10
HIP JOINT: Ilium, ischium, pubic bone Loose Pack Closed Pack ADL Hip 30 FLEX, 30 ABD, slight ER Full EXT, IR, ABD 120 FLEX, 20 ER, 20 ABD Angles of the femoral neck to shaft angle in the frontal plane Anterioposterior angles of the femoral neck to the shaft of the transverse plane Angle is formed by a line through the center of the long axis of the femoral head and neck and a line connecting the posterior end of the medial and lateral femoral condyles STABILITY Iliofemoral Ligament Pubofemoral Ligament Ischiofemoral Ligament Anterior capsule All twist HyperEXT Superior ADD Inferior ABD, ER Anterior capsule All twist Hyper EXT All ABD, ER Posterior Capsule Spiral anteriorly and blend w/iliofemoral ligament, loose in FLEX All HyperEXT, ADD, IR OSTEO ROM ARTHRO MUSCLES Extra FLEX 0120/140° Posterior Rotation in sagital plane 1. Iliopsoas 2. rectus femoris 3. pectineus (040°), 4. TFL *Hip extended 5. Add longus 6. Add brevis 7. Add magnus * Sitting – iliopsoas, rectus femoris Sartorius (ER) cb TFL (IR) Iliopsoas is the main flexor >90°, stabilize lumbar spine, involved w/ sitting form supine w/ SLR, leaning back on chair Tight anterior pelvic tilt Weak posterior pelvic tilt Rectus Femoris – slackness poor hip flexor >90°, slackness by full flex knee HypEXT 015/30° Anterior rotation in sagital plane 1. Glut Max 2. Biceps femoris 3. Semimembranosus 4. Semitendinosus Glut Max conc control post pelv rot, and ecc control ant pelv rot. Hamstring tightness post pelv tilt during hip ext for lifting and bending, assist in SLR from prone ABD 030/ 45° Medial rotation in frontal plane 1. Glut Med 2. Glut Min 3. TFL 4. Piriformis 5. Sartorius 6. Abductor Weakness Trendelenburg sing standing on one leg, nonsupport side drops, lateral bending of trunk to non support side, compensatory lateral bending of trunk to support weak glut med Cane should be used on strong side long force arm ADD 025/ 30° Lateral rotation in frontal plane 1. Add Mag 2. Add Long 3. Add Brev 4. Gracillis 5. * Pectineus, Obt ext, Quad fem, Glut max Gracilis assist in EXT, when hip is FLEX, and assist in FLEX, when hips is extended IR 030/ 45° Medial rotation in transverse plane 1. Glut Med 2. Glut Min 3. TFL 4. Piriformis (hip flex) Piriformis When hip is in EXT, greater trochanter is anterior change position of line of action enables ER ER 045/ 60° Lateral rotation in transverse plane 1. Glut Max 2. Glut Med 3. Sartorius 4. Obt Int 5. Obt Ext 6. Quad Fem 7. Gemellus Sup 8. Gemellus Inf 9. Piriformis (hip ext) Piriformis When hip is in FLEX, greater trochanter is posterior change position of line of action enables IR Femoral Angle Normal 125° Coxa Vara >125° Coxa Valga <125° Torsion Angle Normal 1215° Head Compensation If head secure Anteversion >20° IR ER lower limb Move weight bearing surface of femoral head posteriorly Retroversion <12° ER IR lower limb Move weight bearing surface of femoral head anteriorly

Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

Embed Size (px)

Citation preview

Page 1: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

HIP  JOINT:  Ilium,  ischium,  pubic  bone  

  Loose  Pack   Closed  Pack     ADL  Hip   30  FLEX,  30  ABD,  slight  ER   Full  EXT,  IR,  ABD   120  FLEX,  20  ER,  20  ABD  

     Angles  of  the  femoral  neck  to  shaft  angle  in  the  frontal  plane          

Anterioposterior  angles  of  the  femoral  neck  to  the  shaft  of  the  transverse  plane  Angle  is  formed  by  a  line  through  the  center  of  the  long  axis  of  the  femoral  head  and  neck  and  a  line  connecting  the  posterior  end  of  the  medial  and  lateral  femoral  condyles  

STABILITY  Iliofemoral  Ligament   Pubofemoral  Ligament   Ischiofemoral  Ligament  Anterior  capsule  All  twist    HyperEXT  Superior    ADD  Inferior    ABD,  ER  

Anterior  capsule  All  twist  Hyper  EXT  All    ABD,  ER  

Posterior  Capsule  Spiral  anteriorly  and  blend  w/iliofemoral  ligament,  loose  in  FLEX  All    HyperEXT,  ADD,  IR  

 OSTEO   ROM   ARTHRO   MUSCLES   Extra  FLEX   0-­‐120/140°   Posterior  

Rotation  in  sagital  plane  

1. Iliopsoas    2. rectus  femoris    3. pectineus  (0-­‐40°),    4. TFL    

*Hip  extended    5. Add  longus  6. Add  brevis  7. Add  magnus    

*  Sitting  –  iliopsoas,  rectus  femoris  

Sartorius  (ER)  cb  TFL  (IR)  Iliopsoas  is  the  main  flexor  >90°,  stabilize  lumbar  spine,  involved  w/  sitting  form  supine  w/  SLR,  leaning  back  on  chair  Tight    anterior  pelvic  tilt  Weak    posterior  pelvic  tilt  Rectus  Femoris  –  slackness    poor  hip  flexor  >90°,  ↓  slackness  by  full  flex  knee  

HypEXT   0-­‐15/30°   Anterior  rotation  in  sagital  plane  

1. Glut  Max  2. Biceps  femoris  3. Semimembranosus  4. Semitendinosus  

Glut  Max  conc  control  post  pelv  rot,  and  ecc  control  ant  pelv  rot.  Hamstring  tightness    post  pelv  tilt  during  hip  ext  for  lifting  and  bending,  assist  in  SLR  from  prone    

ABD   0-­‐30/  45°   Medial  rotation  in  frontal  plane  

1. Glut  Med  2. Glut  Min  3. TFL  4. Piriformis  5. Sartorius  6. Abductor    

Weakness  Trendelenburg  sing    standing  on  one  leg,  non-­‐support  side  drops,  lateral  bending  of  trunk  to  non-­‐support  side,  compensatory  lateral  bending  of  trunk  to  support    weak  glut  med  Cane  should  be  used  on  strong  side    long  force  arm  

ADD   0-­‐25/  30°   Lateral  rotation  in  frontal  plane  

1. Add  Mag  2. Add  Long  3. Add  Brev  4. Gracillis  5. *  Pectineus,  Obt  ext,  

Quad  fem,  Glut  max  

Gracilis  assist  in  EXT,  when  hip  is  FLEX,  and  assist  in  FLEX,  when  hips  is  extended  

IR   0-­‐30/  45°   Medial  rotation  in  transverse  plane  

1. Glut  Med  2. Glut  Min  3. TFL  4. Piriformis  (hip  flex)  

Piriformis  When  hip  is  in  EXT,  greater  trochanter  is  anterior    change  position  of  line  of  action    enables  ER  

ER   0-­‐45/  60°   Lateral  rotation  in  transverse  plane  

1. Glut  Max  2. Glut  Med  3. Sartorius  4. Obt  Int  5. Obt  Ext  6. Quad  Fem  7. Gemellus  Sup  8.  Gemellus  Inf  9. Piriformis  (hip  ext)  

Piriformis  When  hip  is  in  FLEX,  greater  trochanter  is  posterior    change  position  of  line  of  action    enables  IR  

   

Femoral  Angle    Normal   125°  Coxa  Vara   >125°  Coxa  Valga   <125°  

Torsion  Angle  Normal   12-­‐15°   Head     Compensation   If  head  secure    Anteversion   >20°   IR   ER    lower  

limb  Move  weight  bearing  surface  of  femoral  head  posteriorly  

Retroversion   <12°   ER   IR    lower  limb  

Move  weight  bearing  surface  of  femoral  head  anteriorly  

Page 2: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

  PELVIS  ON  FIXED  FEMORAL  HEAD   LUMBAR  SPINE  WITH  PELVIS  MOVEMENT  Anterior  Pelvic  Tilt  

ASIS  ↓  &  ant  Sacrum  ↑  Hip  FLEX  

M:  head  and  trunk    forward  C:  lumbar  spine  EXT  

Posterior  Pelvic  Tilt  

ASIS  ↑  and  post  Sacrum  ↓  Hip  EXT  

M:  head  and  trunk    backward  C:  lumbar  spine  FLEX  

Lateral  Pelvic  Tilt  w/  support  side  dropped  

Support  ≤  Non-­‐Support  Tilt    Support  Hip  ABD  

M:  trunk  lateral    non-­‐support/dropped  C:  Lat  FLEX    support  

Lateral  Pelvis  Tilt  w/  non-­‐support  side  dropped  

Support  ≥  Non-­‐Support  Tilt    Non-­‐support  Hip  ADD  

M:  trunk  lateral    support/dropped  C:  Lat  FLEX    non-­‐support  

Forward  Pelvic  Rotation  

Non-­‐Support    forward    Hip  IR,  ADD  Support/Pivot    Hip  

M:  rotate  lumbar  and  trunk    support  C:  rotate    non-­‐support  

Backward  Pelvic  Rotation  

Non-­‐Support    backward    Hip  IR,  ABD  Support/Pivot    Hip  ER  

M:  rotate  lumbar  and  trunk    non-­‐support  C:  rotate    support  

   Contralateral  Cane    ↑  Moment  Arm,  ↓  torque,  ↓  Joint  Reaction  Force  Weight  on  contralateral    ↑  Joint  Reaction  Force                  

 WEIGHT  BEARING  STRUCTURES  

Tensile  strain    lateral  shaft  and  superior  aspect     Compression  strain    medial  shaft  and  inferior  aspect   If  stronger  in  compression  than  tension    deform    vulnerable  to  fracture     Muscle  contraction    ↓  strain    

o Vastus  Lateralis    compression  force  on  lateral  side    ↓  tensile  strain  o Glut  Med    compression  strain  on  superior  neck    main  pelvic  level  during  up  and  down  stairs  

Zone  of  weakness    mergence  of  distal  neck  and  greater  trochanter    FORCES  DURING  WALKING  

     Forces  @  hip    

↑  After  heel  strike   ↓  At  Midstance   ↑  Peak  @Heel  Off   ↓  @  Toe  Off   Least  @  swing  

Other  force:   4x’s  body  weight,  using  elbow  to  elevate  pelvis  to  use  bed  pan   Using  traps  to  use  bedpan,  ↓  4x’s  compared  to  when  using  elbow  

             

   

8/24/2012

31

The Kinetics of Single Limb Stance

Weak L Hip Abductors,

Compensated with ipsilateral

trunk lean

Weak L Hip Abductors,

Compensated with ipsilateral

cane

Weak L Hip Abductors,

Compensated with contralateral cane

Functionally strong L Hip Abductors,

What if You Add a Cane?

ABDUCTION MOMENT ADDUCTION MOMENT

Notepack: page 20-21 Text page 382-384

15% of HAT

D3

CANE FORCE

(CF)

COUNTERCLOCKWISE TORQUE CLOCKWISE TORQUE

HAF X D BWF X DCF X D

Example: Abductor MA = 4.39 cmHAT MA = 8.64 cmCane MA = 35 cm

Body Weight = 171 lbs (760.6 N)HAT = 0.6666 x 760.6 N = 507 NWeight of LEFT Limb, (LL) = 760.6 N x 0.1666 = 126.8 NHAT+LL: 507N + 126.8 N = 633.8NCane Force (CF): 15% x 507 N = 76 N

External Torque: (633.8N x 0.0864m) – (76N x 0.35m) = 28 Nm

If Internal Torque= External Torque

then: Y x 0.439m = 28Nm

Y = 635.7N or 142.7 lbs

Calculating the Abductor Muscle Force Required to Stand on 1 Leg with a Level Pelvis + Contralateral

Cane

Notepack: page 20-21 Text page 382-384

0.35M

~50% REDUCTION

8/24/2012

21

PELVIC MOTION ACCOMPANYING HIP JOINT MOTION

COMPENSATORY LUMBAR SPINE MOTION

ANTERIOR PELVIC TILT HIP FLEXION LUMBAR EXTENSION

POSTERIOR PELVIC TILT HIP EXTENSION LUMBAR FLEXION

Examples Below: Standing and Weight Bearing Through the LEFT Limb (the right limb is the NON-support limb)

LATERAL PELVIC TILT ( RIGHT PELVIC DROP)

LEFT HIP ADDUCTIONLATERAL FLEX. TOWARDS

SUPPORT SIDE (L)

LATERAL PELVIC TILT ( RIGHT PELVIC HIKE)

LEFT HIP ABDUCTIONLATERAL FLEX TOWARDS NON-SUPPORT SIDE (R)

FORWARD ROTATION OF NON-SUPPORT SIDE

LEFT HIP MEDIAL ROTATION

LUMBAR RIGHT ROTATION

BACKWARD ROTATION OF NON-SUPPORT SIDE

LEFT HIP LATERAL ROTATION

LUMBAR LEFT ROTATION

Pelvis: Hip: Lumbar Spine

Notepack: pages 8-13, Text page 368-373

Structural Adaptations to Weight Bearing

Notepack: pages 14-15, Text page 366

Remember:

The Bone’s trabeculi will form and remodel

and tend to line up along lines of bone

stresses

GRF

Lateral Trabecular System

Medial Trabecular System

Bending Moment Across the Femoral Neck

Notepack: pages 14-15, Text page 366

23

FORCES AT HIP JOINT

• FORCES DURING WALKING

o Forces at the hip increase after heel strike but then decrease at midstance.

o Peak force occurs at heel off but then declines sharply by toe off.

o Forces at the hip are the least during the swing phase.

• OTHER FORCES

o Forces of 4 X BW occur at the hips when a patient lying supine uses their elbows to elevate their pelvis to use a bed pan.

o When a patient uses a trapeze to pull themselves up to use a bed pan, forces at the hip decrease by a factor of 4 compared to forces when the patient uses their elbows to use a bed pan.

Page 3: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

 KNEE  JOINT       Loose  Pack   Closed  Pack     ADL  Knee   10-­‐20°  Flexion   Full  Extension   115-­‐120°  FLEX,  good  with  -­‐5/-­‐10°  EXT  

 STABILITY   FLEX   EXT    Medial  Collateral   Lax   Taut    Lateral  Collateral   Lax   Taut    ACL  –  anteromedial    

Taut   Lax  

ACL  –  posterolateral  

Lax   Taut  

Antmed  max  taut  @  90°  FLEX  Injuries:  Antmed  FLEX  w/  ER  or  IR,  Postlat  hyperEXT  Limits  medial  tibial  rotation  during  knee  FLEX,  becomes  tense  as  it  winds  around  PCL  Limits  lateral  tibial  rotation  during  knee  FLEX,  tense  over  lateral  femoral  condyle    

PCL  –  anteriolateral  

Taut   Lax  

PCL  -­‐  posteromedial  

Lax   Taut  

Antlat  max  taut  @  90°  FLEX  Limits  tibial  rotation  both  directions,  valgus,  varus    Tightness  of  postmed  during  EXT  can  lat  rot  tibia  (screw  home  mech)  Injuries:  Antlat  @  knee  FLEX,  Postmed  @  EXT  

 OSTEO   ROM   MUSCLES   Extra  FLEX   0-­‐140°   1. Biceps  Femoris  

2. Semitendinosus  3. Semimembranosus  4. Gastrocnemius  5. Plantaris  6. Popliteus    

Rectus  Femoris  also  flex  hip  Vastus  lateralis  forms  part  of  patellar  retinaclum  w/  IT  band  Vastus  Medialis  (distal/oblique)  forms  medial  patellar  retinaculum  Peak  Quadriceps  torque  @  50-­‐80°    FLEX  Last  15°  of  knee  EXT,  Quads  need  60%  more  force  than  at  90°  or  45°  FLEX  Removal  of  patella    ↓  force  production  of  Quads  by  30%  

HypEXT   5-­‐10°   1. Vastus  Medialis  2. Vastus  Latearlis  3. Vastus  Medialis  

 

IR   30°    (90°flex)  

1. Biceps  femoris  2. TFL  

ER   40°  (90°flex)  

1. Semitendinosus  2. Semimembranosus  3. Popliteus  4. Gracilis  5. Sartorius  

During  walking,  9-­‐10°  ,  FLEX  >  90°  ↓  due  to  soft  tissue  restriction  

ABD/  ADD  

11°     Most  movement  @  30°  FLEX,  >  30°    ↓  due  to  soft  tissue  restriction  

     SCREW  HOME  MECHANISM  -­‐  During  EXT,  tibia  translate  anteriorly  -­‐  Last  20-­‐30°,  anterior  tibial  translation  persist  on  medial  condyle  (longer)    -­‐  Prolonged  anterior  glide    ER  tibia  relative  to  femur  (open)  or  IR  femur  relative  to  tibia  (closed)    Screw  Home      UNLOCKING  -­‐  ER  of  femur  relative  to  tibia  (closed)  or  IR  of  tibia  relative  to  femur  (open)  -­‐  Popliteus  unlocks  knee  (runs  posterior  medial  tibia  to  lateral  femoral  epicondyle)  by  ER  femur  or  IR  tibia    

HEFLET  TEST:  used  to  determine  amount  of  ER  of  tibia  relative  to  femur  during  extension   Sit  w/  hip  90°  FLEX,  knee  FLEX  so  lower  leg  hanging  free   Mark  medial  and  lateral  borders  of  patella  and  midline  of  patella  and  tibial  tuberosity   EXT  knee  fully  and  observe  movement  of  tibial  tuberosity  relative  to  midline  of  patella   Normal:  tibial  tuberosity  moves  laterally  during  extension  and  realigns  w/  midline  of  patella  during  flexion  

 FORCES  ON  TIBIOFEMORAL  JOINT  Genu  Valgum   Genu  Varum  Medial  ligaments  STRAINED,  Lateral  ligaments  LAX  Lateral  femoral  and  tibial  condyles  compressed    erosion  of  lateral  meniscus  &  articular  cartilage  Medial  knee  pain:  medial  ligament,  lateral  articular  structures  

Medial  ligaments  LAX,  Lateral  ligaments  STRAINED  Medial  femoral  and  tibial  condyles  compressed    erosion  of  medial  meniscus  and  articular  cartilage  Medial  knee  pain:  medial  articular,  lateral  ligament  and  capsule  

KNEE  FLEXION  ARTHRO  (closed)   KNEE  EXTENSION  ARTHRO  (closed)  0-­‐25°   Anterior  Rotation   140-­‐115°   Posterior  Rotation  25-­‐140°   Ant  Rotation  

Ant  Glide  due  to  ACL  115-­‐0°     Post  Rotation  

Post  Glide  due  to  PCL  Menisci  move  Posteriorly  Loss  of  menisci    limit  

Menisci  move  Anteriorly  Ant  movement  of  Post  horn    block  femoral  glide  preventing  hyperextension  Loss  of  menisci    limit  

FEMUR  ON  TIBIA  (Open)  

FLEX   Tibia  rotate,  glide  Posteriorly    PCL  blocks  posterior  glide  Tibia  rotate  medial  relative  to  femur,  Femur  rotate  lateral  relative  to  tibia  

EXT   Tibia  rotates,  glides  Anteriorly    ACL  blocks  anterior  glide  Tibia  rotate  back  laterally,  screw  home  mechanism  

Page 4: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

 FORCES  DURING  WALKING  

Forces  @  Knee   ↑  @  Heel  Strike  (hamstring  decelerate,  ecc  control  ext,  stab)    ↑  @  Foot  Flat  (body  weight,  ecc  control  of  quad,  resist  buckling)   ↑  Peak  @  Heel  Off  (body  weight  and  contraction  of  gastroc    PF  of  ankle  to  

raise  heel)   ↓  @  initial  swing   ↑  @  terminal  swing  (hamstrings  ecc  decelerate  the  extending  knee)  

Role  of  Menisci  

↑  contact  surface  area   ↑  force  distribution   ↑  stability   ↓  unit  force  pressure  on  condyles   NOT  shock  absorbers  

PATELLOFEMORAL  JOINT  Q-­‐ANGLE    

The  line  representing  resultant  pull  of  quadriceps  muscles,  ASIS    mid  patella,  Mid  Patella    tibial  tuberosity   MALES:  12°,  FEMALES:  15°     >20°  is  abnormal:  Increase  lateral  pull  on  patella,  Femoral  anteversion,  External  tibial  torsion,  Lateral  displacement  of  tibial  

tuberosity    

90-­‐135  °   70-­‐90°   20-­‐90°   0-­‐20°      Patella  moves  laterally  and  tilts  medially  into  intercondylar  groove,  full  flexion    femoral  condyle  fully  covered,  medial  condyle  almost  fully  exposed  

Quad  tendon  contacts  region  of  intercondylar  groove    and  becomes  weight  bearing  structure  ↓  compressive  JRF  

Patella  moves  into  intercondylar  grove  

Tibia  IR    ↓  lateral  pull  Patella  move  into  intercondylar  groove  and  follows  groove  until  90°  

90-­‐130°  Post  femoral  contact  Compressive  force  max  @  90° ,  large  area  130-­‐135°  Lat  facet  of  patella  full  contact  w/  Post  femur,  ↑  Force,  ↑  SA  Odd  facet  to  Med  femur,  ↑  Force,  ↓  SA  

45-­90°  Med  &  lat  facets  of  patella  contact  med  &  lat  facets  of  femur  Max  surface  contact  area,  but  still  only  30%  Compressive  force  significant  increase,  but  still  low  

0°  No  contact    20°  Little  inferior  pole  contact  Compressive  Force  Low,  near  0  

 FORCES  ON  PATELLOFEMORAL  JOINT:  flex    quad  tension  ↑  patellar  ligament  tension  ↑    compressive  joint  reaction  force  ↑    

As  quad  force  ↑,  compressive  force  ↑    o Walking  =  0.5  x  BW  o Stair  =  3  –  4  x  BW  o Squat  =  7  –  8  x  BW  

Normal  Force  o Tight  Rectus    patella  cranial    ↑  inferior  patella  compression    ↑  anterior  femoral  compression,  ↑  PatFem  

compression  Upward   Downward   Laterally   Medially  Rectus  Femoris  &  Vastus  Int   Patella  ligament     Vastus  Lat,  IT  band   Vast  Med  

Shifts  in  location  o Factors  Affecting  Tibial  Rotation  and  Q  Angle  

IT  band  tightness   Biceps  femoris  tightness   Semimembranosus,  semitendinosis  weakness  

o ↑  Q-­‐angle    ↑  lateral  compression  forces    ↑  lateral  patella  facet  and  lateral  femoral  condyle  wear  o Angle  

Femoral  anteversion   Excessive  pronation  of  foot  which  internally  rotates  tibia  and  femur  

Changes  in  length  o Patella  alta:  Ligament  20%  longer  than  patella,  females,  result  from  subluxation  and  dislocation  o Patella  baja:  ligament  20%  shorter,  occur  with  ACLR  when  central  patella  ligament  graft  

41

o In genu varum * The strains are opposite those of genu valgum - the

medial ligaments and capsule would be lax and with time shorten and weaken and the medial articular surface compressed with increased erosion.

* The lateral ligaments and capsule would be strained in tension and vulnerable to tearing and elongation.

* Medial knee pain would likely involve articular structures and lateral knee pain involve the lateral ligaments and capsule.

• WALKING

o At heel strike, compression forces at the knee are high because of body weight and contraction of the hamstrings acting to decelerate and control knee extension and stabilize the knee for heel contact with the ground.

o At foot flat, compression forces are high because of body weight and eccentric contraction of the quadricep

controlling the degree of knee flexion to resist buckling of the knee.

8/24/2012

25

Left KneeLeft Knee

“SKYLINE VIEW”

Lateral

VIEW BETWEEN 20-900 OF FLEXION

VIEW BETWEEN 90-1300 OF FLEXION

Path of the sliding patella during active tibia-on-femoral extension: PATELLA MOVES PROXIMALLY

DURING EXTENSION

Arthrokinematics of the PFJ

Regions of Patellar Contact

90 – 600

maximum amount of surface contact

between femur and patella (but

only 30%)

Continued migration of patella contact

points distally towards the inferior

pole

At 1350 --- contact near the superior pole of the patella and the odd facet

Notepack page:s 43-49Text pages 422-429

200

Flexion

900

Flexion1350

Flexion

Full Extension

At full extension the patella rides ABOVE the

groove,

Page 5: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

TALOCRURAL/ANKLE  JOINT    JOINTS  

-­‐ Distal  Tibiofibular  Joint:  fibrous,  superior  to  ankle  joint  

o Anterior  tibiofibular  ligament  o Posterior  tibiofibular  ligament  o Interosseus  tibiofibular  ligament  

-­‐ Fibulotalar  joint:  synovial    o Anterior  talofibular  ligament  o Posterior  talofibular  ligament  o Calcaneofibular  ligament  

-­‐ Tibiotalar  joint  o Medial  Collateral  Ligament  

Anterior  tibiotalar  ligament   Posterior  tibiotalar  ligament   Tibionavicular  ligament   Tibiocalcaneal    

-­‐ Mortise:  inverted  “U”  shaped  curve      

 ANKLE  MOVEMENTS:  Up&Out,  Down&In  

-­‐ 3  cardinal  planes  o Runs  anterior    posterior  from  lateral  side  of  trochlea  of  talus  in  sagital  plane  and  transverse  planes  o 10°  from  medial  malleolus  superiorly  to  lateral  malleolus  inferiorly    

-­‐ Angulation  results  in  lateral  malleolus  of  the  fibula  moving  a  greater  distance  in  an  anterior  and  posterior  direction  than  the  medial  malleolus  of  tibia  during  sagital  plane  movement  

-­‐ Angulation  also  results  in    o sagittal  plane  dorsiflexion  and  plantar  flexion  being  coupled  o IR  and  ER  in  transverse  plane  o inversion  and  eversion  in  frontal  plane  

-­‐ Results  in  TRIPLANAR  movement  -­‐ PF:  50°,  DF:  20°,  IR/ER:  11°  

  Osteokinematic   Arthrokinematic  Open  Chain  (talus    tib/fib)  Convex    Concave  

Arthrokinematic  Closed  Chain  (tib/fib    talus)  Concave    Convex  

Muscles  (Controls  eccentrically)  

Pronation     Dorsiflexion  ER/ABD  Eversion  

Post  Rot,  Post  glide,  Ant  Roll  of  talus  ER  of  talus  Medial  glide  of  talus    

Ant  Rot,  Glide,  Roll  of  tib/fib  IR  of  tib/fib    Minimal  lateral  glide  of  tib/fib  

Tibialis  anterior  *  EDL,  EHL  

Supination   Plantarflexion  IR/ADD  Inversion  

Ant  Rot,  Ant  glide,  Post  Roll  of  talus  IR  of  talus  Lateral  glide  of  talus  

Post  Rot,  Glide,  Roll  of  tib/fib  ER  of  tib/  fib    Minimal  medial  glide  of  tib/fib  

Gastrocnemius  Soleus  Tibialis  Posterior  *  FDL,  FHL,  PL&B    

STABILITY  Movement   Open  Chain   Closed  Chain  DF  PF  

Dependent  on  mortise’s  ability  to  widen  Tibiofibular  joint  integrity:  fracture  of  fibula,  tear  of  interosseous  membrane,  fibrosis,  inflammation  

Inversion   87%  from  LCL:  calcaneofibular  (1st),  anterior  talofibular  (2nd),  posterior  talofibular  (3rd)  

Eversion   83%  from  deltoid  ligament  

Mainly  by  compression  of  articular  surfaces  

IR   Anterior  talofibular  (LCL),  posterior  talofibular  (MCL)   Post  talofib  (LCL),  calcaneofib  (LCL),  ant  tibiotalar  (MCL),  tibionavicular  (MCL)  

ER   Posterior  talofibular  (LCL),  anterior  tibiotalor  (MCL)   Ant  talofib  (LCL),  Post  tibiotalar  (MCL),  Tibiocalcaneal  (MCL)  Talar  Tilt   Medial  movement  of  talus  and  calcaneous  away  from  fibula  

PF:  talar  tilt  limited  by  anterior  talofibular  lig  Neutral:  talar  tilt  limited  by  ant/post  talofibular  lig  DF:  talar  tilt  limited  by  calcaneofibular  &  posterior  talofibular  lig  

 FORCES  DURING  WALKING  

Forces  @  Ankle   ↑  gradually  @  heel  strike    heel  off   Max  Compression  (4-­‐5x’s)  @  Heel  off  due  to  gastroc  and  soleus   ↓  rapidly  @  heel  off    toe  off   ↓  @  swing  phase  

With  normal  standing,  compression  force  on  talus  is  “V”  shaped    With  slight  shift  of  tibia,  distribution  force  is  2  small  areas    high  forces    damage    

 

 

 

64

• COMPRESSION FORCE DISTRIBUTION ON TALUS WITH WEIGHT BEARING

o With normal standing, compression forces on the trochlea of the talus are distributed in a “V” shaped pattern to decrease the unit forces on the articular cartilage. o With just a slight shift of the tibia, the distribution of compression forces changes and forces are now concentrated in two small areas. o This re-distribution of forces results in high unit forces in these two areas and increases the likelihood of articular cartilage damage.

Page 6: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

FOOT:  rearfoot/hindfoot  (calcaneous,  talus,  subtalar),  midfoot  (navicular,  cuboid,  cuneiform,  midtarsal),  forefoot  (metatarsal,  phalange,  metatarsophalangeal,  interphalangeal  joints)    JOINTS  Joint   Type   Articulations   Movements   Ligaments  Subtalar  Joint    

Plane  synovial  joint  

Post/Sup  Calcaneous  Ant/Mid/Post  talus  

inversion  and  Eversion  

Medial/Lateral/Posterior  talocalcaneal  Calcaneofibular  Tibiocalcaneal  Interosseous  calcaneal  

Midtarsal  Joint:  Calcaneocuboid  

Plane  synovial    

Post  Cuboid    Ant  Calcaneous    

Inversion  and  Eversion  

Dorsal  Calcaneocuboid  Calcaneocuboid  (bifurcate)  Plantar  calcaneocuboid  (short  plantar)  Long  plantar  

Midtarsal  Joint:  Talonavicular  

Ball  and  socket  synovial    

Convex  Talar  head    Concave  Post  Navicular    

DF,  PF,  ER,  IR   Dorsal  talonavicular  Tibionavicular  Plantar  calcaneonavicular  (spring)  

Tarsometatarsal   Plane  synovial  

Cuneiform  and  Cuboids    1st-­‐5th  metatarsals  

Flexion  and  Extension  

Dorsal  tarsometatarsal    Plantar  tarsometatarsal  Interosseous  tarsometatarsal    Plantar  and  dorsal  metatarsal  ligaments    

Metatarsophalangeal     Condyloid  synovial  

Metatarsal  head    proximal  phalanx  

Flex,  Ext,  slight  Abd,  slight  Add,  slight  circumduction  

Medial  collateral  Lateral  collateral  Plantar  ligament  Deep  transverse  metatarsal  ligaments  

Interphalangeal   Hinge  synovial  

Proximal  phalanx    distal  phalanx  

Flexion  and  Extension  

Medial  Collateral  Lateral  Collateral  Plantar  ligament  

Rays  of  Forefoot   Functional  units  of  foot:  1-­‐3:  cuneiform    metatarsal,  4-­‐5:  metatarsal  4&5  SUBTALAR  JOINT  

Eversion      Inversion      

 

MIDTARSAL  JOINT:  triplanar    controlled  by  subtalar  -­‐ Two  axis  of  motion  -­‐ Produce  1/3  –  ½  as  much  supination/pronation  as  subtalar  joint  

o Longitudinal  Axis:  inversion,  eversion  with  slight  PF,  DF,  or  IR/ER   During  gait,  midtarsal  inversion  =  medial  arch  of  foot  rises  and  eversion  =  medial  arch  of  foot  falls  

o Obilque  or  transverse  axis:  DF,  PF,  ER,  IR  with  slight  Inversion/Eversion  -­‐ Hindfoot  (subtalar)  pronation    long  and  obliq  axis  becoming  parallel    mobile/free.    

o Heel  strike  or  initial  loading  allows  foot  to  contour  to  substrate  -­‐ Hindfoot  (subtalar)  supination    long  and  obliq  axis  becoming  corssed    restricted    

o Heel  off  and  toe  off  Ray  1   Ray  2   Ray  3   Ray  4   Ray  5   Sup/Pron  Twist   Gait   ↑  hindfoot  Pronate:  DF  (main),  Inv,  slight  adduction  Supinate:  PF,  Ever,  slight  abduction  

Mainly  DF,  slight  inversion  Mainly  PF,  slight  eversion  

DF  PF  

Mainly  DF,  slight  eversion  Mainly  PF,  slight  inversion  

Pronate:  DF,  Evert,  slight  abduction  Supinate:  PF,  Inv,  slight  adduction  

SupTwist:  Ray1&2  DF,  Ray  4&5  PF,  forefoot  inverts  PronTwist:  Ray1&2  PF,  Ray4&5  DF,  forefoot  everts  

Heel-­‐strike  toe-­‐off  ST  &  MT  pron,  forefoot  sup  Heel-­‐off    toe  off  ST  &  MT  sup,  forefoot  pron  

Pron:  MT  is  mobile  so  C  by  sup,  forefoot  sup  Sup:  MT  is  restricted  so  can’t  pron,  forefoot  pron  

Closed  Packed   Loose  Packed  Neutral    5°  Pronation   Full  supination  

  °   Limiting  Structures  Evert   10   Calcaneofibular  

Lateral  talocalcaneal  Interosseous  talocalcaneal  Tendon  of  PL&B  Sustentaculum  tali  Medial  talar  tubercle  

Invert   20   Tibiocalcaneal  Medial  talocalcaneal  Interosseous  talocacaneal  Tendon  of  PT,  FDL,  FHL  Lateral  process  of  talus  

  Osteokinematic   Open  Chain     Closed  Chain     Muscles  Pronation   Eversion  

(main)  Abduction/ER  DF  

Calcaneal  Eversion  Calcaneal  ABD/ER  Calcaneal  DF  

Calcaneal  Eversion  Talar  ADD/IR  Talar  PF  Tib/Fib  IR  

PL  PB  EDL  (W)    

Supination   Inversion  (main)  Adduction/IR  PF  

Calcaneal  Inversion  Calcaneal  ADD/IR  Calcaneal  PF  

Calcaneal  Inversion  Talar  ABD/ER  Talar  DF  Tib/Fib  ER  

PT  (ecc  pron)  Gastr  Soleus  ATib  (W,  ecc  pron)  EHL  (W)  

Neutral   Position  at  which  calcaneous  inverts  2x’s  #  of  degrees  it  everts  

Page 7: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

FORCES  ON  FOOT    Standing  Compression  Force  

-­‐ 60.5%  across  heel  -­‐ 7.8%  by  midfoot  -­‐ 28.2%  by  forefoot  -­‐ 3.6%  by  toes  

Forces  at  Foot   Vertical  forces  highest  at  flat  foot   ↓  w/  slight  midstance   ↑  @  heel  off   ↓  rapidly  after  heel  off   low  @  toe  off  and  swing  phase  

Greastest  load  during  gait  from  heel  to  forefoot   transmitted  across  highest  part  of  longitudinal  arch  (medial  foot)   force  travels  from  heel    talonavicular    naviculocuneiform    1st  metatarsal  head  

Least  Loads   transmitted  along  lateral  foot   forces  travels  through  cuboid    5th  metatarsal  head  

 PLANTAR  FASCIA  

this  fascia  extends  along  longitudinal  arch  of  foot  form  calcaneous  to  metatarsal  heads   acts  like  a  tie-­‐rod  between  two  trusses   When  foot  loaded,  distal  and  prox  ends  to  plantar  fascia  move  apart  which  tense  up  fascia   Function:    

o shock  absorber  o distribution  of  forces  o stabilize  midfoot  esp.  during  running,  climbing  types  of  activities  

Plantar  fasciits  o Inflammation  of  plantar  fascia  o May  be  associated  with  bone  spurs  o Overuse  o Arch  supports  may  help  

 GAIT  WALKING  GENERAL  TERMINOLOGY  

o Stance  time  o Stride  length:  heel  strike    heel  strike  of  same  leg  o Stride  duration  o Step  length:  heel  strike  of  one  leg    heel  strike  of  opposite  leg  o Step  duration  o Cadence:  steps/min,  male:  110steps/min,  female:  116steps/min  o Walking  velocity  o Width  of  support  base:  horizontal  distance  btwn  middle  heel  of  one  foot    middle  heel  of  opposite  foot  

 

 

 

 

 

 

 

 

 

 

 

 

80

+ forefoot also compensates by supinating

* Excessive hindfoot supination + midtarsal movement is restricted and unable to

compensate by pronating. + forefoot compensates by pronating excessively

FORCES ON THE FOOT

STANDING

o Compression force distribution * 60.5% across heel * 7.8% by midfoot * 28.2% by forefoot * 3.6% by toes

• WALKING

o Vertical forces are highest at flat foot but then decrease

slight at midstance only to increase again at heel off

o Vertical forces decrease rapidly after heel off and are low at toe off and during the swing phase

84

BIOMECHANICS OF LOCOMOTION

WALKING

GENERAL TERMINOLOGY o Stance time: time of stance phase o Stride length: distance from heel strike of one leg to the

next heel strike of the same leg (heel strike to heel strike distance of the same leg

o Stride duration: time of one stride o Step length: distance from heel strike of one leg to the

successive heel strike of the opposite leg o Step duration: time of one step o Cadence: number of steps per minute

* males: 110 steps per minute * females: 116 steps per minute

o Walking velocity: distance walked per unit time o Width of support base: horizontal distance between

the middle heel of one foot and the middle heel of the opposite foot

PHASES OF GAIT Stance phase

TRADITIONAL TERMS

RANCHO LOS AMIGOS TERMS

HEEL STRIKE INITIAL CONTACT

FOOT FLAT LOADING RESPONSE

MIDSTANCE MIDSTANCE

HEEL OFF TERMINAL STANCE

TOE OFF PRESWING

85

Swing phase

TRADITIONAL TERMS

RANCHO LOS AMIGOS TERMS

ACCELERATION INITIAL SWING

MIDSWING MIDSWING

DECELERATION TERMINAL SWING

Right foot at heel strike (initial contact) and Left foot at toe off, (preswing)

91

• GROUND REACTION FORCES DURING GAIT

STANCE PHASE

SWING PHASE

91

• GROUND REACTION FORCES DURING GAIT

STANCE PHASE

SWING PHASE

Page 8: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

GROUND  REACTION  FORCE  –  force  transmitted  up  the  lower  extremity     Lies  posterior  or  anterior  to  hip,  knee  and  ankle  applying  

flexion  or  extension  moment  to  that  joint   The  force  of  ground  is  trying  to  move  the  joint  in  a  

particular  direction  o If  GRF  Ant  to  Hip    Flex  o If  GFR  Post  to  Hip    Ext  o If  GRF  Ant  to  Knee    Ext  o If  GRF  Post  to  Ankle    PF  

As  LE  changes  position  during  gait,  GRF  does  too   During  gait,  forces  on  joint  can  be  from  GRF  or  concentric  

muscle  contraction   By  comparing  GRF  with  joint  movement,  one  can  

determine  if  the  muscles  are  producing  movement  or  produced  by  GRF  and  controlled  by  eccentric  activity  of  muscle  

*  If  movement  of  joint  is  same  as  moment  applied  by  GRF  at  joint,  then  concentric  action  is  not  needed  but  eccentric  by  antagonist  is  *  If  movement  of  joint  is  opposite  the  moment  applied  by  GRF,  concentric  action  is  needed  to  overcome  GRF  and  move  joint      

 

 

95

THE KNEE

PHASE OF GAIT

ROM MOVEMENT MOMENT MUSCLE CONTRACTION

Heel Strike to Foot Flat

0-5 deg to 15 deg flexion

extension

flexion quads eccentric (prevent knee bucke li ng)

Foot Flat to Midstance

15 deg to 5 deg

extension

extension

flexion

extension

quads

quads

concentric

no activity

Midstance to Heel Off

5 deg to 0 deg

extension extension no activity none

Heel Off to Toe Off

0 deg to 30 deg

flexion

flexion

extension

flexion

quads popliteus

quads

no activity concentric

eccentric

Acceleration to Midswing

30 deg to 60 deg

60 deg to 30 deg

flexion

extension

none

none

hamstrings sartorius graclis

quads

concentric

concentric

Midswing to Deceleration to Heel Strike

30 deg to 5 deg

extension none quads

hamstrings

concentric

eccentric

93

THE HIP (sagittal movements)

PHASE OF GAIT

ROM MOVEMENT MOMENT MUSCLE CONTRACTION CONTRACTION

Heel Strike to Foot Flat

30 deg. to 25 deg.

extension flexion add. mag. glut. max.

concentric concentric

Foot Flat to Midstance

25 deg. to 0 deg.

extension

extension

flexion

extension

glut. max.

glut. max.

concentric

no activity

Midstance to Heel Off

0 deg. to 10-20 deg.

backward extension

extension hip flexors eccentric

Heel Off to Toe Off

10 – 20 deg. to 0 deg

flexion extension iliopsoas add. long. add. mag.

concentric concentric concentric

Acceleration to Midswing

0-20 deg. to 30 deg.

flexion none iliopsoas gracilis sartorius

concentric concentric concentric

Midswing to Deceleration to Heel Strike

30 deg. flexion none glut. max hamstrings

eccentric eccentric

94

OTHER PELVIS, HIP, AND FEMUR MOVEMENTS

PHASE OF GAIT

PELVIS HIP JOINT FEMUR

Heel Strike to Foot Flat

forward internal rotation

adduction

external rotation

neutral to adduction

Foot Flat to Midstance

forward to neutral

internal rotation

adduction

external rotation

adduction

Midstance to Heel Off

neutral to backward

internal to external rotation

adduction

external to internal rotation

adduction

Heel Off to Toe Off

backward external rotation

abduction

internal rotation

abduction

Acceleration to Midswing

backward to neutral

external rotation

abduction

internal rotation

abduction

Midswing to Deceleration to Heel Strike

forward external to internal rotation

abduction to adduction

internal to external rotation

abduction to neutral

96

THE ANKLE

PHASE OF GAIT

ROM MOVEMENT MOMENT MUSCLE CONTRACTION

Heel Strike to Foot Flat

0 deg to 15 deg

plantar flexion plantar flexion ant. tib. ext. dig. long. ext. hal. long.

eccentric

Foot Flat to Midstance

15 deg to 5-10 deg

plantar flexion to dorsiflexion

plantar flexion to dorsiflexion

sole us gastroc. plantar flexors

eccentric

Midstance to Heel Off

5 deg to 0 deg

dorsiflexion to plantar flexion

dorsiflexion sole us gastroc. post. tib. plantar flexors

eccentric to concentric

Heel Off to Toe Off

0 deg to 20 deg

toes

plantar flexion

extension

dorsiflexion

extension

sole us gastroc. post. tib. pero ne us long. and b rev.

FDL, AbH, interossei lumbricles FDB, FHL

concentric to no activity

eccentric

Acceleration to Midswing

20 deg to neutral dorsiflexion none

ant. tib. ext. dig. long. ext. hal. long.

concentric

Midswing to Deceleration to Heel Strike

remains in neutral none none

ant. tib. ext. dig. long. ext. hal. long.

concentric

97

ANKLE AND FOOT MOVEMENTS

PHASE OF GAIT

ANKLE SUBTALAR MIDTARSAL FOREFOOT

Heel Strike to Foot Flat

supination (PF)

pronation (EVERT)

pronation (EVERT)

supination (INVERT)

Foot Flat to Midstance

supination (PF) to pronation (DF)

pronation (EVERT) to neutral

pronation (EVERT) to neutral

supination (INVERT) to neutral

Midstance to Heel Off

pronation (DF) to supination (PF)

neutral to supination (INVERT)

neutral to supination (INVERT)

neutral to pronation (EVERT)

Heel Off to Toe Off

supination (PF)

supination (INVERT)

supination (INVERT)

pronation (EVERT)

Acceleration to Midswing

supination (PF) to neutral

supination (INVERT) to neutral

supination (INVERT) to neutral

pronation (EVERT) to neutral

Midswing to Deceleration

neutral neutral neutral neutral

Page 9: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

99

THE HIP

PHASE ROM MOVEMENT MUSCLE CONTRACTION

Weight acceptance to pull-up

60 deg flexion to 30 deg flexion

extension gluteus max. gluteus med.

concentric

Pull-up to forward continuance

30 deg flexion to 5 deg flexion

extension gluteus max. gluteus med.

concentric

Foot clearance to foot placement

5 deg flexion to 60 deg flexion

flexion iliopsoas concentric

THE KNEE

PHASE ROM MOVEMENT MUSCLE CONTRACTION

Weight acceptance to pull-up

80 deg flexion to 35 deg flexion

extension rectus fem. vastus lat. (quads)

concentric

Pull-up to forward continuance

35 deg flexion to 10 deg flexion

extension rectus fem. vastus lat. (quads)

concentric

Foot clearance to foot placement

10 deg flexion to 90 –100 deg

90-100 deg flexion to 85 deg flexion

flexion

extension

hamstrings

rectus fem. vastus lat. (quads)

concentric

concentric

ASCENDING  STAIRS  

Stance  Phase   Weight  Acceptance   Weight  Acceptance    Pull  Up   Pull  up    forward  continuance  

Swing  Phase   Foot  Clearance   Foot  Placement  

 

 

 

 

 

 

 

 

DESCENDING  STAIRS  

 

 

 

 

 

 

 

 

 

 

 

 

 

98

ASCENDING STAIRS

• PHASES IN STAIR CLIMBING

o Stance phase * weight acceptance * weight acceptance to pull up * pull up to forward continuance

o Swing phase * foot clearance * foot placement

99

THE HIP

PHASE ROM MOVEMENT MUSCLE CONTRACTION

Weight acceptance to pull-up

60 deg flexion to 30 deg flexion

extension gluteus max. gluteus med.

concentric

Pull-up to forward continuance

30 deg flexion to 5 deg flexion

extension gluteus max. gluteus med.

concentric

Foot clearance to foot placement

5 deg flexion to 60 deg flexion

flexion iliopsoas concentric

THE KNEE

PHASE ROM MOVEMENT MUSCLE CONTRACTION

Weight acceptance to pull-up

80 deg flexion to 35 deg flexion

extension rectus fem. vastus lat. (quads)

concentric

Pull-up to forward continuance

35 deg flexion to 10 deg flexion

extension rectus fem. vastus lat. (quads)

concentric

Foot clearance to foot placement

10 deg flexion to 90 –100 deg

90-100 deg flexion to 85 deg flexion

flexion

extension

hamstrings

rectus fem. vastus lat. (quads)

concentric

concentric

100

THE ANKLE

PHASE ROM MOVEMENT MUSCLE CONTRACTION

Weight acceptance to pull-up

20-25 deg dorsiflexion to 15 deg dorsiflexion

plantar flexion

gastrocnemius soleus acting on tibia

concentric

Pull-up to forward continuance

15 deg dorsiflexion to 10-15 deg plantar flexion

plantar flexion

gastrocnemius soleus acting on tibia and then foot

concentric

Foot clearance to foot placement

10 deg plantar flexion to 20 deg dorsiflexion

dorsiflexion anterior tibialis concentric

DESCENDING STAIRS

100

THE ANKLE

PHASE ROM MOVEMENT MUSCLE CONTRACTION

Weight acceptance to pull-up

20-25 deg dorsiflexion to 15 deg dorsiflexion

plantar flexion

gastrocnemius soleus acting on tibia

concentric

Pull-up to forward continuance

15 deg dorsiflexion to 10-15 deg plantar flexion

plantar flexion

gastrocnemius soleus acting on tibia and then foot

concentric

Foot clearance to foot placement

10 deg plantar flexion to 20 deg dorsiflexion

dorsiflexion anterior tibialis concentric

DESCENDING STAIRS

101

SUPPORT LIMB

JOINT MOVEMENT MUSCLE ACTION

Hip flexion gluteus max. eccentric to control hip flexion

Knee flexion quads eccentric to control knee flexion

Ankle dorsiflexion gastrocnemius soleus plantar flexors

eccentric to control ankle dorsiflexion

Toes extension FDL, FDB, FHL, FHB, AbH, interossei lumbricales

eccentric to control toe extension

NON-SUPPORT LIMB

JOINT MOVEMENT MUSCLE ACTION

Hip extenion gluteus max. concentric to extend flexed hip

Knee extenion quads concentric to extend knee to reach step below

Ankle plantar flexion to dorsiflexion

gastrocnemius soleus plantar flexors

concentric plantar flexion to reach step below then eccentric to control dorsiflexion for full foot loading

Toes Neutral to slight flexion

FDL, FDB, FHL, FHB, AbH, interossei lumbricales

no activity to concentric for toe to step contact

Page 10: Biomechanics Exam2 SG - SquarespaceExam2+SG.pdf · Obt$Ext$ 6. Quad$Fem$ 7. Gemellus$Sup$ 8. GemellusInf$ ... OSTEO* ROM* MUSCLES* Extra$ FLEX$ 0R140°$ 1. Biceps$Femoris$ 2. Semitendinosus$

RUNNING  

 

 

 

 

 

 

Stance  Phase   Foot  strike   Foot  strike  to  midsupport   Midsupport  to  toe  off  

Swing  Phase   Forward  Swing   Deceleration  

Running  Speed   As  Speed  ↑,  stance  phase  ↓,  swing  phase  ↑   At  high  speeds,  non-­‐support  is  called  FLOAT  PHASE,  where  both  feet  is  off  the  ground  

Forces   Vertical  Forces  

o Greater  with  running  than  walking  o During  walking,  vertical  forces  reach  110-­‐120%  body  weight  o During  running,  200%  

Fore  and  Aft  Shear  o ↑  50-­‐100%  during  running  as  compared  to  walking  

Medial  and  lateral  shear  o ↑  150-­‐200%  during  running  as  compared  to  walking  

Movements   @  Heel  strike  Walking  &  Foot  Strike  Running  Calcaneous  everts  (passive  subtalar  pronation),  midtarsal  joint  pronates,  

midfoot  mobile   @  Midstance  Walking  &  Midsupport  Running    Calcaneous  inverts  and  passing  through  subtalar  neutral  (midtarsal  joint  

supinates,  midfoot  becoming  rigid)   During  running  from  Foot  Strike  to  Mid  support    Rapid  DF   During  running  from  Foot  Strike  to  Midsupport    Rapid  PF   During  stance  phase  of  running    hip  adducts   As  running  speed  ↑    magnitude  of  hip  adduction  ↑  

General  Muscle     Muscle  actions  associated  w/walking  are  similar  for  running,  but  more  overlap  of  muscle  activity,  especially  btwn  hamstring  

and  quads,  as  phases  of  movement  are  shorter  in  running   In  running,  muscles  are  active  >70-­‐80%  of  the  stance  phase  (stance  phase  ↓  w/  running,  so  muscles  are  active  more)   In  walking,  muscle  groups  are  active  <50%  of  stance  phase  (stance  phase  ↑  w/walking,  so  muscles  are  active  less)  

Repetitive  Stress  on  Foot   Walking  

o 150lb  male  w/  step  length  of  2.5ft  and  walking  at  2110  steps/mi  shows  average  vertical  force  of  80%  BW  @  heel  strike  o For  a  1  mile  walk,  the  repetitive  forces  total  253,440lbs  (127tons)  =  63.5  tons/foot  

Running  o A  150lb  male  w/  step  length  of  3.5ft  and  rate  of  1175  steps/mi  shows  average  vertical  forces  of  250%  BW  @  foot  strike  o For  a  1  mile  run,  the  repetitive  forces  total  440,625lbs  (220tons)  =110  tons/foot  

102

RUNNING

Stance phase o foot strike o foot strike to midsupport o midsupport to toe off

Swing phase o forward swing o deceleration

RUNNING SPEED

o As speed increases, the period of the stance phase decreases and the period of the swing phase increases.

o At high speeds, there is a period of non-support called the FLOAT PHASE in which both feet are off the ground.

FORCES

o Vertical forces * Greater during running than walking. * during walking, vertical forces are 110 - 120% body

weight. * During running the vertical forces reach 200% of body weight.

o Fore and aft shear * Increase of 50 - 100% during running as compared to

walking.

o Medial and lateral shear * Increase of 150 - 200% during running as compared

to walking.