136
Biomechanical Behaviour of SPD-Processed (Ti-) Materials Michael J. Zehetbauer University Vienna, Faculty of Physics Research Group Physics of Nanostructured Materials Tutorial Lecture within BIOTINET Summer School Barcelona June 3 June 8, 2012

Biomechanical Behaviour of SPD-Processed (Ti-) … Behaviour of SPD-Processed (Ti-) Materials Michael J. Zehetbauer University Vienna, Faculty of Physics Research Group Physics of

Embed Size (px)

Citation preview

Biomechanical Behaviour

of SPD-Processed (Ti-) Materials

Michael J. Zehetbauer

University Vienna, Faculty of Physics

Research Group Physics of Nanostructured Materials

Tutorial Lecture within BIOTINET Summer School

Barcelona

June 3 – June 8, 2012

Lowering the E-Modul by Alloying

Material E(GPa) UTS (MPa)

Bone 20-40 90-140

CP Ti 105 785

-Ti alloys 60-90 600-1000

+ Ti6Al4V 110 960-970

Stainless steel

316L

210 465-950

Co-Cr alloy 230 600-1795

M. Long, H.J. Rack / Biomaterials 19 (1998) 1621-1639

Question:

How to make a material strong without change of

elastic moduli ?

Answer:

Grain refinement by Severe Plastic Deformation

S P D !!

Equal

Channel

Angular

Pressing

(V. Segal, R. Valiev)

Hydrostatic

Extrusion

(M. Pachla, K.

Kurzydlowski) V

High

Pressure

Torsion

(N.Bridgman,

R.Valiev) Accum. Roll

Bonding (N. Tsuji)

SPD – methods

SPD-induced Nanocrystallisation (v = van Mises strain, P = hydrost. pressure,

EBSP method, R. Pippan et al., ESI - ÖAW Leoben, 2002)

T. Waitz,

H.P.Karnthaler

Metallic glasses (TiNi) made by SPD

011

101

110

3 nm

T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. (2003)

Composite Model (H. Mughrabi,1979, 1983)

B

A

(large plastic strains – “SPD”):

Polarized Tilt Walls (“PTW’s“) :

Break of Symmetry (at A and B),

“Birth” of new crystallite

(small plastic strains):

Polarized Dipole Walls (“PDW’s“) :

Full Symmetry

Schafler, Zehetbauer, Ungar; Acta Mater 2006

0 20 40 60 800,0

0,4

0,8

1,2

1,6

stage IVstage III

Mw

[ MPa ]

0 20 40 60 80

1

2

3

[ MPa ]

IVIII

2/

2

order in dislocation

arrangement

fluctuations

in dislocation density

2nd order – phase transition !

1211

CC

d

d

2211 ff

Modelling of Stages IV and V (Zehetbauer, Acta metall. mater. 1993,

for SPD: Zehetbauer et al. AEM, 2003)

5

222432 )]0([

CC

d

d

„composite model“:

volume fractions fi , stresses ,

dislocation densities ,

disloc. arrang. parameters

areas with dislocations of type i

compatibility of strains i

hardening/softening by

screws dislocations edges

2211 ff

iii bG

21

most important fit parameter CC44::

Annihilation of edge dislocations by

diffusion-driven climb (low temperature deformation):

C4

= c / [(/2 .(1- )) ½ . exp ((Hmig + p )) / kBT)

.(2-

2(=0)) . d/dt . k

BT .

24 b2 3/( D

c0)]

...atomic volume, p ... hydrostatic pressure

T ... deformation temperature, d/dt ... applied strain rate

(Hmig + p ): “effective” enthalpy of vacancy migration

c : actual conc. deformation induced vacancies ( 10-5 / = 1)

Dc0

: coefficient of dislocation core diffusion ( 10-6 m2 s-1)

Rules to obtain

miminum crystallite size / maximum in strength:

SUPPRESS ANNIHILATION OF DISLOCATIONS !!

• low SPD processing temperature, high strain rate

• high hydrostatic pressure

• high alloy content

• apply > 2 SPD modes with different deformation path

Advantages of SPD – Nanomaterials

(1) Bulk materials for applications

(2) No noxious handling with powders, 100% dense & pore-free

(3) strong, but also ductile or even superplastic materials,

high fatigue strength & life

(4) Typical properties of nanomaterials retained:

enhanced strength, mechanical alloying, excellent

functional properties (magnetic, thermoelectric etc.), enhanced

diffusion (e.g. hydrogen: increased storage &

ab/desorption)

(5) SPD specific additional advantages:

create new phases and new phase transitions

Y.Wang,

M.Chen,

F.Zhou,

En Ma,

Nature 419,

912-915

(2002)

High Strength AND High Ductility of SPD Nanomaterials

Example:

Cu 99.99%

Advanced mechanical properties by SPD

R.Z.Valiev et al., J. Mater. Res. 17, 5-8 (2002)

Application:

SPD of Ti (-X)

Biomaterials

Mechanical Properties - CP Titan

0

200

400

600

800

1000

1200

sta

nd

ard

T

i a

nn

ea

led

na

no

SP

D

Ti

1p

as

s

na

no

SP

D

Ti

10

pa

ss

na

no

SP

D

Ti 10p

ass

+

Ro

llin

g

sta

nd

ard

T

i6A

l4V

EL

I a

nn

ea

led

sta

nd

ard

T

i6A

l4V

EL

I a

ge

d

Fe

sti

gk

eit

[M

Pa

]

0

5

10

15

20

25

30

Du

kti

litä

t [%

]

Rm

Rp02

A5

I

Cooperation with AIT Health & Environment Department

Biomedical Systems, Wr. Neustadt, Austria

(after R.Z.Valiev, V. Stolyarov et al. (2004))

CP2 Ti

UFG Ti processed

by Hydro-Extrusion

UFG Ti, Ti-6Al-4V ELI processed

by ECAP

Fatigue behaviour of SPD

processed Ti (-alloys)

0

1

2

3

4

5

6

-250 -200 -150 -100 -50 0 50 100 150

Temperature, oC

Imp

act

tou

gh

ness

, k

gx

m/c

m2

1

2

From: V.V. Stolyarov, Valiev, L. Zeipper, G. Korb, Fracture Toughness of

bulk ultrafine-grained CP-Titanium processed by SPD (1) coarse grained (2) SPD processed nano-material.

Proc. of the 10th Inter. Conf. on Titanium held in Hamburg, Germany,13-18 July 2003.

Plate implants for pipe bone osteosynthesis

From: R.Z. Valiev, IPAM, Ufa State Aviat. Techn.Univ.(2004)

R.Z. Valiev, Mater.Sci.Eng. A (2007)

Micro-engine

Parts of the micro-engine

(1 m - 2÷3 mm)

Scale of MEMS

Application of SPD-nanostructured materials for micromechanical systems (MEMS)

MEMS applications:

• Aircraft pressure probes, gyroscopes, etc.

• Muscle stimulator, implanted indicators of arterial pressure, cardiostimulators, instruments for microsurgery, etc.

• Micro-engines, micro-pumps, micro-robots, etc.

From: R.Z. Valiev, Mater.Sci.Eng. A (2007)

SPD processing:

Micro & Macro

R.Z.Valiev et al., Ufa State Aviation

TU Ufa, Russia

Y.Estrin et al., Monash Univ.

Melbourne, Australia

(2006)

&

SPD – equipment at the Erich Schmid Institute

Equal Channel Angular Pressing (ECAP)

15 x 15 mm , 10 x 10 mm

nanoSPD Ti Materials:

– CP-Ti (grade 2) & Ti6Al4V ELI

– Diameter: 52, 32, 18 mm

1cm

ECAP CP-Ti

Bolts from UFA Aviation

Technological University, Russia

Start up-Production AIT Biomedical

Systems, Wr. Neustadt, Austria

R. Srinivasan et al. (Mater.Sci.Forum 2006)

ECAP with parallel channels ECAP-Conform

New modifications of ECA pressing

RZ Valiev and TG Langdon, Progr. Mater.Sci.,2006

Outlines of (a) Conshearing and (b) C2S2 processes.

(from: Tsuji et al., Adv.Eng.Mater. 5 (5), 338 (2003)

Cu, Ni, Fe

New HPT-Equipment at ESI Leoben (Pippan et al.)

-196°C < T < 450°C, max. pressure 8 GPa

Sample diameter d = 15, 25, 35mm, Sample thickness = 2, 4, 5mm

Application:

SPD of Gum Biometals

SPD of Bulk Materials within BioTiNet (A. Panigrahi et al.)

Ti alloys [wt%] Phases

Ti-13Nb-13Zr Metastable β

Ti-45 Nb β

Ti-low wt% Nb

(IFW Dresden)

α + β

GUM METAL

Ti-36Nb-2Ta-3Zr-0.30 (mass%)

by Ball Milling & Cold Isost. Pressing

p 400 MPa, T = 1300 C

• Ultra low elastic modulus

• low strength

• small work hardening

Furuta et al., IJMR 2009

Application:

SPD-TiNi

Shape Memory Biomaterials

Shape Memory Effect (SME): Unique martensitic morphology of nc NiTi …

Waitz et al.,

Mater.Sci.Eng. (2008), PNM Univ. Vienna

Waitz et al., Europhys. Lett. (2005)

strain energy density

…leads to increased driving force Eb for MT,

managed by undercooling, and…

-50 0 50 100 150 200 250

-0,4

-0,2

0,0

0,2

0,4

Heat flow

[W

/g]

Temperature [°C]

NiTiHf

G. Steiner

Waitz et al., 2007

CG

UFG

nc

M

s

Transformation of bulk nanocrystalline NiTi

Ultrafine grained / nanocrystalline NiTi

Kockar, Karaman

et al., 2008

Tsuchiya et al., 2009

…to enhanced cyclic stability & superelasticity, and…

Corrosion / Biocompatibility of

SPD Biomaterials ?

• UFG Ti: less corrosion in HCl and H2SO4 solution than

CG Ti, due to enhanced formation of passive films in

case of UFG Ti, because of SPD-induced surface

lattice defects;

• However, impurities/segregations in UFG crystallite

boundaries may enhance corrosion in comparison to CG

materials !

Proliferation of pre-osteoblastic MC3T3-E1 cells extracted from

mice embryos as expressed by light absorbance in MTT assays.

Values E570 – E630 represented by the columns correspond to mean

values also shown in the table below the diagrams. The grey columns

represent the as-received commercial purity Ti as a reference and

the red ones the ECAP processed material. Error bars are also

indicated (Estrin and Zehetbauer (2009)).

Biocompatibility SPD-CP-Ti

Conclusions

• SPD processing of Ti-biomaterials is to provide taylored

high strengths at unchanged Young‘s moduli

• SPD processed Ti–biomaterials appear to allow for

enhanced cell growth in comparison with coarse-grained Ti

– without adding of special surface layers

• SPD processed Ti–biomaterials seem to have a higher

corrosion resistance unless segregations enter the

crystallite boundaries

Open Questions

• SPD may change the fraction of phases, and thus affect

the elastic modulus as a whole (this summerschool) –

learn to handle that effect or even use it !?

• SPD processing of amorphous Ti-Alloys – this is an

actual reserach issue, is not yet settled (and fills

another whole lecture !)

„SPD“ for all the life !

Thank you for your attention !

Quiz for ESRs: A New Biomaterial ?

Biodegradable Mg Stents – need higher strength SPD !

Flow curves for different HPT pressures 2 - 8 GPa

32

31

R

Q

Mres

d

RMres

Measured & fitted disl. densities (Holzleithner et al., UFG 2006)

))()(

()(

1)(

2

2

22

2

1

11

2

ff

Gb

Fe-Cu: Y. Sauvage, F. Wetscher, P. Pareige, Acta Mater. 53, 2127 (2005)

Neue Phasen, z.B. atomar gemischte Legierungen

M. Zehetbauer, D. Trattner, Mater.Sci.Eng. A (1986)

Modelling of HPT of Cu

• Fitting in-situ flow curves under

different hydrostatic pressures

• Fitting Dislocation Densities under

different hydrostatic pressures

• Simul. of Vacancy Concentration...

• Simul. of Grain/Cell and Wall Size...

21

11

LL

Lf

])()(

[)(

1)(

2

2

2

22

2

1

2

11

2

ff

b

3

21

11 ][

LL

Lf

c

)1( 12 ff

i

iiC

2

or

fit of exp. disloc. density

( interaction coeff. i )

fit of flow curve

( disl. storage rates i )

derivation of structural

element sizes

with volume fractions

derivation of activ. enthalpy

for screw annihilation

kT

G

D e C

w

1

3

i

ii

i

ii

ß

2

Dependence of volume fraction on different pressures ((Cu), XPA)

f2 (0.8 GPa) = 0.184

f2 (2 GPa) f2 (8 GPa) =

= 0.164

1

1

12 L

f

LL

Simulation of Structural Size during in-situ deformation

1

2

11

1

111

ßL

p = 0.1 MPa (Holzleithner et al.

UFG 2006)

Simulation of Structural Size during in-situ deformation

1

1

12 L

f

LL

p = 2 GPa

1

2

11

1

111

ßL

Simulation of Structural Size during in-situ deformation

1

1

12 L

f

LL

1

2

11

1

111

ßL

p = 4 GPa

Simulation of Structural Size during in-situ deformation

1

1

12 L

f

LL

1

2

11

1

111

ßL

p = 8 GPa

D.A. Hughes, N. Hansen: Acta mater. 45, 3871

(1997)

Cu, RT cold rolled 50 %

D.A. Hughes, N. Hansen: Acta mater. 48, 2985 (2000)

Summary

Simulation of Sizes: Cell Wall, Grain

• Mean free path of screw dislocations corresponds to grain size (= lattice areas tilted by at least 1°). Screws change into edges which increase the misorientation!

• The measured XPA domain size corresponds to the thickness of grain/cell walls. From simulation, the latter equals to the area occupied by the originally generated edge dislocations.

Eigenschaften

Superplastische nanoSPD Al-Legierung

(nach Furukawa et al., Mater.Sci.Eng. A, 2002)

Enhanced Superplasticity in SPD processed Nanomaterials

M.Furukawa, Z.Horita, M.Nemoto, T.G.Langdon, Mater.Sci.Eng. A324, 82-89 (2002)

Steigerung der Umformbarkeit - Al 1420 (Al-Mg-Li)

Exzellente Kaltwalzbarkeit nach ECAP + Warmwalzen (bei <<500nm Korngröße, Bleche von 0.9mm auf 0.15mm Dicke)

Verbesserte Superplastizität (Bruchdehnung bei 450°C, d/dt=10-3/s von 270% auf 480% bei einer Kraftreduktion um 35% von 22N auf 14N)

Walztemperatur von nanoSPD Al 1420 wurde um 200°C gesenkt

standard 1420 Al

nanoSPD 1420 Al

Gewalzt bei 300°C

mit 82% Reduktion 10mm

Anwendungen

FS (W) = Friction Stir (Welding)

TMAZ = Thermomechanically Affected

Zone

FS (W) = Friction Stir (Welding)

TMAZ = Thermomechanically Affected Zone

YAG-LB = YAG Laser Beam welding

GTA = Gas Tungsten Arc welding

Y.S.Sato et al. NanoSPD3 (Mater.Sci.Forum 2006)

Beschreibung:

Nanomaterial – Gruppe der

Univ. Wien

und weitere

Nanomaterial – Gruppen in

Österreich

European Nanobusiness Association stated an

Impact of Nanotechnology for 2005: 150 Billion EURO

Classical European Metal Producing/Applying Industry (Transport,

Machinery) has a turnover of

1000 Billion EURO / year

„NANO“ : Zahlen – Daten -Fakten

Phase shift achieved by ECAP

Magnesium alloy AM60

Mg- 6%wtAl- 0.13%wtMn

(Kulyasova et al.

Universities Vienna & Ufa,

J.Mater.Sci. 2007

Minimization of coercivity:

Thin foils of soft magnetic nc alloys

(G. Herzer, Physica Scripta 1993)

property conventional SPD-target

Yield strength 195 – 490 MPa at least + 30% up to + 100%

Tensile strength 260 – 515 MPa at least + 30% up to + 100%

Fracture strain 0,11 – 0,25 less than -10%

Low cycle fatigue life time 12.000 1) less than -20%

High cycle fatigue life time 3,5x104 2) at least + 50%, up to +700%

1) at a plastic strain amplitude of 1x10-3

2) at a stress amplitude of 200 MPa

Al alloys: 2XXX, 5XXX, 6XXX, 7XXX, AlMgSc,

Mg alloys: AZ31, AZ61, ZK60

Cu HPT deformed

(Zehetbauer et al. (2003),

Pippan et al. (2004))

resolved shear strain res

0 100 200 300 400

reso

lved

shea

r stre

ss re

s [MPa

]

0

100

200

300

400

500

600

8 GPa

4 GPa

2 GPa

0.1 MPa

0 5 10 15

0

200

400

600

res

0 20 40 60 80 100

res [

MP

a]

100

120

140

160

180

0.8 GPa

2 GPa

4 GPa

8 GPa

0.1 MPa

0 5 10 15 20

120

140

160

180

NanoSPD 3, Mater.Sci.Forum 2006

Plastische Verformung kristalliner Materialien

Verfestigung – „Mecking“ - Plot

Q versus

d

dQ versus

= true = F/Atrue

= ln (l/lo) = - ln do/d

Fließkurve (Bereiche I – V)

)( f

Polycrystalline

Polycrystalline

Zehetbauer Model Stages IV-V

Screw Dislocations () in Cells

Edge Dislocations ( )

in Cell Boundaries

II

III

IV

V

S S Cr Cr

b1

c1

f'

f /E'

HCF

LCF

Conventional grain size

Ultrafine grain size

2 Nt log 2 Nf2 Nf = 1

(HCF) (LCF)

t/2 = (2 Nf)b + f (2 Nf)

c''f

Elo

g

t/2

Schematic illustration of enhanced high-cycle fatigue (HCF) life (albeit

reduced low-cycle fatigue (LCF) life) typical of SPD - UFG materials,

in comparison to conventional ones. Note also the reduced transition

fatigue life Nt. E = Young’s modulus.

From: H. Mughrabi et al., MRS Fall Meeting, Boston, U.S.A. (2001)

Grain size effect : Wöhler (S-N)-Plot, UFG Al

(H.W.Höppel et al., Mater.Sci.Forum 2006)

102

103

104

105

106

107

0

50

100

150

200 CG Al, d

grain 170 µm

Al, dgrain

200 µm,

Thompson & Backofen, (1971)

Al, dgrain

20 µm,

Thompson & Backofen, (1971)

UFG Al, dgrain

850 nm

UFG Al, dgrain

350 nm

/2 /

MP

a

cycles to failure, Nf

20 µm200 µm

?

104

105

106

107

108

109

60

90

120

150

180

Ma

x s

tre

ss, M

Pa

Number of cycles

Homogenized

ECAP at 350 0C

ECAP at 210 0C

ECAP at 150 0C

O. Kulyasova (USATU) et al., M. Zehetbauer et al. (Univ. Vienna) (2008)

Enhanced Fatigue Strength in ECAPed Mg-Al AM 60 alloy

Table 1. Distribution of topical emphases in publications on severe plastic deformation from 1990-

2002

Topic Number of publications as of August 1999

Number of publications as of December 2002

Microstructures 144 490

Properties 78 445

Synthesis and processing methods 44 255

Modeling 18 102

Applications and products 18 73

(from T.C.Lowe, Y.T.Zhu, Adv.Eng.Mater. 5 (5), 373 (2003)

European Nanobusiness Association stated an

Impact of Nanotechnology for 2005: 150 Billion EURO

Classical European Metal Producing/Applying Industry (Transport,

Machinery) has a turnover of

1000 Billion EURO / year

only 10 ppm for SPD-designed metals results in a turnover of

10 Mio EURO / year

„NANO“ : Numbers & Dates & Facts

Superplastische nanoSPD Al-Legierung

(nach Furukawa et al., Mater.Sci.Eng. A, 2002)

Effect of Nanoscaling on thermally induced martensitic phase

T.Waitz, D.Spisak,

J.Hafner, H.P.Karnthaler,

Europhys.Lett. (2005)

‘Forbidden‘ twin structure

of martensite formed in

nanocrystalline NiTi

Project coordinator:

Michael J. ZEHETBAUER

Research Group Physics of Nanostr. Materials

Faculty of Physics, University of Vienna

High Performance Bulk

Nanocrystalline Materials

National Research Network NFN- S10400

Austrian Academy of

Science

Erich Schmid-

Institute of

Material Science

Project 02

University of

Vienna

Physics of Nanostructured

Materials

Projects 01, 03 Vienna University

of Technology

Institute of Solid

State Physics

Project 06

Karl-Franzens-

University Graz

Institute of Physics

Project 07

Graz University

of Technology

Institute of

Materials Physics

Project 04, 05

X. Sauvage

Rouen, France

D. Jiles

Cardiff, Great Britain

Austrian Research

Network

„High Performance Bulk

Nanocrystalline Materials“

J. Shirai

Osaka, Japan

C. Koch

Raleigh, USA

J. Eckert

Dresden, Germamy

J. Weissmüller

Karlsruhe, Germany

Tunable properties by electronic interface charging

Voltage-induced excess

at interfaces

High number of interfaces in

nanocrystalline materials

H. Gleiter, J. Weissmüller, O. Wollersheim, and

R. Würschum, Acta Mater. 49 (2001) 737.

Electrochemical double layer at the

nanocrystal–electrolyte interface:

Charge variation in surface

layer of several 1/10 e- / atom

Nanomaterials

with tunable properties

(magnetic, electronic, optical…)

Concept

resistance susceptibility

H. Drings, R. Würschum et al.

Appl. Phys. Lett. 88 (2006) 253103.

M. Sagmeister, R. Würschum et al.

Phys. Rev. Letters 96 (2006) 156601.

electron

excess

electron

excess

J. Weißmüller, R. Würschum et al.

Science 300 (2003) 312.

length

electron

excess

Pt Pt Pd

mechanic electronic magnetic

State of Research: Tunable Properties of nanocrystalline metals

M. Weisheit et al., Science, Jan. 07:

Field-induced modification of

magnetism of thin films

„Effect of equal channel angular pressing on

tensile properties and fracture modes of casting

Al–Cu alloys“

MSE A, 426, 305-313

D.R. Fang, Z.F. Zhang, S.D. Wu, C.X. Huang, H.

Zhang, N.Q. Zhao and J.J. Li

Table 1. Distribution of topical emphases in publications on severe plastic deformation from 1990-

2002

Topic Number of publications as of August 1999

Number of publications as of December 2002

Microstructures 144 490

Properties 78 445

Synthesis and processing methods 44 255

Modeling 18 102

Applications and products 18 73

(from T.C.Lowe, Y.T.Zhu, Adv.Eng.Mater. 5 (5), 373 (2003)

Feste

Wasserstoff-speicher für Brennstoffzell-Technologie

Nano-Pulver erhöhte Diffusion und Kinetik

durch mehr Kristallitgrenzen

kleinere Desorptionstemperatur

Oberflächen-Kontamination

Kommerzielle teure Technologie, Umweltrisken

Massive NM

T.Klassen, et al., Z. Metallkd., 94, 610 (2003)

Grobkristalline

Struktur Nanokristalle

Cooperation:

PNM University Vienna

AIT Biomedical Systems,

TU Ufa & Industry

Construction of an ECAP

tool for processing of

nanoSPD-materials

120° Channel Angle

20 mm Diameter

Processing Temp.

1000°C

From: M.Skripnyuk, E.Rabkin, Y.Estrin, R.Lapovok, Acta mater. 52, 405 (2004)

(a) Grain size effect to H2-desorption kinetics

(b) Catalysator effect to H2-desorption kinetics

(a) (b)

Effects to desorption kinetics in ECAPed ZK 60

(Krystian et al., 2008)

From: M.Skripnyuk, E.Rabkin, Y.Estrin, R.Lapovok, Acta mater. 52, 405 (2004)

RF plasma nitriding of SPD deformed Fe-based alloys

(H. Ferkel, Y. Estrin, R.Z. Valiev et al. (MSE A, 2003)

HPT achieves doubling of thickness of nitrided layer

High-pressure-torsion die with a sample size of 10 mm in diameter and 0.8 mm in height

placed in the center of a 40 mm die. The sample chamber is filled with a setup of a 2 mm wide

bar of metallic glass next to two cuts of polymer. (b) Optical microscopy image of a cross-

section of an Au-based metallic glass / HDPE composite processed by two turns in high-

pressure torsion

(A. Kündig, J.Löffler, ETH Zürich, coop.with IMP Vienna and ESI Leoben)

Metallic glass / polymer composites by co-processing at similar viscosities

Nanokristalle absorbieren

Bestrahlungsdefekte

M.Rose, A.G.Balogh, H.Hahn (1997)

Sizes: Magn. Domains & Grains in SPD steel P800

300 nm

R. Pippan et al.,

Mater.Sci.Forum

2006

Hc measured by ring test as function of grain size D measured by SEM- BSE

(Scheriau et al., 2010). Full lines: Models (Herzer, Physica Scripta 1993).

Coercivity in soft magnetic HPT Fe and Fe alloys

Application of Thermoelectrics

Properties needed for

Thermoelectrics

Produceable by a synthesis

process

High TE properties (high ZT)

Thermal stability and reliability

Sufficient mechanical strength

for device integration (stress)

Stiffness (Young‘s, shear, bulk

modulus)

High density (>95%)

TEG VW

Ulysses Spacecraft Thermosflask

air cooler

figure of merit efficiency

ZT = S2T/(κ)

S: Seebeck coefficient - thermopower

: Electrical resistivity

(S2/): Power factor

: Thermal conductivity

= e+ l

e: electronic thermal conductivity (e= L0T/)

l: lattice thermal conductivity …….. phonon scattering

- filling with “rattling” atoms

- introducing defects, GBs nanograins)

h

ca

a

h

ch

T

TZT

ZT

T

TT

)(1

1)(1

Tc: temperature at cold site

Th: temperature at hot site

Cooperation PNM IPCh , Univ. Vienna

Skutterudite: cubic structure with formula TPn3

T = Co, Fe, Ni … Pn = P, As or Sb

Space group : Im –3 ; sites: T: 8c (¼, ¼, ¼) , Pn: 24g (0, y, z), void: 2a (0,0,0) or (½,

½, ½).

T

(Co,Fe,Ni...)

Pn (P,As,Sb) Filler atom

p- and n-type filled skutterudites

Nanocrystallization by Ball Milling, BM (Zhang et al., 2010)

ZT = S2T/(κ)

Zusammenfassung

Herstellung massiver nanokristalliner Materialien mittels der Methode der

„Severe Plastic Deformation“ – formkonstante plastische Hochverformung unter

erhöhtem hydrostatischen Druck

Besondere Eigenschaften von SPD-hergestellten Nanomaterialien:

Mechanisch, Magnetisch, Elektrisch, H-Speicherung

- Anwendungen von SPD Nanometallen

Al- und Mg-Legierungen: (ermüdungs)festeres Material f. d. Auto- und

Flugzeugindustrie (Gewicht !),

raschere Herstellung von Tiefziehprodukten (z.B. Druckbehälter)

Mg-Legierungen: Verbesserte Speicherg. H2 (Brennstoffzellen - Technologie)

Fe-Legierungen: festeres Material f. d. Autoindustrie, verbesserter Magnetismus

für Polschuhe (Motoren), Ton/Videoköpfe, Mechatronik

Ti, Ti und Mg- Legierungen): Festeres biokompatibles Material für Prothesen,

Implantate und Stents

- Anwendungen von SPD Nichtmetallen: Verbesserte thermoelektrische Energiequellen

- Anwendungen als MEMS (Micro-Electro-Mechanical-Systems) mit verbesserten

mechanischen und magnetischen Eigenschaften

4.750 4.775 4.800 4.825

10 3

10 4

<111>

Arb

itra

ry U

nits

K [ 1/nm ]

4% Planar Faults

Extrinsic Intrinsic Twins

X-Ray Bragg Peak Profile Analysis (XPA) : Versetzungen, planare Gitterdefekte (Zwillinge, Stapelfehler)

(T.Ungar, TMS 06, Symposium UFG IV)

Cu single crystal deformed

in compression

In-situ deformation

X-ray Bragg Profile Analysis

with Synchrotron radiation

(Beamline SAXS of ÖAW,

ELETTRA, Trieste

M.Zehetbauer, T.Ungar,

E.Schafler et al. 1999 ff.)

E. Schafler, T. Ungar,

M. Zehetbauer et al.

to be published (2004) K

I/IMAX

0 25 50 750

100

200

300

IVIII

d/

d

[ M

Pa

]

[ MPa ]

Present data

Göttler [??]

Cu single crystal deformed in compression

(E. Schafler et al, Acta Mater.( January 2005)

MEMS: Forcefill between IC‘s as an applied case of ECAP

(after R. Hellmig, Y. Estrin, Clausthal University, Germany (2003)

Gum metal in scientific community

Saito and coworkers have developed this multifunctional alloy

Saito et.al. Materials Science Forum Vols. 426-432 (2003) pp 681-688

Cold worked sample Tensile test of cold working specimen Annealed sample