∣∣∣∣dydt

∣∣∣∣ dt

=1

Γ(n2

)2n/2

(tσ2

) n2−1

e−t

2σ21

σ2dt

=t n2−1

Γ(n2

)2n/2

(1

σ2

) n2

e−t

2σ2 dt

= h(t)c(σ2) exp[w(σ2)t]

where w(σ2) = − 12σ2 is an increasing function in σ2. Therefore,

T =∑n

i=1(Xi − µ)2 has the MLR property.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 8 / 25

Page 33: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)By Karlin-Rabin Theorem, UMP level α rejects s H0 if and only if T > t0where t0 is chosen such that α = Pr(T > t0|σ2

0).

Note that Tσ2 ∼ χ2

n

Pr(T > t0|σ20) = Pr

(Tσ20

>t0σ20

∣∣∣∣σ20

)Tσ20

∼ χ2n

Pr(χ2

n >t0σ20

)= α

t0σ20

= χ2n,α

t0 = σ20χ

2n,α

where χ2n,α satisfies

∫∞χ2

n,αfχ2

n(x)dx = α.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 9 / 25

Page 34: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)By Karlin-Rabin Theorem, UMP level α rejects s H0 if and only if T > t0where t0 is chosen such that α = Pr(T > t0|σ2

0).Note that T

σ2 ∼ χ2n

Pr(T > t0|σ20) = Pr

(Tσ20

>t0σ20

∣∣∣∣σ20

)

Tσ20

∼ χ2n

Pr(χ2

n >t0σ20

)= α

t0σ20

= χ2n,α

t0 = σ20χ

2n,α

where χ2n,α satisfies

∫∞χ2

n,αfχ2

n(x)dx = α.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 9 / 25

Page 35: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)By Karlin-Rabin Theorem, UMP level α rejects s H0 if and only if T > t0where t0 is chosen such that α = Pr(T > t0|σ2

0).Note that T

σ2 ∼ χ2n

Pr(T > t0|σ20) = Pr

(Tσ20

>t0σ20

∣∣∣∣σ20

)Tσ20

∼ χ2n

Pr(χ2

n >t0σ20

)= α

t0σ20

= χ2n,α

t0 = σ20χ

2n,α

where χ2n,α satisfies

∫∞χ2

n,αfχ2

n(x)dx = α.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 9 / 25

Page 36: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)By Karlin-Rabin Theorem, UMP level α rejects s H0 if and only if T > t0where t0 is chosen such that α = Pr(T > t0|σ2

0).Note that T

σ2 ∼ χ2n

Pr(T > t0|σ20) = Pr

(Tσ20

>t0σ20

∣∣∣∣σ20

)Tσ20

∼ χ2n

Pr(χ2

n >t0σ20

)= α

t0σ20

= χ2n,α

t0 = σ20χ

2n,α

where χ2n,α satisfies

∫∞χ2

n,αfχ2

n(x)dx = α.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 9 / 25

Page 37: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)By Karlin-Rabin Theorem, UMP level α rejects s H0 if and only if T > t0where t0 is chosen such that α = Pr(T > t0|σ2

0).Note that T

σ2 ∼ χ2n

Pr(T > t0|σ20) = Pr

(Tσ20

>t0σ20

∣∣∣∣σ20

)Tσ20

∼ χ2n

Pr(χ2

n >t0σ20

)= α

t0σ20

= χ2n,α

t0 = σ20χ

2n,α

where χ2n,α satisfies

∫∞χ2

n,αfχ2

n(x)dx = α.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 9 / 25

Page 38: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Normal Example with Known Mean (cont’d)By Karlin-Rabin Theorem, UMP level α rejects s H0 if and only if T > t0where t0 is chosen such that α = Pr(T > t0|σ2

0).Note that T

σ2 ∼ χ2n

Pr(T > t0|σ20) = Pr

(Tσ20

>t0σ20

∣∣∣∣σ20

)Tσ20

∼ χ2n

Pr(χ2

n >t0σ20

)= α

t0σ20

= χ2n,α

t0 = σ20χ

2n,α

where χ2n,α satisfies

∫∞χ2

n,αfχ2

n(x)dx = α.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 9 / 25

Page 39: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Remarks

• For many problems, UMP level α test does not exist (Example8.3.19).

• In such cases, we can restrict our search among a subset of tests, forexample, all unbiased tests.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 10 / 25

Page 40: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Remarks

• For many problems, UMP level α test does not exist (Example8.3.19).

• In such cases, we can restrict our search among a subset of tests, forexample, all unbiased tests.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 10 / 25

Page 41: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Distribution of LRT

λ(x) =supΩ0

L(θ|x)supΩ L(θ|x)

LRT level α test procedure rejects H0 if and only if λ(x) ≤ c. c is chosensuch that

supθ∈Ω0

Pr(λ(x) ≤ c) ≤ α

Usually, it is difficult to derive the distribution of λ(x) and to solve theequation of c.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 11 / 25

Page 42: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Distribution of LRT

λ(x) =supΩ0

L(θ|x)supΩ L(θ|x)

LRT level α test procedure rejects H0 if and only if λ(x) ≤ c. c is chosensuch that

supθ∈Ω0

Pr(λ(x) ≤ c) ≤ α

Usually, it is difficult to derive the distribution of λ(x) and to solve theequation of c.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 11 / 25

Page 43: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Distribution of LRT

λ(x) =supΩ0

L(θ|x)supΩ L(θ|x)

LRT level α test procedure rejects H0 if and only if λ(x) ≤ c. c is chosensuch that

supθ∈Ω0

Pr(λ(x) ≤ c) ≤ α

Usually, it is difficult to derive the distribution of λ(x) and to solve theequation of c.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 11 / 25

Page 44: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Distribution of LRT

λ(x) =supΩ0

L(θ|x)supΩ L(θ|x)

LRT level α test procedure rejects H0 if and only if λ(x) ≤ c. c is chosensuch that

supθ∈Ω0

Pr(λ(x) ≤ c) ≤ α

Usually, it is difficult to derive the distribution of λ(x) and to solve theequation of c.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 11 / 25

Page 45: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Asymptotics of LRT

.Theorem 10.3.1..

......

Consider testing H0 : θ = θ0 vs H1 : θ = θ0. Suppose X1, · · · ,Xn are iidsamples from f(x|θ), and θ is the MLE of θ, and f(x|θ) satisfies certain”regularity conditions” (e.g. see misc 10.6.2), then under H0:

−2 logλ(x) d→ χ21

as n → ∞.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 12 / 25

Page 46: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Asymptotics of LRT

.Theorem 10.3.1..

......

Consider testing H0 : θ = θ0 vs H1 : θ = θ0. Suppose X1, · · · ,Xn are iidsamples from f(x|θ), and θ is the MLE of θ, and f(x|θ) satisfies certain”regularity conditions” (e.g. see misc 10.6.2), then under H0:

−2 logλ(x) d→ χ21

as n → ∞.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 12 / 25

Page 47: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof

λ(x) =supθ∈Ω0

L(θ|x)supθ∈Ω L(θ|x) =

L(θ0|x)L(θ|x)

− 2λ(x) = −2 log(

L(θ0|x)L(θ|x)

)= −2 log L(θ0|x) + 2 log L(θ|x)= −2l(θ0|x) + 2l(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 13 / 25

Page 48: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof

λ(x) =supθ∈Ω0

L(θ|x)supθ∈Ω L(θ|x) =

L(θ0|x)L(θ|x)

− 2λ(x) = −2 log(

L(θ0|x)L(θ|x)

)

= −2 log L(θ0|x) + 2 log L(θ|x)= −2l(θ0|x) + 2l(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 13 / 25

Page 49: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof

λ(x) =supθ∈Ω0

L(θ|x)supθ∈Ω L(θ|x) =

L(θ0|x)L(θ|x)

− 2λ(x) = −2 log(

L(θ0|x)L(θ|x)

)= −2 log L(θ0|x) + 2 log L(θ|x)

= −2l(θ0|x) + 2l(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 13 / 25

Page 50: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof

λ(x) =supθ∈Ω0

L(θ|x)supθ∈Ω L(θ|x) =

L(θ0|x)L(θ|x)

− 2λ(x) = −2 log(

L(θ0|x)L(θ|x)

)= −2 log L(θ0|x) + 2 log L(θ|x)= −2l(θ0|x) + 2l(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 13 / 25

Page 51: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Expanding l(θ|x) around θ,

l(θ|x) = l(θ|x) + l′(θ|x)(θ − θ) + l′′(θ|x)(θ − θ)2

2+ · · ·

l′(θ|x) = 0 (assuming regularity condition)

l(θ0|x) ≈ l(θ|x) + l′′(θ|x)(θ0 − θ)2

2

− 2 logλ(x) = −2l(θ0|x) + 2l(θ|x)≈ −(θ0 − θ)2l′′(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 14 / 25

Page 52: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Expanding l(θ|x) around θ,

l(θ|x) = l(θ|x) + l′(θ|x)(θ − θ) + l′′(θ|x)(θ − θ)2

2+ · · ·

l′(θ|x) = 0 (assuming regularity condition)

l(θ0|x) ≈ l(θ|x) + l′′(θ|x)(θ0 − θ)2

2

− 2 logλ(x) = −2l(θ0|x) + 2l(θ|x)≈ −(θ0 − θ)2l′′(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 14 / 25

Page 53: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Expanding l(θ|x) around θ,

l(θ|x) = l(θ|x) + l′(θ|x)(θ − θ) + l′′(θ|x)(θ − θ)2

2+ · · ·

l′(θ|x) = 0 (assuming regularity condition)

l(θ0|x) ≈ l(θ|x) + l′′(θ|x)(θ0 − θ)2

2

− 2 logλ(x) = −2l(θ0|x) + 2l(θ|x)≈ −(θ0 − θ)2l′′(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 14 / 25

Page 54: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Expanding l(θ|x) around θ,

l(θ|x) = l(θ|x) + l′(θ|x)(θ − θ) + l′′(θ|x)(θ − θ)2

2+ · · ·

l′(θ|x) = 0 (assuming regularity condition)

l(θ0|x) ≈ l(θ|x) + l′′(θ|x)(θ0 − θ)2

2

− 2 logλ(x) = −2l(θ0|x) + 2l(θ|x)≈ −(θ0 − θ)2l′′(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 14 / 25

Page 55: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Expanding l(θ|x) around θ,

l(θ|x) = l(θ|x) + l′(θ|x)(θ − θ) + l′′(θ|x)(θ − θ)2

2+ · · ·

l′(θ|x) = 0 (assuming regularity condition)

l(θ0|x) ≈ l(θ|x) + l′′(θ|x)(θ0 − θ)2

2

− 2 logλ(x) = −2l(θ0|x) + 2l(θ|x)

≈ −(θ0 − θ)2l′′(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 14 / 25

Page 56: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Expanding l(θ|x) around θ,

l(θ|x) = l(θ|x) + l′(θ|x)(θ − θ) + l′′(θ|x)(θ − θ)2

2+ · · ·

l′(θ|x) = 0 (assuming regularity condition)

l(θ0|x) ≈ l(θ|x) + l′′(θ|x)(θ0 − θ)2

2

− 2 logλ(x) = −2l(θ0|x) + 2l(θ|x)≈ −(θ0 − θ)2l′′(θ|x)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 14 / 25

Page 57: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Because θ is MLE, under H0,

θ ∼ AN(θ0,

1

In(θ0)

)

(θ − θ0)√

In(θ0)d→ N (0, 1)

(θ − θ0)2In(θ0)

d→ χ21

Therefore,

−2 logλ(x) ≈ −(θ0 − θ)2l′′(θ|x)

= (θ − θ0)2In(θ0)

− 1n l′′(θ|x)1nIn(θ0)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 15 / 25

Page 58: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Because θ is MLE, under H0,

θ ∼ AN(θ0,

1

In(θ0)

)(θ − θ0)

√In(θ0)

d→ N (0, 1)

(θ − θ0)2In(θ0)

d→ χ21

Therefore,

−2 logλ(x) ≈ −(θ0 − θ)2l′′(θ|x)

= (θ − θ0)2In(θ0)

− 1n l′′(θ|x)1nIn(θ0)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 15 / 25

Page 59: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Because θ is MLE, under H0,

θ ∼ AN(θ0,

1

In(θ0)

)(θ − θ0)

√In(θ0)

d→ N (0, 1)

(θ − θ0)2In(θ0)

d→ χ21

Therefore,

−2 logλ(x) ≈ −(θ0 − θ)2l′′(θ|x)

= (θ − θ0)2In(θ0)

− 1n l′′(θ|x)1nIn(θ0)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 15 / 25

Page 60: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Because θ is MLE, under H0,

θ ∼ AN(θ0,

1

In(θ0)

)(θ − θ0)

√In(θ0)

d→ N (0, 1)

(θ − θ0)2In(θ0)

d→ χ21

Therefore,

−2 logλ(x) ≈ −(θ0 − θ)2l′′(θ|x)

= (θ − θ0)2In(θ0)

− 1n l′′(θ|x)1nIn(θ0)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 15 / 25

Page 61: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

Because θ is MLE, under H0,

θ ∼ AN(θ0,

1

In(θ0)

)(θ − θ0)

√In(θ0)

d→ N (0, 1)

(θ − θ0)2In(θ0)

d→ χ21

Therefore,

−2 logλ(x) ≈ −(θ0 − θ)2l′′(θ|x)

= (θ − θ0)2In(θ0)

− 1n l′′(θ|x)1nIn(θ0)

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 15 / 25

Page 62: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

−1

nl′′(θ|x) = −1

n

n∑i=1

∂2

∂θ2f(xi|θ)

∣∣∣∣∣θ=θ

P→ −E(

∂2

∂θ2f(x|θ)

)∣∣∣∣θ=θ0

= I(θ0)

− 1n l′′(θ|x)1nIn(θ0)

=− 1

n l′′(θ|x)I(θ0)

P→ 1

By Slutsky’s Theorem, under H0

−(θ − θ0)2l′′(θ|X)

d→ χ21

− 2 logλ(X)d→ χ2

1

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 16 / 25

Page 63: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

−1

nl′′(θ|x) = −1

n

n∑i=1

∂2

∂θ2f(xi|θ)

∣∣∣∣∣θ=θ

P→ −E(

∂2

∂θ2f(x|θ)

)∣∣∣∣θ=θ0

= I(θ0)

− 1n l′′(θ|x)1nIn(θ0)

=− 1

n l′′(θ|x)I(θ0)

P→ 1

By Slutsky’s Theorem, under H0

−(θ − θ0)2l′′(θ|X)

d→ χ21

− 2 logλ(X)d→ χ2

1

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 16 / 25

Page 64: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

−1

nl′′(θ|x) = −1

n

n∑i=1

∂2

∂θ2f(xi|θ)

∣∣∣∣∣θ=θ

P→ −E(

∂2

∂θ2f(x|θ)

)∣∣∣∣θ=θ0

= I(θ0)

− 1n l′′(θ|x)1nIn(θ0)

=− 1

n l′′(θ|x)I(θ0)

P→ 1

By Slutsky’s Theorem, under H0

−(θ − θ0)2l′′(θ|X)

d→ χ21

− 2 logλ(X)d→ χ2

1

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 16 / 25

Page 65: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

−1

nl′′(θ|x) = −1

n

n∑i=1

∂2

∂θ2f(xi|θ)

∣∣∣∣∣θ=θ

P→ −E(

∂2

∂θ2f(x|θ)

)∣∣∣∣θ=θ0

= I(θ0)

− 1n l′′(θ|x)1nIn(θ0)

=− 1

n l′′(θ|x)I(θ0)

P→ 1

By Slutsky’s Theorem, under H0

−(θ − θ0)2l′′(θ|X)

d→ χ21

− 2 logλ(X)d→ χ2

1

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 16 / 25

Page 66: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Proof (cont’d)

−1

nl′′(θ|x) = −1

n

n∑i=1

∂2

∂θ2f(xi|θ)

∣∣∣∣∣θ=θ

P→ −E(

∂2

∂θ2f(x|θ)

)∣∣∣∣θ=θ0

= I(θ0)

− 1n l′′(θ|x)1nIn(θ0)

=− 1

n l′′(θ|x)I(θ0)

P→ 1

By Slutsky’s Theorem, under H0

−(θ − θ0)2l′′(θ|X)

d→ χ21

− 2 logλ(X)d→ χ2

1

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 16 / 25

Page 67: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

ExampleXi

i.i.d.∼ Poisson(λ). Consider testing H0 : λ = λ0 vs H1 : λ = λ0.

UsingLRT,

λ(x) =L(λ0|x)

supλ L(λ|x)

MLE of λ is λ = X = 1n∑

Xi.

λ(x) =

∏ni=1

e−λ0λxi0

xi!∏ni=1

e−xxxixi!

=e−nλ0λ

∑xi

0

e−nxx∑

xi

= e−n(λ0−x)(λ0

x

)∑xi

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 17 / 25

Page 68: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

ExampleXi

i.i.d.∼ Poisson(λ). Consider testing H0 : λ = λ0 vs H1 : λ = λ0. UsingLRT,

λ(x) =L(λ0|x)

supλ L(λ|x)

MLE of λ is λ = X = 1n∑

Xi.

λ(x) =

∏ni=1

e−λ0λxi0

xi!∏ni=1

e−xxxixi!

=e−nλ0λ

∑xi

0

e−nxx∑

xi

= e−n(λ0−x)(λ0

x

)∑xi

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 17 / 25

Page 69: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

ExampleXi

i.i.d.∼ Poisson(λ). Consider testing H0 : λ = λ0 vs H1 : λ = λ0. UsingLRT,

λ(x) =L(λ0|x)

supλ L(λ|x)

MLE of λ is λ = X = 1n∑

Xi.

λ(x) =

∏ni=1

e−λ0λxi0

xi!∏ni=1

e−xxxixi!

=e−nλ0λ

∑xi

0

e−nxx∑

xi

= e−n(λ0−x)(λ0

x

)∑xi

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 17 / 25

Page 70: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

ExampleXi

i.i.d.∼ Poisson(λ). Consider testing H0 : λ = λ0 vs H1 : λ = λ0. UsingLRT,

λ(x) =L(λ0|x)

supλ L(λ|x)

MLE of λ is λ = X = 1n∑

Xi.

λ(x) =

∏ni=1

e−λ0λxi0

xi!∏ni=1

e−xxxixi!

=e−nλ0λ

∑xi

0

e−nxx∑

xi

= e−n(λ0−x)(λ0

x

)∑xi

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 17 / 25

Page 71: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

ExampleXi

i.i.d.∼ Poisson(λ). Consider testing H0 : λ = λ0 vs H1 : λ = λ0. UsingLRT,

λ(x) =L(λ0|x)

supλ L(λ|x)

MLE of λ is λ = X = 1n∑

Xi.

λ(x) =

∏ni=1

e−λ0λxi0

xi!∏ni=1

e−xxxixi!

=e−nλ0λ

∑xi

0

e−nxx∑

xi

= e−n(λ0−x)(λ0

x

)∑xi

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 17 / 25

Page 72: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

ExampleXi

i.i.d.∼ Poisson(λ). Consider testing H0 : λ = λ0 vs H1 : λ = λ0. UsingLRT,

λ(x) =L(λ0|x)

supλ L(λ|x)

MLE of λ is λ = X = 1n∑

Xi.

λ(x) =

∏ni=1

e−λ0λxi0

xi!∏ni=1

e−xxxixi!

=e−nλ0λ

∑xi

0

e−nxx∑

xi

= e−n(λ0−x)(λ0

x

)∑xi

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 17 / 25

Page 73: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

LRT is to reject H0 when λ(x) ≤ c

α = Pr(λ(X) ≤ c|λ0)

− 2 logλ(X) = −2[−n(λ0 − X) +

∑Xi(logλ0 − log X)

]= 2n

(λ0 − X − X log

(λ0

X

))d→ χ2

1

under H0, (by Theorem 10.3.1).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 18 / 25

Page 74: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

LRT is to reject H0 when λ(x) ≤ c

α = Pr(λ(X) ≤ c|λ0)

− 2 logλ(X) = −2[−n(λ0 − X) +

∑Xi(logλ0 − log X)

]

= 2n(λ0 − X − X log

(λ0

X

))d→ χ2

1

under H0, (by Theorem 10.3.1).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 18 / 25

Page 75: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

LRT is to reject H0 when λ(x) ≤ c

α = Pr(λ(X) ≤ c|λ0)

− 2 logλ(X) = −2[−n(λ0 − X) +

∑Xi(logλ0 − log X)

]= 2n

(λ0 − X − X log

(λ0

X

))d→ χ2

1

under H0, (by Theorem 10.3.1).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 18 / 25

Page 76: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

Therefore, asymptotic size α test is

Pr(λ(X) ≤ c|λ0) = α

Pr(−2 logλ(X) ≤ c∗|λ0) = α

Pr(χ21 ≥ c∗) ≈ α

c∗ = χ21,α

rejects H0 if and only if −2 logλ(x) ≥ χ21,α

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 19 / 25

Page 77: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

Therefore, asymptotic size α test is

Pr(λ(X) ≤ c|λ0) = α

Pr(−2 logλ(X) ≤ c∗|λ0) = α

Pr(χ21 ≥ c∗) ≈ α

c∗ = χ21,α

rejects H0 if and only if −2 logλ(x) ≥ χ21,α

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 19 / 25

Page 78: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

Therefore, asymptotic size α test is

Pr(λ(X) ≤ c|λ0) = α

Pr(−2 logλ(X) ≤ c∗|λ0) = α

Pr(χ21 ≥ c∗) ≈ α

c∗ = χ21,α

rejects H0 if and only if −2 logλ(x) ≥ χ21,α

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 19 / 25

Page 79: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example (cont’d)

Therefore, asymptotic size α test is

Pr(λ(X) ≤ c|λ0) = α

Pr(−2 logλ(X) ≤ c∗|λ0) = α

Pr(χ21 ≥ c∗) ≈ α

c∗ = χ21,α

rejects H0 if and only if −2 logλ(x) ≥ χ21,α

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 19 / 25

Page 80: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Wald Test

Wald test relates point estimator of θ to hypothesis testing about θ..Definition..

......

Syppose Wn is an estimator of θ and Wn ∼ AN (θ, σ2W). Then Wald test

statistic is defined as

Zn =Wn − θ0

Sn

where θ0 is the value of θ under H0 and Sn is a consistent estimator of σW

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 20 / 25

Page 81: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Wald Test

Wald test relates point estimator of θ to hypothesis testing about θ..Definition..

......

Syppose Wn is an estimator of θ and Wn ∼ AN (θ, σ2W). Then Wald test

statistic is defined asZn =

Wn − θ0Sn

where θ0 is the value of θ under H0 and Sn is a consistent estimator of σW

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 20 / 25

Page 82: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Wald Test

Wald test relates point estimator of θ to hypothesis testing about θ..Definition..

......

Syppose Wn is an estimator of θ and Wn ∼ AN (θ, σ2W). Then Wald test

statistic is defined asZn =

Wn − θ0Sn

where θ0 is the value of θ under H0 and Sn is a consistent estimator of σW

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 20 / 25

Page 83: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Examples of Wald Test

.Two-sided Wald Test..

......

H0 : θ = θ0 vs. H1 : θ = θ0, then Wald asymptotic level α test is to rejectH0 if and only if

|Zn| > zα/2

.One-sided Wald Test..

......

H0 : θ ≤ θ0 vs. H1 : θ > θ0, then Wald asymptotic level α test is to rejectH0 if and only if

Zn > zα

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 21 / 25

Page 84: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Examples of Wald Test

.Two-sided Wald Test..

......

H0 : θ = θ0 vs. H1 : θ = θ0, then Wald asymptotic level α test is to rejectH0 if and only if

|Zn| > zα/2

.One-sided Wald Test..

......

H0 : θ ≤ θ0 vs. H1 : θ > θ0, then Wald asymptotic level α test is to rejectH0 if and only if

Zn > zα

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 21 / 25

Page 85: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Remarks

• Different estimators of θ leads to different testing procedures.

• One choice of Wn is MLE and we may choose Sn = 1In(Wn)

or 1In(θ)

(observed information number) when σ2W = 1

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 22 / 25

Page 86: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Remarks

• Different estimators of θ leads to different testing procedures.• One choice of Wn is MLE and we may choose Sn = 1

In(Wn)or 1

In(θ)

(observed information number) when σ2W = 1

In(θ).

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 22 / 25

Page 87: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald TestSuppose Xi

i.i.d.∼ Bernoulli(p), and consider testingH0 : p = p0 vs H1 : p = p0.

MLE of p is X, which follows

X ∼ AN(

p, p(1− p)n

)by the Central Limit Theorem. The Wald test statistic is

Zn =X − p0

Sn

where Sn is a consistent estimator of√

p(1−p)n , whose MLE is

Sn =

√X(1− X)

n

by the invariance property of MLE.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 23 / 25

Page 88: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald TestSuppose Xi

i.i.d.∼ Bernoulli(p), and consider testingH0 : p = p0 vs H1 : p = p0. MLE of p is X, which follows

X ∼ AN(

p, p(1− p)n

)

by the Central Limit Theorem. The Wald test statistic is

Zn =X − p0

Sn

where Sn is a consistent estimator of√

p(1−p)n , whose MLE is

Sn =

√X(1− X)

n

by the invariance property of MLE.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 23 / 25

Page 89: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald TestSuppose Xi

i.i.d.∼ Bernoulli(p), and consider testingH0 : p = p0 vs H1 : p = p0. MLE of p is X, which follows

X ∼ AN(

p, p(1− p)n

)by the Central Limit Theorem. The Wald test statistic is

Zn =X − p0

Sn

where Sn is a consistent estimator of√

p(1−p)n , whose MLE is

Sn =

√X(1− X)

n

by the invariance property of MLE.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 23 / 25

Page 90: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald TestSuppose Xi

i.i.d.∼ Bernoulli(p), and consider testingH0 : p = p0 vs H1 : p = p0. MLE of p is X, which follows

X ∼ AN(

p, p(1− p)n

)by the Central Limit Theorem. The Wald test statistic is

Zn =X − p0

Sn

where Sn is a consistent estimator of√

p(1−p)n ,

whose MLE is

Sn =

√X(1− X)

n

by the invariance property of MLE.

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 23 / 25

Page 91: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald TestSuppose Xi

i.i.d.∼ Bernoulli(p), and consider testingH0 : p = p0 vs H1 : p = p0. MLE of p is X, which follows

X ∼ AN(

p, p(1− p)n

)by the Central Limit Theorem. The Wald test statistic is

Zn =X − p0

Sn

where Sn is a consistent estimator of√

p(1−p)n , whose MLE is

Sn =

√X(1− X)

n

by the invariance property of MLE.Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 23 / 25

Page 92: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald Test (cont’d)

Therefore, Sn is consistent for√

p(1−p)n . The Wald statistic is

Zn =X − p0√

X(1− X)/n

An asymptotic level α Wald test rejects H0 if and only if∣∣∣∣∣∣ X − p0√X(1− X)/n

∣∣∣∣∣∣ > zα/2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 24 / 25

Page 93: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald Test (cont’d)

Therefore, Sn is consistent for√

p(1−p)n . The Wald statistic is

Zn =X − p0√

X(1− X)/n

An asymptotic level α Wald test rejects H0 if and only if∣∣∣∣∣∣ X − p0√X(1− X)/n

∣∣∣∣∣∣ > zα/2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 24 / 25

Page 94: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Example of Wald Test (cont’d)

Therefore, Sn is consistent for√

p(1−p)n . The Wald statistic is

Zn =X − p0√

X(1− X)/n

An asymptotic level α Wald test rejects H0 if and only if∣∣∣∣∣∣ X − p0√X(1− X)/n

∣∣∣∣∣∣ > zα/2

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 24 / 25

Page 95: Biostatistics 602 - Statistical Inference Lecture 21 ... · every UMP level test satisfies 8.3.1 except perhaps on a set A satisfying Pr(X 2 A j 0 ) = Pr(X 2 A j 1 ) = 0. Hyun Min

. . . . . .

. . .Recap

. . . . . .Karlin-Rabin

. . . . . . . . .Asymptotics of LRT

. . . . .Wald Test

.Summary

Summary

.Today..

......

• Asymptotics of LRT• Wald Test

.Next Week..

......• p-Values

Hyun Min Kang Biostatistics 602 - Lecture 21 April 2nd, 2013 25 / 25