15
Biological Systems Modeling & Simulation Konstantinos P. Michmizos, PhD June 25, 2012

Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Biological Systems Modeling & Simulation

Konstantinos P. Michmizos, PhD

June 25, 2012

Page 2: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Previous Lecture

• Biomedical Signal examples (1-d, 2-d, 3-d, …)

• Purpose of Signal Analysis

• Noise

• Frequency domain (1-d, 2-d)

• Filtering unwanted frequencies

• Sampling

• Kalman Filter

• Recursive Algorithm

Konstantinos Michmizos

Page 3: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Biological Signals

• Amplitude limited

• Distorted by colored noise

• Limited length

• Non-stationary

• The underlying system is unknown

Konstantinos Michmizos

Page 4: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Why do we need models?

Insight • Understanding the underlying system • Testing bed for several hypotheses Description • Design verification • Explore linear behavior / non-linear nature of the

biological physics (going beyond human senses) Control • Predictions • Functional limits

Konstantinos Michmizos

Page 5: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Definition of a Model

Konstantinos Michmizos

Difficulties 1. No access to the

unconditional truth 2. No unbiased observer 3. Personal opinion on a

hypothesis (abduction) 4. Abduction is not an

infallible way for discovering truth

abduction

Page 6: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Modeling a System

• System

(a collection of interconnected processes)

• Model

(a representation that approximates the behavior of an actual system)

• Simulation

(puts the model to work)

Konstantinos Michmizos

Page 7: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Goodness of a Model

Konstantinos Michmizos

Accuracy Difference between predicted and true value Precision Reproducibility of the results

Page 8: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Model refinement

Konstantinos Michmizos

Page 9: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Classification of Models

Konstantinos Michmizos

Sub-cellular Cellular Intercellular Tissue Organ Organism

Dynamic StaticBehavior

Deterministic Stochastic

Level

Chance

ParametricNon-

parametric

Single Compartment

Multiple Compartments

Parameters

Compartments

LinearNon-LinearLinearity

Time FrequencyDomain

Page 10: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Linear Modeling of Physiological Systems

Konstantinos Michmizos

Why linear? • Simple to implement • Powerful analysis tools

Transforming input into output • Time variant • Time invariant

Linear Time-invariant Systems 1. Superposition 2. Impulse Response of a system

• Testing for linearity may be done using the principle of superposition (e.g. same input at different amplitudes) • Response of a linear system to a sinusoidal input is a sinusoid at the

same frequency • Linearity of a system means nothing without its range

Page 11: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Impulse Response Function

System

Konstantinos Michmizos

Negative Values = System anticipation Positive Values = System memory

Living systems frequently demonstrate predictive behavior (e.g. visual pursuit)

Page 12: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Coherence

If Coherence is greater than 0 but not 1: 1. Extraneous noise is present in the measurements. 2. The system is not linear. 3. Output is due to the input as well as to other inputs.

Konstantinos Michmizos

Page 13: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Modeling Chaos in Physiology

• Chaos (χᾶος) = preponderant of all the others

• Physiological Systems are extremely complicated deterministic systems for their observers

• Stochastic determinism observed in biological signals (extraordinary sensitivity to internal conditions)

• Presence of order under the absence of periodicity (strange attractor)

• A chaotic system is not necessarily complex

Konstantinos Michmizos

Page 14: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Chaos in Physiological Systems

Chaos in the heart

• Sinoatrial Node

• Sympathetic & parasympathetic fibers & respiration rate heart rate variability

Chaos in the brain

• Neuron doctrine

• Feedbacks internal uncertainties are amplified over time

Konstantinos Michmizos

Page 15: Biomedical Systems Modeling & Simulationmeche.mit.edu/sites/default/files/20120625_Konstantinos.pdf · 2015-08-10 · Modeling Chaos in Physiology •Chaos (χᾶος) = preponderant

Why Chaos?

• Better adaptation capabilities

(e.g. heart pumps blood in various circumstances)

• Adaptation in the brain = learning

A never seen before stimulus in the brain, moves the brain to an un-patterned chaotic state.

• Chaos = normal function

Disease = acute attack of order against chaos

(e.g. the amount of chaos in the Parkinsonian brain decreases as neurons become more synchronized)

Konstantinos Michmizos