406

Biology of turtles.pdf

Embed Size (px)

Citation preview

  • Biology of Turtles

    3339.indb 1 11/26/07 11:59:32 AM

  • 3339.indb 2 11/26/07 11:59:32 AM

  • Biology of Turtles

    Edited by

    Jeanette WynekenFlorida Atlantic University

    Boca Raton, FL, U.S.A.

    Matthew H. GodfreyNorth Carolina Wildlife Resources Commission

    Beaufort, NC, U.S.A.

    Vincent BelsMusum of National D Histoire Naturelle

    Paris, France

    3339.indb 3 11/26/07 11:59:32 AM

  • Cover photos by Stephen L. Barten, D.V.M., Ann C. Burke, and Jeanette Wyneken.

    CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 334872742

    2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

    No claim to original U.S. Government worksPrinted in the United States of America on acidfree paper10 9 8 7 6 5 4 3 2 1

    International Standard Book Number13: 9780849333392 (Hardcover)

    This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

    Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

    For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 9787508400. CCC is a notforprofit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

    Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

    Library of Congress CataloginginPublication Data

    Wyneken, Jeanette, 1956Biology of turtles / Jeanette Wyneken, Matthew H. Godfrey, Vincent Bels.

    p. cm.Includes bibliographical references and index.ISBN 9780849333392 (alk. paper)1. Turtles. I. Godfrey, Matthew H. II. Bels, V. L. (Vincent L.) III. Title.

    QL666.C5W96 2007597.92dc22 2007024320

    Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.comand the CRC Press Web site athttp://www.crcpress.com

    3339.indb 4 11/26/07 11:59:33 AM

  • Contents

    Preface............................................................................................................................................viiAbout the Editors............................................................................................................................ixContributors....................................................................................................................................xi

    Chapter 1 HowtheTurtleGetsItsShell.............................................................................................................1Scott F. Gilbert, Judith A. Cebra-Thomas, and Ann C. Burke

    Chapter 2 ComparativeOntogeneticandPhylogeneticAspectsofChelonianChondro-OsseousGrowthandSkeletochronology....................................................................................................... 17Melissa L. Snover and Anders G.J. Rhodin

    Chapter 3 EvolutionandStructureoftheTurtleShell..................................................................................... 45Peter C.H. Pritchard

    Chapter 4 LongBoneAllometryinTortoisesandTurtles...............................................................................85Gustavo A. Llorente, Xavier Ruiz, Adri Casinos, Ignacio Barandalla, and Carles Viladiu

    Chapter 5 EvolutionofLocomotioninAquaticTurtles...................................................................................97Sabine Renous, France de Lapparent de Broin, Marion Depecker, John Davenport, and Vincent Bels

    Chapter 6 HindlimbFunctioninTurtleLocomotion:LimbMovementsandMuscularActivationacrossTaxa,Environment,andOntogeny................................................................................................ 139Richard W. Blob, Angela R.V. Rivera, and Mark W. Westneat

    Chapter 7 CervicalAnatomyandFunctioninTurtles................................................................................... 163Anthony Herrel, Johan Van Damme, and Peter Aerts

    Chapter 8 FunctionalEvolutionofFeedingBehaviorinTurtles.................................................................... 187Vincent Bels, Sabine Baussart, John Davenport, Marc Shorten, Ruth M. ORiordan, Sabine Renous, and Julia L. Davenport

    3339.indb 5 11/26/07 11:59:33 AM

  • i Contents

    Chapter 9 TheStructureofCardiopulmonarySystemsofTurtles:ImplicationsforBehaviorandFunction.................................................................................................................................. 213Jeanette Wyneken

    Chapter 10 ReproductiveStructuresandStrategiesofTurtles........................................................................225Jeffrey D. Miller and Stephen A. Dinkelacker

    Chapter 11 MixedandUniformBroodSexRatioStrategyinTurtles:TheFacts,theTheory,andTheirConsequences................................................................................................................................. 279Vincent Hulin, Marc Girondot, Matthew H. Godfrey, and Jean-Michel Guillon

    Chapter 12 ThePhysiologyandAnatomyofAnoxiaToleranceintheFreshwaterTurtleBrain..................... 301Sarah L. Milton

    Chapter 13 TheRelationshipsofTurtleswithinAmniotes.............................................................................. 345Olivier Rieppel

    Index .............................................................................................................................................. 355

    3339.indb 6 11/26/07 11:59:33 AM

  • ii

    PrefaceThefirstbeaststhatweidentifyasturtlesemergedabruptlyintheTriassicabout220millionyearsago.Sincethen,countlessdiverselineagesofturtlesterrestrial,marine,freshwater,andin-betweenhavecomeandgone,yetmanylineagespersistfortensofmillionstomorethan100millionyears.Allbringwiththemthesuiteoftraitsthatareuniquelyturtle:abonyshell,usuallyaretractableneck,lackoftrunkmusculature,andlimbgirdleslocatedinsidetheribcage(insteadoflyingoutsideofit).Thereptilesweidentifyasturtles,ortestudines,orchelonians,havecaptivatedmanynaturalistsandotherscientistsbecauseoftheseandotheruniquetraitsandtheirconsequences.

    Some180yearsagowhileinJena,Germany,LudwigHeinrichBojanusdevelopedaninterestintheanatomyoftheEuropeanturtleEmys obicularis.Bydissectingspecimensandillustratingtheir anatomy over the next decade, Bojanus authored one of the most detailed studies on anysinglevertebratespecies,Anatome Testudinis Europaeae(18191821).Thisunparalleledbookonturtleanatomyrepresents the intersectionofhis interestsasanaturalist,comparativeanatomist,veterinarysurgeon,andteacherofanatomicalart.Itwasbecauseofthishistoricalbackdropthatthebiology,particularlytheanatomy,ofturtleswasvisitedagainfittinglyattheSixthInternationalCongressofVertebrateMorphology,whichwasheldinJenain2001.Thesymposiumanditsmanycontributedpapersservedasthefoundationuponwhichthisvolumeisbased.However,thisbookgoesbeyondamorphologicallybasedsymposiuminrecognizingthatthestructuresofturtlesareparticularlyinterestingandbestunderstoodwithinthecontextoftheirformation,theirdiversityoffunctions,theirnovelty,andtheirevolution.Whereasseveralareasofinterest(e.g.,turtlegenetics,sensorysystemsandbehavior,andlifehistoryevolution)arenotincludedasthesefieldscontinuetoprogressrapidlywithoutaclearstablepointwehavebroughttogetherawiderangeofdiscus-sionsonothernovelfeaturesofturtles.

    Forthefirsttimeanywhere,wehavearobustdiscussionabouttheorigins,development,anddiversityoftheshellinchaptersbyGilbertetal.(Chapter1)andPritchard(Chapter3).SnoverandRhodin(Chapter2)synthesize the importantworkonbonegrowthandaging,whileLlorenteetal.(Chapter4)bringforwardanunderstandingoflimbbonestrengthinthisuniquegroup.Turtlelocomotionisuniqueinmanywaysbecauseofthepresenceoftheshell.Renousetal.(Chapter5)provideanovelsynthesisofthefieldwhileBlobetal.(Chapter6)presentanexperimentalandfunc-tionalperspectiveonthemotorpatternsusedbyturtlesduringlocomotion.TheretractableneckisexpertlydescribedbyHerreletal.(Chapter7)andgivenfunctionalcontextbeyondthesimpleviewofprotectingthehead.Belsetal.(Chapter8)provideafunctional,anatomical,andbehavioraloverviewoffeedinginherbivorousversuscarnivoroustypesandaquaticversusterrestrialturtlesthathasneverpreviouslybeensummarized.Wyneken(Chapter9)discussescardiopulmonaryanat-omyandfunctionfromfunctionalperspectives.Reproductivestrategiesreceiveathoroughover-viewbyMillerandDinkelacker(Chapter10).Hulinetal.(Chapter11)challengethereadertothinkrigorouslyintheiranalysisoftheconsequencesofenvironmentalsexdeterminationandturtlesexratios,andMilton(Chapter12)remindsusthatatleastsometurtles(particularlytheaquaticspe-ciesthathibernateunderwater)haveanumberofveryuniquestructuralandfunctionaladaptationsfortoleratinglowoxygenlevels.Rieppel(Chapter13)examineswhytheoriginofturtlesandtheirrelationshipstootheramniotesissuchagreatchallenge.Despitemorethanacenturyofintensivestudy,ourunderstandingofthephylogeneticoriginsofturtlesremainsindefinite.Thischapterpar-ticularlychallengesustolookbothinsideandoutsidetheshellaswebuildanunderstandingoftheevolutionofturtles.Thischallengeextendsacrossallfieldsrepresentedinthisvolumeandthoseyettocome.

    3339.indb 7 11/26/07 11:59:33 AM

  • iii Preface

    Theeditorsthankthemanyexternalrefereeswhorespondedtoourrequestforarigorousreviewofeachchapter.WearegratefulforthecollegialenvironmentinJena,Germany,andattheSixthInternationalCongressforVertebrateMorphology,whichstimulatedtheideasandtopicsforthissynthesis.Particularly,weacknowledgeMatthiasStarckforhisencouragementandsupportofthesymposiumTurtles:FromStructurestoStrategiesofLife,andtothelatePeterLutzforaper-spectiveonthehistoryofthescienceandthemanynovelintegrativeapproachesthathaveledtounderstandingthebiologyofturtles.JohnSulzyckiandDavidFauselatCRCPress/Taylor&Fran-cisprovidedessentialguidance,superbadvice,andgoodhumorasthisbookprogressedataturtlespace.

    Jeanette WynekenBoca Raton, Florida, USA

    Matthew H. GodfreyBeaufort, North Carolina, USA

    Vincent BelsParis, France

    3339.indb 8 11/26/07 11:59:34 AM

  • ix

    AbouttheEditorsJeanette Wyneken, Ph.D.,isanassociateprofessorofbiologicalsciencesatFloridaAtlanticUni-versityinBocaRaton.SheearnedherB.A.fromIllinoisWesleyanUniversityandlater,herPh.D.inbiologyfromtheUniversityofIllinoisin1988.Shewasaresearchassociatefrom1988to1989attheUniversityofIllinoisbeforetakingaresearchpositionatFloridaAtlanticUniversityin1990.Shelaterassumedapositionasassistantprofessor,thenassociateprofessorofbiologicalsciencesatFloridaAtlanticUniversity.Dr.Wynekenisacomparativeandfunctionalanatomistandaconserva-tionbiologist.Herstudiesarediverseanddealwithgrowth,energetics,migratorybehavior,devel-opment,includingenvironmentalsexdetermination,andmedicalimagingofreptiles.Inadditiontoteachingvertebrateanatomyanddevelopment,shedevelopedandtaughttheBiologyofSeaTurtlescourseofferedatHarborBranchOceanographicInstituteinFortPierce,Florida,andworkedwithSelinaHeppellandLarryCrowdertodevelopasimilarconservation-basedseaturtlebiologycourseattheDukeUniversityMarineLaboratoryinBeaufort,NorthCarolina.SheistheformerpresidentoftheAnnualSeaTurtleSymposium(nowTheInternationalSeaTurtleSociety),theconvenerofthe7thInternationalCongressforVertebrateMorphology,andhasorganizedseveralsymposiaonvariousaspectsofthebiologyofturtles.

    Dr. Wyneken serves on the editorial boards of two professional journals in her field and isactiveinthepeerreviewprocessforanumberofotherjournals.Sheisamemberofseveralprofes-sionalorganizationsincludingtheAAAS,AssociationofIchthyologistsandHerpetologists,Societyfor theStudyofAmphibiansandReptiles,HerpetologistsLeague,AssociationofReptilianandAmphibianVeterinarians,theInternationalSeaTurtleSociety,SigmaXi,theSocietyofIntegra-tiveandComparativeBiology,and theIUCNMarineTurtleSpecialistGroup.Dr.Wynekenhasauthoredmorethan30peer-reviewedpapers,fourbookchapters,onebook(The Anatomy of Sea Turtles),andco-editedThe Biology of Sea Turtles, Volume 2.

    Matthew H. Godfrey, Ph.D., is a biologist with the North Carolina Wildlife Resources Com-missionandanadjunctassistantprofessorattheNicholasSchoolfortheEnvironmentandEarthStudies at Duke University, North Carolina. Dr. Godfrey received a B.A. (1991) in history andphilosophyfromtheUniversityofToronto.HewentontoreceiveaM.Sc.(1994)andPh.D.(1997)inzoologyfromtheUniversityofTorontoin1997.Between1997and2002,Dr.GodfreyworkedasaresearchfellowatProjetoTAMAR-IBAMAinBrazilandasaresearcher/lectureratUniversitParis,France.Hisresearchtopicsincludebehavioralandevolutionaryecologyofreptiles,withafocusontemperature-dependentsexualdifferentiation.Dr.Godfreyisalsointerestedinthecon-servationofprotectedspeciesanditslinkstosocialjustice.Hehasauthoredorco-authoredmorethan40researchpapersandfivechaptersineditedbooks.Dr.Godfreyiscurrentlyco-editoroftheMarine Turtle Newsletterandservesontheeditorialboardoftwootherscientificjournals.HeisalsoamemberoftheIUCNMarineTurtleSpecialistGroupandservesonthreenationalandtwostatescientificadvisorycommitteesconcernedwithprotectedspeciesmanagementandconservation.

    Vincent Bels, Ph.D.,isprofessorattheMusumNationaldHistoireNaturelle(Paris,France).HeobtainedhisB.A.andhisdoctoratdEtatfromtheUniversityofLige(Belgium)in1989.Dr.BelsbeganhisworkinethologyattheUniversityofLigeandcultivatedhisinterestincomparativeandfunctionalmorphologyofvertebrates.HeisnowassociatedirectoroftheresearchteamUMR7179Mcanismes adaptatifs: des organismes aux communauts (CNRSMNHN Univ. Paris 6 College de France) at the Department Ecologie et Gestion de la Biodiversit at the MusumNationaldHistoireNaturelle. InadditiontoteachingvertebratefunctionalmorphologyattheUni-

    3339.indb 9 11/26/07 11:59:34 AM

  • x AbouttheEditors

    versityofMons (Belgium)and theMusum(mastersdegreeprogramanddoctoral school),Dr.Belss studies concern a large variety of lower vertebrates from a comparative, functional, andevolutionarypointofview.Hismainworkfocusesonfeedingbehaviorinsquamatesandturtles.Hehasstudiedlocomotorbehaviorinanumberoflowervertebratesincludingfishes,crocodiles,andmarineturtles.Hehasalsoinvestigatedbehavioralandfunctionalmechanismsofbehaviorsinvolvedincommunicationinsquamates.Heisactiveinthepeer-reviewprocessforanumberofjournals.Dr.Belshasauthoredmorethan50peer-reviewedpapers,fivebookchapters,andeditedorco-editedthreebooksonthefunctionalandevolutionarybiologyofvertebrates.

    3339.indb 10 11/26/07 11:59:34 AM

  • xi

    Contributors

    Peter AertsDepartmentofBiologyUniversityofAntwerpAntwerp,Belgium

    Ignacio BarandallaDepartmentofAnimalBiologyUniversityofBarcelonaBarcelona,Spain

    Sabine BaussartDpartementEcologieetGestiondela

    BiodiversitMusumNationaldHistoireNaturelleParis,France

    Vincent BelsDpartementEcologieetGestiondela

    BiodiversitMusumNationaldHistoireNaturelleParis,France

    Richard W. BlobDepartmentofBiologicalSciencesClemsonUniversityClemson,SouthCarolina,USA

    Ann C. BurkeBiologyDepartmentWesleyanUniversityMiddletown,Connecticut,USA

    Adri CasinosDepartmentofAnimalBiologyUniversityofBarcelonaBarcelona,Spain

    Judith A. Cebra-ThomasBiologyDepartmentMillersvilleUniversityMillersville,Pennsylvania,USA

    John DavenportDepartmentofZoology,EcologyandPlant

    ScienceEnvironmentalResearchInstituteUniversityCollegeCorkCork,Ireland

    Julia L. DavenportDepartmentofZoology,EcologyandPlant

    ScienceEnvironmentalResearchInstituteUniversityCollegeCorkCork,Ireland

    Marion DepeckerDpartementEcologieetGestiondela

    BiodiversitMusumNationaldHistoireNaturelleParis,France

    Stephen A. DinkelackerDepartmentofBiologyUniversityofCentralArkansasConway,Arkansas,USA

    Scott F. GilbertBiologyDepartmentSwarthmoreCollegeSwarthmore,Pennsylvania,USA

    Marc GirondotLaboratoiredesReptilesetAmphibiensMusumNationaldHistoireNaturelleParis,France

    Matthew H. GodfreyNorthCarolinaWildlifeResources

    CommissionBeaufort,NorthCarolina,USA

    3339.indb 11 11/26/07 11:59:34 AM

  • xii Contributors

    Jean-Michel GuillonLaboratoireEcologie,Systmatiqueet

    EvolutionFacultdesSciencesdOrsayUniversitParisSudOrsay,France

    Anthony HerrelDepartmentofBiologyUniversityofAntwerpAntwerp,Belgium

    Vincent HulinLaboratoireEcologie,Systmatiqueet

    EvolutionFacultdesSciencesdOrsayUniversitParisSudOrsay,France

    France de Lapparent de BroinDpartementHistoiredelaTerre,

    PalobiodiversitMusumNationaldHistoireNaturelleParis,France

    Gustavo A. LlorenteDepartmentofAnimalBiologyUniversityofBarcelonaBarcelona,Spain

    Jeffrey D. MillerDepartmentofBiologyUniversityofCentralArkansasConway,Arkansas,USA

    Sarah L. MiltonDepartmentofBiologicalSciencesFloridaAtlanticUniversityBocaRaton,Florida,USA

    Ruth M. ORiordanDepartmentofZoology,EcologyandPlant

    ScienceEnvironmentalResearchInstituteUniversityCollegeCorkCork,Ireland

    Peter C.H. PritchardChelonianResearchInstituteOviedo,Florida,USA

    Sabine RenousDpartementEcologieetGestiondela

    BiodiversitMusumNationaldHistoireNaturelleParis,France

    Anders G.J. RhodinChelonianResearchFoundationLunenburg,Massachusetts,USA

    Olivier RieppelDepartmentofGeologyFieldMuseumofNaturalHistoryChicago,Illinois,USA

    Angela R.V. RiveraDepartmentofBiologicalSciencesClemsonUniversityClemson,SouthCarolina,USA

    Xavier RuizDepartmentofAnimalBiologyUniversityofBarcelonaBarcelona,Spain

    Marc ShortenDepartmentofZoology,EcologyandPlant

    ScienceEnvironmentalResearchInstituteUniversityCollegeCorkCork,Ireland

    Melissa L. SnoverNationalOceanicandAtmospheric

    Administration(NOAA)NationalMarineFisheriesServicePacificIslandsFisheriesScienceCenterHonolulu,Hawaii,USA

    Johan Van DammeDepartmentofBiologyUniversityofAntwerpAntwerp,Belgium

    Carles ViladiuDepartmentofAnimalBiologyUniversityofBarcelonaBarcelona,Spain

    3339.indb 12 11/26/07 11:59:35 AM

  • Contributors xiii

    Mark W. WestneatDepartmentofZoologyFieldMuseumofNaturalHistoryChicago,Illinois,USA

    Jeanette WynekenDepartmentofBiologicalSciencesFloridaAtlanticUniversityBocaRaton,Florida,USA

    3339.indb 13 11/26/07 11:59:35 AM

  • 3339.indb 14 11/26/07 11:59:35 AM

  • 1 HowtheTurtleGetsItsShellScott F. Gilbert, Judith A. Cebra-Thomas, and Ann C. Burke

    Ifitwerentforthe250speciesofturtleslivingtodaytheseanimalsencasedinmobilehomescouldeasilybeviewedasbizarreevolutionaryexperimentsthatwereordainedtofailure.

    Richard Ellis (2003)

    Contents

    1.1 TheNatureoftheTurtleShell................................................................................................11.1.1 IntroductiontotheTurtleShell....................................................................................11.1.2 AnatomyoftheTurtleShell.........................................................................................2

    1.2 TheFormationoftheCarapacialBones:HeterotopyandParacrineFactors.........................21.2.1 TheDermalBonesoftheCarapace.............................................................................21.2.2 FormationoftheCarapace..........................................................................................4

    1.2.2.1 TheCarapacialRidgeandtheEntryoftheRibsintotheDermis.................41.2.2.2 CostalBones:TheOssificationoftheCarapace............................................51.2.2.3 TheNuchalandPeripheralBonesoftheCarapace.......................................6

    1.3 TheFormationofthePlastronBones:HeterochronyandNeuralCrestCells........................81.3.1 DermalBonesofthePlastron......................................................................................81.3.2 OssificationofthePlastron..........................................................................................8

    1.3.2.1 DevelopmentofthePlastronBones...............................................................81.3.3 RolesofNeuralCrestCellsinPlastronandNuchalBoneDevelopment.................. 10

    1.4 EvolutionaryImplications..................................................................................................... 12Acknowledgments............................................................................................................................ 13References........................................................................................................................................ 13

    . thenatureoftheturtleshell

    1.1.1 IntroductIontotheturtleShell

    TheturtleshellisaremarkableevolutionarynoveltythatdefinestheorderChelonia.Theturtleshellisfoundinthreegeneralformsbasedonthenatureanddegreeofossification:hardshells,softshells,andleatherbacks.Thissectionwillconcentratealmosttotallyonthebonycomponentofthoseshellsof thehardbackturtlesof theEmysandChelydaefamilies.Thisshell iscomposedof twomainparts,thedorsalcarapaceandtheventralplastron,connectedalongthemidflanksbylateralbridges.Altogether,theshellcontainsover50dermalbonesthatarehomologoustonootherboneinanyothervertebrateorder.Moreover,thepresenceofthisbonycasinghasnecessitatedextensivemodi-ficationsofthetetrapodbodyplan(Zangerl,1969).Whereasdermalossificationitselfisaprimitivecharacterforvertebrates(Smith&Hall,1993),theturtleshellrepresentsanextremedevelopmentofthedermalskeletonamongtetrapods.

    Theshellclearlyhasadaptivevalueforturtlesasphysicalprotection,butitalsoservesphysi-ologicalfunctionsindifferentspeciesasasiteofhematopoiesis,areservoirforwater,fat,orwastes,

    3339.indb 1 11/26/07 11:59:35 AM

  • BiologyofTurtles

    andabufferforpH.Theembryonicdevelopmentoftheshellinvolvesadramatichypertrophyofthedermisinthedorsalbodywallandaresultantrearrangementofthetypicalrelationshipbetweenthepectoralgirdleandtheaxialskeleton.Thus,turtlesaretheonlyvertebrateswhoselimbsarefounddeeptotheribs.Theparaxialandlimb-girdlemusculaturetheneckandskullarealsogreatlymodified.Aswedetailhere, thekey innovation for thecheloniansappears tobe thecarapacialridge,abulgeofectodermandmesodermthatinfluencesthegrowthoftheribs(Burke,1989a).Theribsareenvelopedwithinthedorsaldermis,resultingintheirlateraldisplacementasthedermisrapidlyexpands.Thusinsteadofextendingventrallyandenclosingthethoraciccavity,theturtleribsbecomeintegratedintothecarapacialdermis.Theneuralarchesofthevertebraealsofusewiththemidlineofthecarapace.Astheanonymousauthor(1676)ofthelettertotheRoyalSocietyofLondonwrotein1676:

    TheAnatomieofaTortoise,showingthatwhatweretheRibsinotherAnimalsoneupperShellisintheTortoise,andthattothatupperShellarefirmlyfastenedthespinalVertebrae,sothattheAnimalcannotgooutofitsHome,asSnailsdo.

    1.1.2 AnAtomyoftheturtleShell

    Thecharacterandhomologyofthebonyelementsoftheturtleshellhavealonghistoryofcontro-versy.Theshelliscomprisedoftheendochondralaxialelementsofthetrunkoverlaidbyamosaicof dermal bones and an outer epidermal layer made of keratinous scales (also called scutes orshields).All turtlespossess10 trunkvertebraeassociatedwith thecarapace.Eachvertebrapos-sessesasingle-headedribthatoftensharesanarticulationwiththenextanteriorvertebra.Thefirstandtenthribsarediminutiveandnormallyextendashortdistancebeforemakingcontactwiththesecondandninthribs,respectively.Thetenthribisoftenindistinguishableinbothembryosandadults,butthepresenceofalargetenthribinembryosisanormalvariation.Thethoracicribsenterthedermisoftheshellashortdistancefromtheirarticulationwiththevertebrae,andtheyextendlaterallywithinthecarapacialdermis,terminatingattheperiphery(reviewedbyZangerl,1969).

    Inthedermallayeroftheshell,therearegenerally59bones:thecarapacehas38pairedand12or13unpairedbones(sometimesthesuprepygealboneisdividedandsometimesitisnot).Theplastroncontainsoneunpairedandeightpairedbones.Withtheexceptionofafewkeytaxa,theonlyrealvariationsinthisgeneralschemeoccurasindividualvariationsaroundtheneckandtailwheretheaxialskeletonisnotcloselyjoinedtothecarapace.Theshapesandrelativesizesofthebonesdeterminethegeneralformoftheshellindifferentgenera.

    Theshellsepidermallayergenerallyconsistsof38scutesinthecarapaceand16intheplastron.However,thiscanvarydependingontheshapeoftheshell(domed,hinged,flapped,andsoon;seeChapter3).Theshieldandbonepatternsarenotinregister;eachshieldcoversaparticularareaofthebonymosaic.Thepatternofthesulcithatformbetweenneighboringscutesandthesuturesthatformbetweenneighboringbonesformtwominimallyoverlappingpatterns.Theepidermalshieldpatterndevelopslongbeforetheshellbonesbegintoossify,andtheunderlyingdermismayplayamajorroleintheformationoftheepidermalscutes,similartotheinfluenceofsomiticdermisoffeatherpatternsinthechick(Yntema,1970;Cherepanov,1989;Alibardi&Thompson,1999a,b).

    . theformationoftheCarapaCialBones: heterotopyandparaCrinefaCtors

    1.2.1 thedermAlBoneSofthecArApAce

    The unpaired midline dermal bones of the carapace, called neurals, are fused with the neuralspinesofthe10thoracicvertebrae(Figure1.1).Thecostalbonesextendfromtheneuralstowardtheperiphery.Thereareeightpairsandeachisintimatelyassociatedwitharib(Figure1.1E).Gen-erally,thereisaone-to-onecorrespondencebetweenthevertebralspinesandtheneuralbones,and

    3339.indb 2 11/26/07 11:59:35 AM

  • HowtheTurtleGetsItsShell

    betweentheribsandthecostalbonesofthecarapace.Thisrelationshipdoesnotholdintheanteriorandposteriorendsoftheshell,wherethevertebralcentraareshortenedandhavelittleornocontactwiththeshell.Thefirstcostalboneoverliesribsoneandtwo,andtheeighthoverliesribsnineandten(variantshaveninepairsofcostalbones).Thepygalandsuprapygalbonesformtherearofthecarapace.Theseboneshavenocontactwithvertebraandribsbutprojectoverthesacrumandpel-vis.Theperipheralbonesformtheedgeofthecarapace.Therearegenerally11pairsofperipheralbones;beforemakingcontactwiththecostals,theyformasocketaroundthedistaltipofribstwothroughnine.Thenuchalboneformstheanteriormarginofthecarapace,whichoverhangsbutisnotattachedtotheposteriorcervicalvertebra.Thisboneextendslaterallyaroundthemarginsofthecarapacetothelevelofthesecondrib.Itisoverlaidbythefirstthreeperipheralboneslaterallyandcontactsthefirstcostalsandneuralboneposteriorly.Eachofthecarapacialbonesisconnected

    peripheralneural

    nuchal

    costal

    pygialsuprapygial

    11223344556

    67

    7 8

    8

    figure. Developmentof thecarapace. (A).Entryofcartilaginous ribprecursor (arrow) intocarapa-cialridgeofTrachemysembryoaroundstage16.ThefollowingshowboneformationinTrachemys scripta,stainedwithAlcianblue(cartilage)andalizarinred(bone).(B)1.2-cmembryoshowingcartilaginousribsformingtheoutlineoftheshell.(C).Ventralviewof3.1-cmcarapace,showingintramembranousossificationofthenuchalboneandaroundandintheanteriorribs.(D)Lateralviewofthesamecarapace,showingregionofribchondrogenicgrowth(blue,arrow)andtransitionzone(white)betweencartilageandbone(red).(E)Dorsalviewof118-day(CL=3.1cm)hatchlingcarapaceshowingexpandednuchalboneregion,thefusionof theanteriorcostalossificationcenters,and theperipheralboneossificationcenters thatstartanteriorly.Thepigmentationoftheepidermalscutescanbeseen.(F)Dorsalviewof185-day(CL=4.5cm)hatchlingcarapaceshowingfusionofmarginalossificationregionsanteriorly,aswellasthepygalossificationcenterposteriorly.Thecostalossificationcentershavecreatedbonyarmordorsally(thebluestainingisbeneaththecarapace).(G)Predominantpatternoftheadultcarapacialbones.(ModifiedfromGilbertetal.,2001;Gmodi-fiedfromZangerl,1969.)

    3339.indb 3 11/26/07 11:59:51 AM

  • BiologyofTurtles

    bysuturestoitsneighbors.Thedistaledgeofeachcostalisattachedbysuturetotheperipheralbones.Thiscontactoftendoesnotoccuruntillaterstagesofpost-hatchinggrowth,leavingopenaperipheralringoffontanelsthatsurroundthedistaltipsoftheribs.

    Sectionsacrossthecarapacesofadult turtlesshowathree-layeredarrangementofthebone.Thecentralportionoftheboneisaspongylayercontainingsphericalcavities.Oneithersideofthespongylayerarelayersofmorecompactlamellarbone.Thiscompactboneisthoughttoformbeneath the inner and outer periosteal membranes. The shapes and relative sizes of these bonyregionsdetermine thegeneral formof theshell indifferentgenera(Yntema,1970;Ewert,1985;Cherepanov,1997).

    1.2.2 formAtIonofthecArApAce

    ...theCarapacialridgeandtheentryoftheribsintothedermis

    Theformationofthecarapaceinvolvesseveralsteps.Thefirstconcernstheentryoftheribprecur-sorcells intothedermis.Theturtleeggis laidat themid-gastrulastage.Turtlegastrulationhasnotbeenstudiedindetailforalmosteightdecadesandpresentsaninterestingcontrasttothewell-studiedaviansystem(seereview;Gilland&Burke,2004).Laterstagesofnerulationandsomiteformationaresimilartothoseprocessesinthechick(Ewert,1985;Pasteels,1937,1957).ThefirstsignthattheorganismistobecomeaturtleratherthansomeothertetrapodoccursatYntemastage14/Greenbaumstage15(Yntema,1968stagesareforChelydra;Greenbaum,2002stagesareforTrachemys.Stage14/15isapproximatelyequivalenttoHamburgerHamiltonchickstage24).Atthisstagearethefirstsignsofridgesonthelateralsurfacesoftheembryo,dorsaltothelimbbuds(Ruckes,1929).Atfirst,theseridgesareseenbetweenthetwolimbbuds,andonlylaterdotheridgesextendanteriorlyandposteriorly.Thisstructurehasbeennamedthecarapacialridge(CR)(Burke,1989b,1989c,1991),andthepairedcarapacialridgeswilleventuallyformtheouteredgeofthecarapace.TheCRisformedbyathickeningoftheectodermandisunderlaidbyacondensedsomite-derivedmesenchyme(Yntema,1970;Burke,1989b,1989c;Nagashimaetal.,2005).

    Ruckes(1929)observationsofturtleembryosdescribedtwoimportantfeaturesofturtleshelldevelopment.First,thereisanacceleratedlateralgrowthofthedorsaldermisofthetrunkcomparedtogrowthinthedorso-ventralplane.Second,thereisanapparentensnarementofthegrowingribsbythedermis.Theinvolvementoftheribswiththecarapacialdermisresultsintheirgrowthinapredominantlylateraldirection(Figure1.1A).Thelimbgirdlesdevelopintypicaltetrapodfash-ionbutbecauseofthegrowthtrajectoryoftheribs,thepectoralgirdlebecomesventralanddeeptotheaxialelements.Yntema(1970)performedaseriesofsomiteextirpationexperimentsonsnappingturtles,confirmingasomiticoriginfortheribsanddermisofthecarapace.Post-oticsomitepairs12through21areinvolvedinformingthecarapaceinChelydra.

    In1989,BurkeproposedthatthethickenedectodermandcondensedmesenchymeoftheCRistypicalofsitesofepithelial-mesenchymalinteractions.Thedistributionsofthecelladhesionpro-teinsfibronectinandN-CAMintheCRaresimilartotheirlocationsinotherinductivesitessuchastheearlylimbbudorfeatherprimordia.Burke(1991)testedthecausalrelationshipbetweentheCRandthegrowthtrajectoryoftheribs.Inthefirstsetofexperiments,sheremovedtheCRbytungstenneedlesfromonesideofstage1throughstage16embryos.Theseextirpationsincludedbothectodermalandmesenchymalcomponents.InthosecaseswheretheCRdidnotregenerate,thegrowthtrajectoryoftheribwasdeflectedtowardaneighboringregionthatdidhaveaCR.Inasec-ondsetofexperiments,sheplacedtantalumbarriersbetweenthesomiteandthepresumptiveCR.ThesurvivingembryosshoweddisruptionssuchthatwheretheCRwasinterrupted,entireregionsofthedermalcarapaceweremissing.Theribsassociatedwiththesemissingregionsinterdigitatedwiththosebonesoftheplastron.BurkeconcludedthatthenormaldevelopmentoftheribsappearstobedirectedbytheCR.IntheabsenceoftheCR,theseribsprojectventrallyintothelateralplatemesodermliketheribsofnon-Chelonianvertebrates.

    3339.indb 4 11/26/07 11:59:51 AM

  • HowtheTurtleGetsItsShell

    Loredoandcolleagues(2001)werethefirsttoanalyzetheCRwithmolecularprobesandfoundfibroblastgrowthfactor-10(FGF-10)expressioninthemesenchymecondensedbeneaththeTrache-mysCR.Fibroblastgrowthfactorsareparacrinefactorsthatarecriticalinthepatterning,migration,anddifferentiationofnumerouscell types,and theyareespecially important indetermining thefatesofcellsinthefaceandinthelimbs.Vincentandcoworkers(2003)foundtheturtlehomologueoftranscriptionfactormsx1isexpressedinthemesenchymeoftheEmysCR.ThisresultfurtheredthenotionthattheCRwasmadethroughmesenchymal/epithelialinteractionssimilartothosethatgeneratethelimbbud.TheWntsignalingpathwayisusedinseveralembryonicinductionsandcanmediatetheeffectsoffibroblastgrowthfactors(inthelimbbud).ByusingRT-PCR,Kurakuandcolleagues(2005)foundturtleorthologsofSp5andWnttargetsAPDCC-1andLEF-1intheCRmesenchymeandectodermoftheChinesesoftshellturtlePelodiscus.TheyalsofoundCRABP-1expressedintheCRectoderm.However,theydidnotdetecttheexpressionofeitheroftheprevi-ouslyreportedgenes,msx1,orFGF-10intheCRmesenchymeofthisspecies.SpeciesdifferencesmightbeimportantinthesepatternsbecausethecostalbonesofPelodiscusmightformbydifferentmethodsfromthatofthehardshellturtles(Zangerl,1969),andthepatternofFGF-10distributioninthelimbsofPelodiscusdifferedfromtheexpressionpatternseeninthelimbsofTrachemys.

    TheFGFfamilyofparacrinefactorsisofteninvolvedinchemotaxis,andinthechicklimb,FGF-10appearstobecriticalindirectingtheendodermalchemotaxisinthelung(Parketal.,1998;Weaveretal.,2000).Cebra-Thomasandcolleagues(2005)demonstratedthatFGF-inducedchemo-taxisplaysanimportantroleincausingtheribprecursorstoentertheCR.Theyculturedeviscer-atedtrunkexplantsofstage15Trachemysembryosventral-sidedownonnucleoporemembranes.Atthisstage,theCRisvisibleandthesclerotomehasbeenspecified.Afterthreedaysinculture,theribshavemigratedintotheCR,andtheridgesarevisiblyraised.However,ifSU5402(aninhibitorofFGFsignaling)isaddedtotheculturemediawhentheexplantsareestablished,theCRdegen-eratesandtheribstravelventrally,liketheribsofnon-Chelonians.Cebra-ThomasandcolleaguesalsoshowthatchickribprecursorcellsareresponsivetoFGF-10,andbeadscontainingFGF-10willredirectchickribgrowthinculture.Thus,theCRappearstobecriticalfordirectingthemigrationofribprecursorcellsintoit.FGFsignalingintheCRappearstobecrucialinthemaintenanceoftheCRandiseitherdirectlyorindirectlyresponsibleforguidingtheribprecursorcellsintotheCR.

    Another finding of Cebra-Thomas and colleagues (2005) was that the distal tip of each ribexpressedFGF-8.HighlevelsofFGF-8expressionhavenotbeenreportedinthedistalribsofotherorganisms.Cebra-Thomasandcolleagues speculate thatFGF-8 (in the ribs)andFGF-10 (in theCRmesenchyme)mayestablishapositivefeedbackloopsuchthatthegrowthoftheribbecomescoordinatedwiththegrowthofthecarapace.Suchapositivefeedbackloophasbeenshowntoberesponsibleforthecoordinatedoutgrowthofthechickandmouselimbbuds(Ohuchietal.,1997;Kawakamietal.,2001).

    ... CostalBones:theossificationoftheCarapace

    Theribprecursorcells thatenter into theCRareprechondrocytes (Figure1.1A,B),and the ribsundergonormalendochondralossification,replacingthecartilagewithbonecells(Figure1.1C,D).Cebra-Thomas and colleagues (2005) have proposed that bone morphogenetic proteins (BMP),whicharesecretedbyhypertrophicchondrocytesduringendochondralossification,arecapableofinducingthedermistoossifyaswell.Thus,theyclaimthatcostalboneformationiscausedbytheBMP-dependentossificationofthedermisbytheribs.Theribprecursorcellsenterthedermisoftheshellashortdistancefromtheirorigininthevertebraeandgrowlaterallywithinthecarapacialdermis(Ruckes,1929;Burke1989b,1989c;Gilbertetal.,2001).Whenendochondralossificationtakesplace,theribisconvertedtobone,beginningattheproximalend(Figure1.1E).However,thedistalportionoftheribremainscartilaginousbeyondtheboundarybetweenpleuralandmarginalscutes,andtheydonotmakecontactwiththeperipheralbonesuntillaterinlife.Thereisanante-rior-posteriorpolarity,inthattheanteriorribsbeginossificationearlier.

    3339.indb 5 11/26/07 11:59:52 AM

  • BiologyofTurtles

    Asendochondralossificationensues,theribsappeartobecometheorganizingcentersforthecostalbones thatmake theplateof thecarapace (Gilbertetal.,2001).Thesecostalbones formaroundtheribsbyintramembranousossification(Burke,1991;Gilbertetal.,2001;Klin,1945).Thus,thecarapaceisacompositeofendochondralaxialskeleton(fromtheribs)plusintramem-branousdermalbone.Thecostalbonesbegintoformastheribsbecomeencasedinathintubeofbone,andtrabeculaeextendbothcaudallyandcraniallyfromthisbonycasing.Later,spiculesformbetweentheribandtheepidermis,formingapatternreminiscentoftheformationofthemandiblearoundMeckelscartilage(Suzuki,1963).Themostintenseareaofcostalboneformationisinitiallylocatedatthesiteswheretheribshadfirstenteredthedermis.

    Bone-formingparacrinefactorsaresecretedbythecartilaginousribcellsduringendochondralossification.Inthosevertebratesstudiedthusfar(andtheturtleisnotoneofthem),Indianhedgehoghomolog(Ihh)secretedbytheribsprehypertrophiccartilageinducesBMPsintheperichondrium(Vortkampetal.,1996).Pathiandcolleagues(1999)demonstratedthatinchicklimbs,perichon-drialBMP-2,BMP-4,BMP-5,andBMP-7areinducedbyendogenousandectopicIhh.Similarly,Wuandcolleagues(2001)demonstratedtheinductionofBMP-2/BMP-4byIhhinchickjawtissue.BothIhhandBMPsareknowntoinduceboneformationinsurroundingcompetentcells(Barlow&Francis-West,1997;Ekanayake&Hall,1997),thecompetenceofdermalcellstorespondtoBMPsbyproducingintramembranousbonehasbeendemonstratedinadultdermalandperiostealtissues(Shafritzetal.,1996;Shoreetal.,2006).

    Inturtleembryosandhatchlings,thedermalcellsaroundtheribappeartoberespondingtoBMPs.Thiswasshown(Cebra-Thomasetal.,2005)byusinganantibodyagainstphosphorylated(activated)Smad1.(TheSmad1proteinisatranscriptionfactorsubunitthatbecomesphosphory-latedinresponsetoaBMPsbindingtoitscellmembranereceptor.)Whereastheribanditsperi-chondriumremainunstained,therewasintensestainingintheperiosteumandinthecellsadjacenttoit(Figure1.2).Moreover,whencomparedtoalcianandalizarin-stainedadjacentsections(whichstaincartilagematrixandbonematrix,respectively),ahighlevelofstainingwasobservedinthecellsthatwereintheareadestinedtobecomebone.Thus,itappearsthatBMPsignalingfromtheribduringendochondralossificationisabletoinduceintramembranousossificationinthedermalcellssurroundingthem.Moreover,asthecellsossifytheyappeartotransmittheBMPsignaltothecellssurroundingthem,therebycontinuingacascadethroughwhichBMPwouldbeproducedbythedermalcellsastheyossify.

    Althoughtheribsbegintoossifyin ovo,thedermalbonesofthecarapacedevelopprimarilyafterhatching.The ratesofosteogenesis, andperhaps to somedegree thepattern, is influencedbyenvironmentalconditions(Ewert,1985).Sizeandagearebothimportantparametersforbonepattern.Turtlesofthesameagecanbeatdevelopmentallydifferentstages,andthereissignificantvariationevenamongturtlesofthesamesize.Hatchingtimeisalsovariable,andembryosandjuve-nilespecimensaredescribedbytheircarapace length(CL)aswellastheiragesincetheeggwaslaid.ItisalsoprobablethatBMPinhibitorsinthedermisregulatetheprogressionofossificationbecausetheossificationfrontslowsdownandendochondralossificationintheribisfinishedlongbeforethefusionofthedermalbonesintoacarapacialplate(Figure1.1F).

    Intheformationofthecarapace,oneseesheterotopy(changeinplacementbetweenancestoranddescendent)atseverallevels.Heterotopyofboneformationisobviousinthatthesebonesaredevelopinginthedorsaldermis,whichrepresentsanewsiteofboneformation.Thisheterotopyofboneformationispredicatedontheheterotopyoftheribs,whichhavemigratedintoapartofthebodywheretheydonotusuallygo.ThisribheterotopyisfurtherpredicatedontheheterotopyofFGF-10expression,whichisactivatedinatissuethatdoesnotusuallyexpressthisgene.

    ...thenuchalandperipheralBonesoftheCarapace

    InChelydraandTrachemys,thenuchalboneshowstwodistinctphasesofossification.Werefertothesephasesasprimaryandsecondary,referringtoboththemodesofossificationandtheelements

    3339.indb 6 11/26/07 11:59:52 AM

  • HowtheTurtleGetsItsShell

    themselves(Burke,1989a;Gilbertetal.,2001).Thispatternofprimaryandsecondaryossificationisalsoseenintheplastronandmayhavephylogeneticsignificance.

    TheprimaryportionoftheChelydranuchalformsearly(CL=1.4cm,Yntemastage2021),appearingasathinbandofcondensedcellswithinthedermis,continuousacrossthemidlineandextendinglaterallyaroundthemargintothelevelofthethirdmarginal.Thebandisvisibledeepinthedermisbeforethetissuestainswithalizarin,indicatingthatthewell-definedcondensationofcellsformswellbeforethedepositionofcalcium.Itunderliesthemarginal/vertebralsulci,whichisclearlyvisibleatthisstage.Asevidencedbypositivestainingwithalizarin,calciumdepositionstartsbilaterallyatthelevelofthefirstmarginalscuteandspreadsalongthebarsmediallyandlaterally.

    The second phase of nuchal ossification involves the nuchal plate, which begins to form inChelydraembryosofCL=1.8cm.Thenuchalplateformsasalooselatticeworkofbonewithinthecarapacialdermisthatextendsforwardoverthebaseoftheneck.Thepatternofossificationisverysimilartothatseenintheinitialstagesofossificationintheskullroofingbones.Itbeginsincontactwiththeanterior-medialnuchalbarandextendslaterallyalongthebarandposteriorlyintothedermisabovetheneuralspinesofthelasttwocervicalvertebrae.Thisposteriorextensionofsecondarydermalboneformsthemainbodyofthenuchalandliesunderthefirstvertebralscute.Itwilleventuallyformasutureposteriorlywiththefirstneuralbone,whichdevelopsaroundtheneuralspineofthefirstthoracicvertebra.

    InspecimensofCL=2.6cm,thenuchalisfullydevelopedandossified.Thelateralbarsoftheprimaryossificationextendtothemidpointofthefourthmarginalscute,tothelevelofcontactwith

    figure. Formationofthecostalbonesofthecarapace.Sagittalsectionthroughtheposteriorthreeribsofa156-dayhatchlingTrachemys(aboutamonthafterhatching).Theribsareatdifferentlevelsofmaturity,theanterior(A)beingthemostmature.ThesectionsstainedwithHallstain(Alcianandalizarin)areneartotheslidesstainedwithantibodiestophosphorylatedSMAD1(PS1).NuclearexpressionofphosphorylatedSmad1(brown)isseenintheperiosteumoftheboneandintheimmediatelyadjacentdermalcells.Beloweachlow-power(200)isaphotographtakenat400magnification.

    3339.indb 7 11/26/07 11:59:53 AM

  • BiologyofTurtles

    thecartilaginousdistaltipofthesecondrib.Itunderliesthesulciseparatingthemarginalsfromthefirstvertebralandcostalscutes.Thelateralextensionsoftheprimarynuchalboneareneverinassociationwiththesecondarynuchalbone,butrathercometobeoverlainbythefirstandsecondperipheralbones.

    Theperipheralbonesareformedinananterior-to-posteriormanner.Here,smallcrescentsofboneconcaveoutwardappearinthedermisontheextremeedgeofthecarapaceimmediatelysubjacent to the intermarginalsulci.Thefirstperipheralappearsunder thesulciof thefirst twomarginalscutes.Theossificationsthatproducetheperipheralbonesarealsoseentobegininthelargestofthenewhatchlings.Theperipheralossificationcentersarefirstseenintheanteriorofthecarapaceonday78Trachemys(CL=3.1cm)andastheturtlegrows,moreperipheralossificationcenterscanbeseencaudallyontheshell.Theseossificationcentersformontheouteredgeofthecarapaceandexpandbothlaterallyandinternallyastheygrow.Thepygalboneformsinsequenceasthelastperipheralandisthereforethelastbonetoossify.Itisnotknownwhatinducesthesecen-terstoformwheretheydo.Itispossiblethattheirpositioningiscoordinatedbythemarginalscutes,andthatsonichedgehog,whosegeneisexpressedinthemarginalscuteformingregion(Lewisetal.,2005)alsoinducesthebonetoformthere.

    EvidencefromGilbertandCebra-Thomas(Gilbertetal.,2007)suggeststhatthenuchalbonemayformfromneuralcrestcells.Thisisalsoamechanismbeingproposedforplastronbonesandwillbediscussedlater.

    . theformationoftheplastronBones: heteroChronyandneuralCrestCells

    1.3.1 dermAlBoneSoftheplAStron

    Theplastrongenerallyiscomposedofninebones,formedbyintramembranousossification(Fig-ure1.3)(Rathke,1848;Clarketal.,2001).Thepairedepiplastraandthecentral(unpaired)ento-plastronformthethreeanteriorbonesoftheplastron.Thehyoplastraformtheaxillarybuttressesandtheanteriorbridgeregion.Thebridgeextensionsofthesebonesapproachthecarapaceatthelevelofperipheralfiveandribfour.Thebilateralhyoplastrameeteachotherattheventralmidlineandformtheanteriorrimofthecentralumbilicalfontanel.Duringembryonicdevelopment,thisfontanelsurroundstheyolkstalkthatconnectstothegut.Thepairedhypoplastraformtheinguinalbuttresses,theposteriorbridgeregion,andtheposteriorrimofthecentralfontanel.Theyapproachthecarapaceatthelevelofperipheralssixandsevenandribsfiveandsix.Thepairedxiphiplastraformtheposteriorlobeoftheplastron.

    1.3.2 oSSIfIcAtIonoftheplAStron

    ... deelopmentoftheplastronBones

    Theplastronbeginstoossifybeforehatching.Intheembryonicturtle(CL=1.0cminTrachemys,CL=2.0cminChelydra),thefutureplastroncanbeidentifiedbynineossificationcentersintheventraldermis.NoAlcianbluestainingisseenpresagingthesesites.InTrachemys,thethreeossifi-cationcenterscorrespondingtothethreeanteriorplastronbonesappeartofusearoundday78(CL=2.2cm).Thetwoepiplastralbonesformasuturewithoneanother,whereastheentoplastronboneformsmoremediallyandprojectscaudally.Asthehatchlingturtlegetslarger,thesixpairedossifi-cationcentersoftheplastrongrowtowardoneanotherandformsutures.Condensedmesenchymeisseeninadvanceofthecalcifiedtissue(Burke,1989a;Gilbertetal.,2001).Thesesitescontainbothalizarinred-stainedbonyspiculesandaregionofcondensedmesenchymethathascoalescedintothestellatearraysthatwilllatershowstainingforbonematrix.Thisisanotherexampleofprimaryossification,asinthenuchal.

    3339.indb 8 11/26/07 11:59:53 AM

  • HowtheTurtleGetsItsShell

    Oneoftheinterestingthingsobservedaboutplastronossificationisthatthebonyspiculescrossthemidline.Themidlinedoesnotappeartoberespectedbythedevelopingspicules.Moreover,astheycrossedthemidlinethespiculesdidnotimmediatelyfuse.Rather,itappearsasiftheossifyingspiculesoneithersideavoidedoneanother,alteringtheircourseofossificationsuchthattheyinter-digitateratherthanrunintoeachother(Figure1.3E).Thisisverylikelyaprerequisiteforcontinuedgrowththroughsutureformation.

    AsimilarsituationisseeninChelydra.Theplastralbonesappearwithaslightanterior-pos-teriorbias,theepiplastraandentoplastronfirstandthexiphiplastronlast.TheyareallpresentinspecimensofCL=1.5cm,precededonlybytheappearanceoftheprimarynuchalbar.Likethenuchalbone,theplastralbonesshowtwophasesofdevelopment.Theyfirstappearasslenderbarsofcondensedcellsthatthencalcifyfromtheircentersoutward.

    Thecharacterandhomologyofthebonyelementsoftheplastronhasbeenextremelycontrover-sial(Hall,2001;Vickaryous&Hall,2006).In1834,Caruswasperhapsthefirsttosuggestthatthe

    entoplastron epiplastron

    hyoplastron

    hypoplastron

    xiphiplastron

    figure. Dermalossificationoftheplastron.(A)55-day(CL1.0cm)Trachemysplastronshowingthethreeanteriorossificationcentersandthethreelaterallypairedossificationcenters.Thedarkbluerepresentsgirdlecartilage.(B)78-day(CL=2.2cm)plastronshowingspiculesradiatingfromtheossificationcenters.(C)78-day(CL=2.4cm)plastronshowingfusionoftheanteriorossificationcenters.(D)118-day(CL=3.1cm)plastronshowingepidermalpigmentationandthecrossingofthemidlinebythespicules.Thespiculesdonottouchbutgetoutofeachothersway.(E)185-day(CL=4.5cm)plastronshowingfusionofossificationcentersandtheformationofplastron.Nocartilageprecursorsareseen.Notethat(B)and(C)areboth78-dayincubations.Theholeinthecenteroftheplastronistheumbilicalfontanelthroughwhichthegutattachestotheyolkstalk.(F)Predominantpatternofplastronbones.(ModifiedfromGilbertetal.,2001.)

    3339.indb 9 11/26/07 11:59:54 AM

  • 0 BiologyofTurtles

    carapaceandplastroninvolvedboththeendo-(endochondral)andtheexoskeletal(dermal)bones.Heproposedthattheplastronformedbyoverlyingtheendoskeletalsternumwithdermalossifica-tions.Rathke(1848)arguedthattheplastronbelongedexclusivelytotheexoskeletonandwasinnowayhomologoustothesternum.However,Owen(1849),adheringtohisidealvertebralarchetype,proposedthattheplastralboneswerehomologuesofthethoracicvertebralhemapophyses,andassuchwerepartoftheendoskeleton.MorerecenthistologicalstudiesconfirmedRathkesassessmentthatthebonesoftheplastronallossifyintramembranouslywithoutanycartilaginousprecursorsandbelongtothedermalexoskeleton(Zangerl,1939,1969;Gilbertetal.,2001).Currently,theconsen-susisthattheepiplastraandentoplastronarehomologous,respectively,totheclaviclesandinter-claviclebonesofother reptilian lineages(Zangerl,1969;Cherepanov,1997;Vickaryous&Hall,2006;Parker,1868;Rieppel,1996),whereasthemoreposteriorplastralbonesarehomologoustothegastralia(floatingribsorabdominalribs)ofothertetrapods(Zangerl,1939;Claessens,2004).

    1.3.3 roleSofneurAlcreStcellSInplAStronAndnuchAlBonedevelopment

    The embryonic origins of the plastral bones are also controversial. The Swarthmore laboratory(Clarketal.,2001;Cebra-Thomasetal.,2007)hasputforththeproposalthattheplastronbonesarederivedfromthetrunkneuralcrestandformmuchthesamewaythatvertebratefacialbonesform.In2001,Clarkandhercolleaguespublishedevidencethattheturtleplastronbonesareexo-skeletalandthattheyformbytheintramembranousossificationofneuralcrestcells.Thisassertionhasarousedspiriteddebate(Pennisi,2004)because trunkneuralcrestcellsarenotsupposedtoformskeletalelements,andcranialneuralcrestcells(whichareskeletogenic)arenotsupposedtomigratemoreposteriorlythanthecollarboneandshoulderbasedonamniotemodelslikethechickandmouse(Hall,2005;Matsuokaetal.,2005).Clarkandcolleagues(2001)showedthattheninedevelopingplastronbonesofthe50-dayTrachemysembryoareformedbycellsthatstainedposi-tivelyforthecellsurfacecarbohydratedeterminantrecognizedbythemonoclonalantibodyHNK-1(Figure1.4C)andforthemembranereceptorproteinPDGFRa.

    HNK-1immunoreactivityisthestandardmarkerforneuralcrestcells,andturtleneuralcrestcellsstainedpositivelyandstronglyforHNK-1(Hou,1999;Hou&Takeuchi,1994).However,inthose studies,onlyearly (Yntemastage12)embryoswereexaminedand thepossiblemigrationofneuralcrestcellstotheplastronwasnotaddressed.PDGFRaisamarkerforskeletogenicandodontogenicneuralcrestcells.PDGFRahasbeendetectedonthebone-formingneuralcrestcellsofmiceandfrogsaswellasinteethandotherfirstbranchialarchderivatives.AntibodystainingagainstPDGFRaintheturtleembryoshoweditslocalizationinthemandibularmesenchyme,asexpected,aswellasineachofthedevelopingplastronbones(Clarketal.,2001).

    However,neitherHNK-1norPDGFRastainingarecompletelyspecificforneuralcrestcellsand theirderivatives.TheHNK-1antibodydetectsnotonlycellsof theneuralcrest lineagebutalso stains theneural tube, cerebellarneurons,motorneurons, andcertain leukocytes. Inmice,PDGFRa is detected not only on skeletogenic neural crest cells but also on rib precursors andin the embryonicmesenchymecells contributing tobone, hair,mammarygland, gut, and lung.Thedefinitiveidentificationofneuralcrestcellscanonlybeconfirmedbylineagemapping,Thus,whereastheClarkstudystronglysuggestedneuralcrestinvolvementinplastronformation,itdidnotconclusivelydemonstratethatthesewereneuralcrestcellsand,ifso,whethertheywerefromthetrunkorcranialneuralcrest.

    Cebra-Thomasandcolleagues (2007) attempted tofind theoriginof theseplastron-formingHNK-1+cellsandusemoremarkers to identifyneuralcrestcells.Theyfound thatstage17andstage18Trachemysembryos(threeweeksincubation)hadastagingareainthetrunkcarapacialdermiswhere theHNK-1+cells resided (Figure1.4A).Thecells in this regionwerepositivenotonlyforHNK-1immunoreactivitybutalsofortwoadditionalmarkersforneuralcrest:theneuralcrest-specifyingtranscriptionfactorFoxD3andthelow-affinityneurotrophinreceptor,p75.FoxD3stainingofnucleiwasseeninthedorsal-mostportionoftheearlystage17neuraltubeaswellasin

    3339.indb 10 11/26/07 11:59:55 AM

  • HowtheTurtleGetsItsShell

    cellsinthedermisbetweentheneuraltubeandsurfaceectoderm.ThefactthatthesearedorsalcellsstainingwithHNK-1,FoxD3,andp75makesthemexcellentcandidatestobeneuralcrestcells.

    Theseneuralcrestcellswould representavery lateemigratingpopulation,and theyappeartocomedirectly from theneural tube (andnot from theneuralplate/epidermalboundary)afterthefirstwaveofneuralcrestemigrationhasalreadyformedthedorsalrootganglia,pharyngealderivatives,melanoblasts,andentericneurons.Afterleavingthedorsalneuraltuberegion,thesecellsresidewithintheformingcarapacialdermisandbystage18,thesecellsformabroadbandinthedorsalportionofthecarapace.Thesecellsconstituteamigratorypopulation,andDiIstainingshowsthemmovinglaterallyandventrally.Inaddition,stage18embryosalsoexhibitHNK-1+cellsmigratingnearthevertebraeandmigratingdownthelateralwallsoftheembryowithinthedermis.TheseHNK-1+andp75+cellscanbeseencondensingintheplastralmesenchymeandformingbone(Figure1.4B).Unlikechickormouseembryos,thebone-formingneuralcrestcells(suchasthoseinthehead)retaintheHNK-1andp75markersevenastheyareformingbone(Clarketal.,2001;Cebra-Thomasetal.,2007).

    ThispatternofHNK-1expression isunique to the turtleandsuggests that the lateemigrat-ingturtletrunkneuralcrestcellshavetakenonthecharacteristicsofcranialneuralcrestcells.InadditiontoexpressingPDGFRa,amarkerusuallyassociatedwithcranialneuralcrestcells,theselate-emergingneuralcrestcellsappear tocontribute to thesclerotome-derivedvertebraland ribcartilages.Thus,theturtlevertebraeandribsmayhaveadualoriginthesomiteandtheneuralcrest.AbipartitepatterninthecartilagewouldbeexpectedifthetrunkcrestcellshadthepropertiesofcranialneuralcrestcellsbecauseLeDouarinandTeillet(1974)showedthataviancranialneuralcrestcellscontributedtotrunkcartilagewhentransplantedintothetrunkregion.

    figure. Late-emigratingHNK-1+cellsformingtheplastronofTrachemys.(A)Dorsalregionofstage17(three-week)embryoshowingthecarapacialstagingareawhereinHNK-1+cells(brown-redstain)reside.(B)PlastronbonebeingformedbyHNK-1+cellsinastage18embryo.(C)Hyoplastronofa50-dayembryo.Thebonestainswithhemotoxylin,whereastheHNK-1+cellsarered-brown.(A,BafterCebra-Thomasetal.,2007;(C)adaptedfromClarketal.,2001.)

    3339.indb 11 11/26/07 11:59:55 AM

  • BiologyofTurtles

    GilbertandCebra-Thomassuggestthatthenuchalboneandtheplastronbonesmayformtotallyorpredominantlyfromtrunkneuralcrestcells.Thedevelopingplastronandnuchalbones(butnottheperipheralcarapacialbonesofthesameturtle)stainpositivelyforneuralcrestmarkers.AlthoughHNK-1reactivityisnotspecificforneuralcrestcells(itisalsoseeninsomeneurons,leukocytes,andcartilagecells),theobservationthattheplastronandnuchalbonesdevelopintramembranously(withoutcartilaginousintermediates),expressadditionalneuralcrestmarkers,arenearnoneurons,andareobviouslynotmadeofwhitebloodcellssuggestsaneuralcrestoriginforthem.

    Howmighttrunkneuralcrestcellsformbone?Inmostvertebratesstudied,celllabelingstud-iesdemonstratedthatthedermalcranialandfacialbonesofthevertebrateexoskeleton(aswellasthedentineoftheteeth)comefromthecranialregionoftheneuralcrest,whereasthetrunkneuralcrestisunabletoformbone(Smith&Hall,1993;Matsuokaetal.,2005;Hall,2005).Onedistinc-tionbetweencranialandtrunkneuralcrestcellsliesintheexpressionofHoxgenes.Theneuralcrestcellsthatarisefromthefore-andmidbrainproduceMeckelscartilageandthebonesoftheskull,face,andjawdonotexpressHoxgenes.WhenHoxgeneswereexperimentallyexpressedincranialneuralcrestcellsthatwouldnormallygiverisetothecraniofacialskeleton,theresultingchickembryosshowedsevereskeletaldeformities(Creuzetetal.,2002).SmithandHall(1993)pos-tulatedthattheabilitytoformboneswasaprimitivepropertythatcharacterizedearlyvertebrates,andTrainorandcolleagues(2003)sawtheevolutionofjawsasresultinglargelyfromthelossofmandibularHoxgeneexpressionbetweenthelamprey-likeagnathansandthegnathostomes.

    RecentevidencehasshownthattrunkneuralcrestcellscangainskeletogenicpotentialiftheirHoxgeneexpressionpattern isdownregulated.McGonnellandGraham(2003)found thatchicktrunkneuralcrestcellsinlong-termcellculturecanproduceosteoblastsandchondrocytes.More-over,Abzhanovandcolleagues(2003)confirmedthisobservationanddemonstratedthatthecul-turedtrunkcrestcellsthathadgainedskeletogenicpotentialhadalsolosttheirHoxgeneexpression.ItispossiblethatthelateemigratingneuralcrestcellsinturtleembryoshavelosttheirHoxexpres-sionpatterns(eitherbyemigratingfromtheneuraltubeatalatedateorbyremaininginthestagingareaforaprolongedperiodoftime)andhavetherebyacquiredtheabilitytoformbone-likecranialneuralcrestcells.

    Thecurrentevidencesupportsthecontentionthatthetrunkneuralcrestcellsoftheturtlehavegained(orregained)theabilitytoformaskeleton.Therefore,itispossiblethatthenuchalboneandthebonesoftheplastronareformedbyneuralcrestcellsusingmethodssimilartoformingthecal-vareumandface.Theseconclusionscanbeconfirmedbydetailedlineagemappingoftrunkneuralcrestcellsinturtleembryos.

    . evolutionaryimpliCations

    Weretherenoturtlesliving,wewouldlookuponthefossilturtlesasthestrangestofallvertebratesanimalswhichhaddevelopedthestrangehabitofconcealingthemselvesinsidetheirribs,forthatisliterallywhatturtlesdo.

    Samuel Williston (1914)

    TheorderCheloniaemergesabruptlyintheTriassicabout210millionyearsagowiththefossilspe-ciesProganochelys(Gaffney,1990).Thisreptilehadthecharacteristicderivedtrunkmorphologynowassociatedwithturtles,includingbothacarapaceandplastron.Basedoncranialcharacters,turtleshavetraditionallybeenclassifiedasanapsids,withrootsinoneofseveralTriassicformsofparareptiles.Manyoftheseformssportextensivedermalarmorintheformofbonyossiclesthatwereembeddedintheskin.

    Anevolutionarymodelwherethecheloniancostalsandotherboneswerederivedfromosteo-dermsthatsecondarilyfusedwiththeribsandvertebraewasthepredominantviewamongpale-ontologists for many years (Klin, 1945; Romer, 1956; Sukhanov, 1964; Carroll, 1988; Laurin& Reisz, 1995; Lee, 1996, 1997a, 1997b). However, among the candidate ancestorsincluding

    3339.indb 12 11/26/07 11:59:56 AM

  • HowtheTurtleGetsItsShell

    captorhinomorphs,pareiasaurs,andprocolophonidsthefossilrecordprovidesnocluestotheori-ginoftheuniquechelonianrearrangementoftheaxialandappendicularskeletons.Carroll(1988)commentsthattheirbizarreanatomymightbesufficienttoplaceturtlesintheirownsubclassoftheReptilia.

    Theanapsidstatusofturtleshasbeenchallengedinrecentyears.Inarecentreview,ZardoyaandMeyer(2001)analyzesixalternativecladogramscurrentlybeingusedtorepresenttherelationshipsofturtlestootherreptilesandbirds.Incontrasttothetraditionalpaleontologicviewthatturtlesareanapsids,adifferentviewrelyingonthephysiologicalandmorphometricevidencefromextantturtles,aswellasfromtheirpancreaticpolypeptidesequences,nuclearDNA,andmitochondrialDNAhascausedseveralgroupstoarguethatturtlesaremodifieddiapsidswithinthereptilianclade.PlatzandConlon(1997)andHedgesandPoling(1999)usesequencedatatoproposethatturtlesgroupwithcrocodiliansamongthearchosaurs.FurtherproteinsequencedatafromIwabeandcolleagues(2005)indicatethatturtlesareasistergrouptothearchosaurclade.Rieppel(2001)andRieppelandReisz(1999)alsoassignturtlestothediapsida.Theyproposeanaquaticoriginoftheturtleswhereintheancestorwouldhavealreadyhadaplastron-likegastraliatowhichthenewlymadecarapacecouldattach.Gastraliaarepresentinnumerousordersofreptilesandwouldprob-ablyhavealreadybeenpresentintheancestorsofturtles.Claessens(2004)summarizes,Gastraliamaybeplesiomorphicfortetrapods,butareonlyretainedinextantCrocodyliaandSphenodon,andpossiblyaspartofthechelonianplastron.

    Whetheroneviewsturtlesasanapsidsordiapsids,thereisadramaticabsenceoftransitionalforms.Thisraisesthepossibility that turtlesarosesaltationally,without intermediatemorpholo-giesthatwouldlinkthemtonon-Chelonianreptiles.ThemodelproposedbyBurke(1989c)setsthetimingandpositionoftheCRasthepivotaleventintheevolutionofthenewbodyplan.Itisasafeassumptionthatepithelial/mesenchymalinteractionsweretheinductivemechanismsfortheforma-tionofdermalarmor inearlyamniotes.Theprecocious initiationofanepithelial/mesenchymalinteractioninthedorsalbodywalloftheearlychelonianembryomayhavebeentheinitialnoveltyintheevolutionofthedermalcarapace.ThemodelproposedbyCebra-Thomas(2005)providesamechanismfortherapidmorphogenesisofthebonyshelloncetheribsarerepositionedintothedermis.

    Thedevelopmentoftheturtleisfullofsurprises.Indeed,whatwehavehereisatentativeout-lineofhowtheturtlegetsitsshell,buttherearemanymorequestionstoask.Ifthetrunkneuralcrestcellsformtheplastron,howaretheydirectedthereandwhatcausesthemtobecomebone?Whatcausessometurtlestohaveadome-shapedcarapacewhereasotherturtleshaveaflattenedcarapace?Whatcausesthesexuallydimorphicconcavitiesoftheplastron,andhowdosometurtlesdevelopahingeinthisventralshell?Developmentalbiologyisjustbeginningtojoinpaleontologyandstructuralmorphologyinexploringthisfascinatingstructure,andthisunionmayenableustoseehowevolutionaryinnovationscanrapidlyemergeandtofinallydeterminetheplaceoftheturtleinthehistoryoflife.

    aCKnoWledgments

    WewishtothankMs.DianeFritzforherassistanceinhelpingpreparethismanuscript.Also,wewishtothanktheNationalScienceFoundationandtheHowardHughesMedicalInstituteforsup-portingmuchoftherecentworkreportedhere.

    referenCes

    Abzhanov,A.,Tzahor,E.,Lassar,A.B.,andTabin,C.J.,Dissimilarregulationofcelldifferentiationofmesen-cephalic(cranial)andsacral(trunk)neuralcrestcellsinvitro,Development,130,4567,2003.

    Alibardi,L.,andThompson,M.B.,EpidermaldifferentiationduringcarapaceandplastronformationintheembryonicturtleEmydura macquarii,J. Anat.,194,531,1999a.

    3339.indb 13 11/26/07 11:59:56 AM

  • BiologyofTurtles

    Alibardi,L.,andThompson,M.B.,MorphogenesisofshellandscutesintheturtleEmydura macquarii,Aust. J. Zool.,47,245,1999b.

    Anonymous,letter.Philos. T. Roy. Soc.,11,743,1676.Barlow,A.J.,andFrancis-West,P.H.,EctopicapplicationofrecombinantBMP-2andBMP-4canchangepat-

    terningofdevelopingchickfacialprimordial,Development,124,391,1997.Burke,A.C.,CriticalfeaturesinCheloniandevelopment:Theontogenyandphylogenyofauniquetetrapod

    Bauplan,unpublishedPh.D.thesis,HarvardUniversity,Cambridge,MA,1989a.Burke,A.C.,Developmentoftheturtlecarapace:ImplicationsfortheevolutionofanovelBauplan,J. Mor-

    phol,199,363,1989b.Burke,A.C.,Epithelial-mesenchymal interactionsin thedevelopmentof theChelonianBauplan, inTrends

    in Vertebrate Morphology,35,H.SplechtanaandH.Hilgers(eds.),Stuttgart:FischerVerlag,1989c,206209.

    Burke,A.C.,Thedevelopmentandevolutionoftheturtlebodyplan:Inferringintrinsicaspectsoftheevolu-tionaryprocessfromexperimentalembryology,Amer. Zool,31,616,1991.

    Carroll,R.L.,Vertebrate Paleontology and Evolution,NewYork:W.H.Freeman,1988.Carus,K.G.,Lehrbuch der vergeichenden Zootomie(2nded.),Leipzig:ErnstFleischer,1834.Cebra-Thomas,J.,Betters,E.,Yin,M.,Plafkin,C.,Bender,G.,McDow,K.,andGilbert,S.F.Furtherevidence

    thatalate-emergingpopulationoftrunkneuralcrestcellsformstheplastronoftheturtleTrachemys scripta,Evol. Dev.,9,267277,2007.

    Cebra-Thomas,J.,Tan,F.,Sistla,S.,Estes,E.,Bender,G.,Kim,C.,Riccio,P.,andGilbert,S.F.,Howtheturtleformsitsshell:Aparacrinehypothesisofcarapaceformation,J. Exp. Zool.PartB,304,558569,2005.

    Cherepanov,G.O.,Newmorphogeneticdataontheturtleshell:Discussionontheoriginofthehornyandbonyparts,Stud. Geolog. Salmant.,3,924,1989.

    Cherepanov,G.O.,Theoriginofthebonyshellofturtlesasauniqueevolutionarymodelinreptiles,Russ. J. Herpetol.,4,155162,1997.

    Claessens,L.P.A.M.,Dinosaurgastralia:Origin,morphology,andfunction,J. Vert. Paleontol,24,89106,2004.Clark,K.,Bender,G.,Murray,B.P.,Panfilio,K.,Cook,S.,Davis,R.,Murnen,K.,Tuan,R.S.,andGilbert,S.F.,

    Evidencefortheneuralcrestoriginofturtleplastronbones,Genesis,31,111117,2001.Creuzet,S.,Couly,G.,Vincent,C.,andLeDouarin,N.M.,NegativeeffectofHoxgeneexpressiononthe

    developmentoftheneuralcrest-derivedfacialskeleton,Development,129,43014313,2002.Ekanayake,S.,andHall,B.K.,Theinvivoandinvitroeffectsofbonemorphogenenticprotein-2onthedevel-

    opmentofthechickmandible,Int. J. Dev. Biol.,41,6781,1997.Ellis, R., Sea Dragons: Predators of the Prehistoric Oceans, Lawrence, KS: University Press of Kansas,

    2003.Ewert,M.A.,Embryologyofturtles,inBiology of the Reptilia,C.GansandF.Billett(eds.),NewYork:John

    Wiley,1985,74255.Gaffney,E.S.,ThecomparativeosteologyoftheTriassicturtleProganochelys,Bull. Amer. Mus. Nat. Hist.,

    194,1263,1990.Gilbert,S.F.,Bender,G.,Yin,M.,andCebra-Thomas,J.A.,Thecontributionofneuralcrestcellstothenuchal

    boneandplastronoftheturtleshell,Integr. Comp. Biol.,47,401408,2007.Gilbert,S.F.,Loredo,G.A.,Brukman,A.,andBurke,A.C.,Morphogenesisoftheturtleshell:Thedevelop-

    mentofanovelstructureintetrapodevolution,Evol. Dev.,3,4758,2001.Gilland,E.,andBurke,A.C.,Gastrulationinreptiles,inGastrulation,C.Stern(ed.),ColdSpringHarbor,NY:

    ColdSpringHarborLaboratoryPress,205218,2004.Greenbaum,E.,AstandardizedseriesofembryonicstagesfortheemydidturtleTrachemys scripta,Can. J.

    Zool.,80,13501370,2002.Hall,B.K.,Developmentoftheclaviclesinbirdsandanimals,J. Exp. Zool.,289,153161,2001.Hall,B.K.,Bones and Cartilage: Developmental and Evolutionary Skeletal Biology,SanDiego,CA:Aca-

    demicPress,2005.Hedges,S.B.,andPoling,L.L.,Amolecularphylogenyofreptiles,Science,283,9981001,1999.Hou,L.,Effectsoflocaltissueenvironmentonthedifferentiationofneuralcrestcellsinturtle,withspecial

    referencetounderstandingthespatialdistributionofpigmentcells,Pigm. Cell Res.,12,8188,1999.Hou,L.,andTakeuchi,T.,Neuralcrestdevelopmentinreptilianembryos,studiedwithmonoclonalantibody,

    HNK-1,Zool.Sci.,11,423431,1994.Iwabe,N.,Hara,Y.,Kumazawa,Y.,Shibamoto,K.,Saito,Y.,Miyata,T.,andKatoh,K.,Sistergrouprelation-

    shipofturtlestothebird-crocodiliancladerevealedbynuclearDNA-codedproteins,Mol. Biol. Evol.,22,810813,2005.

    3339.indb 14 11/26/07 11:59:56 AM

  • HowtheTurtleGetsItsShell

    Klin,J.,ZurmorphogenesedespanzersbeidenSchildkrten,Acta Anta.,1,144,1945.Kawakami,Y.,Capdevilla,J.,Buscher,D.,Itoh,T.,RodrguezEsteban,C.,andIzpisaBelmonte,J.C.,WNT

    signalscontrolFGF-dependentlimbinitiationandAERinductioninthechickembryo,Cell,104,891900,2001.

    Kuraku,S.,Usuda,R.,andKuratani,S.,Comprehensivesurveyofcarpacial ridge-specificgenes in turtleimpliesco-optionofsomeregulatorygenesincarapaceevolution,Evol. Dev.,7,317,2005.

    Laurin,M.,andReisz,R.R.,Areevaluationofearlyamniotephylogeny,Zool. J. Linn. Soc.,113,165223,1995.LeDouarin,N.M.,andTeillet,M-A.M.,Experimentalanalysisofthemigrationanddifferentiationofneu-

    roblastsof theautonomicnervoussystemandofneuroectodermalmesenchymalderivatives,usingabiologicalcellmarkingtechnique,Dev. Biol.,41,162184,1974.

    Lee,M.S.Y.,Correlatedprogressionandtheoriginofturtles,Nature,379,812815,1996.Lee,M.S.Y.,Pareiasaurphylogenyandtheoriginofturtles,Zool. J. Linn. Soc.,120,197280,1997a.Lee,M.S.Y.,Reptilerelationshipsturnturtle,Nature,389,245246,1997b.Lewis,K.K.,Cebra-Thomas,J.,andGilbert,S.F.,Theexpressionofsignalingmoleculesinthedeveloping

    scuteoftheturtleTrachemys scripta,Integ. Comp. Biol.,45,1159,2005.Loredo,G.A.,Brukman,A.,Harris,M.P.,Kagle,D.,Leclair,E.E.,Gutman,R.,Denney,E.,Henkelman,E.,

    Murray,B.P.,Fallon,J.F.,Tuan,R.S.,andGilbert,S.F.,Developmentofanevolutionarilynovelstruc-ture:Fibroblastgrowthfactorexpressioninthecarapacialridgeofturtleembryos,J. Exp. Zool.,291,274281,2001.

    Matsuoka,T.,Ahlberg,P.E.,Kessaris,N.,Iannarelli,P.,Dennehy,U.,Richardson,W.D.,McMahon,A.P.,andKoentges,G.,Neuralcrestoriginsoftheneckandshoulder,Nature,436,347355,2005.

    McGonnell,I.M.,andGraham,A.,Trunkneuralcresthasskeletogenicpotential,Curr. Biol.,12,767771,2003.Nagashima, H., Uchida, K., Yamamoto, K., Kurahu, S., Usuda, R., and Kuratani, S., Turtle-chicken chi-

    mera:An experimental approach to understanding evolutionary innovation in the turtle,Dev. Dyn.,232,149161,2005.

    Ohuchi,H.,Nakagawa,T.,Yamamoto,A.,Araga,A.,Ohata,T., Ishimaru,Y.,Yoshioka,H.,Kuwana,T.,Nohno,T.,Yamasaki,M.,Itoh,N.,andNoji,S.,Themesenchymalfactor,FGF10,initiatesandmain-tainstheoutgrowthofthechicklimbbudthroughinteractionwithFGF8,anapicalectodermalfactor,Development,124:22352244,1997.

    Owen,R.,Onthedevelopmentandhomologiesofthecarapaceandplastronofthechelonianreptiles,Phil. Trans. Roy. Soc. Lond.,1849,151171,1849.

    Park,W.Y.,Miranda,B.,Lebeche,D.,Hashimoto,G.,andCardoso,W.V.,FGF-10isachemotacticfactorfordistalepithelialbudsduringlungdevelopment,Dev. Biol.,201,125134,1998.

    Parker,W.K.,Amonographonthestructureanddevelopmentoftheshoulder-girdleandsternuminthever-tebrata,The Ray Society,1868.

    Pasteels,J.J.,Etudessurlagastrulationdesvertbrsmroblastiques,Archs. Biol. Paris,48,105148,1937.Pasteels,J.J.,UnetableanalytiquedudveloppementdesReptiles.1.StadesdegastrulationchezlesCheloni-

    ensetlesLacertiliens,Ann. Soc. Roy. Zool. Bel.,87,217241,1957.Pathi,S.,Rutenberg,J.B.,Johnson,R.L.,andVortkamp,A.,InteractionofIhhandBMP/Nogginsignaling

    duringcartilagedifferentiation,Dev. Biol.,209,239253,1999.Pennisi,E.,Neuralbeginningsfortheturtlesshell,Science,303,951,2004.Platz,J.E.,andConlon,J.M.,Andturnbackagain,Nature,389,246,1997.Rathke,H.,ber die Entwicklung der Schildkrten,Braunschweig:FriederichViewegundSohn,1848.Rieppel,O.,Testingthehomologybycongruence:Thepectoralgirdleofturtles,P. Roy. Soc. Lond. B Bio.,

    263,13951398,1996.Rieppel,O.,Turtlesashopefulmonsters,BioEssays,23,987991,2001.Rieppel,O.,andReisz,R.R.,Theoriginandearlyevolutionofturtles,Ann. Rev. Ecol. Syst.,30,122,1999.Romer,A.S.,Osteology of the Reptiles,Chicago:UniversityofChicagoPress,1956.Ruckes,H.,Themorphologicalrelationshipsbetweenthegirdles,ribs,andcarapace,Ann. N.Y. Acad. Sci.,

    13,81120,1929.Shafritz,A.B.,Shore,E.M.,Gannon,F.H.,Zasloff,M.A.,Taub,R.,Muenke,M.,andKaplan,F.S.,Overex-

    pressionofanosteogenicmorphogeninfibrodysplasiaossificansprogressiva,New Engl. J. Med.,335,555561,1996.

    Shore,E.M.,Xu,M.,Feldman,G.J.,Fenstermacher,D.A.,Brown,M.A.,Kaplan,F.S.,andFOPRes.Consort.,ArecurrentmutationoftheBMPtypeIreceptorACVR1causesinheritedandsporadicfibrodysplasiaossificansprogressiva,Nat. Genet.,38,525527,2006.

    3339.indb 15 11/26/07 11:59:57 AM

  • BiologyofTurtles

    Smith,M.M.,andHall,B.K.,Adevelopmentalmodelforevolutionofthevertebrateexoskeletonandteeth:Theroleofcranialandtrunkneuralcrest,Evol. Biol.,27,387448,1993.

    Sukhanov, V.B., Podklass Testudinata (subclass Testudinata), Osnovy Paleontologii, Zemnovodnye, Pres-mykayushchiesyaIPtitsy,Moscow:Nauka,1964.

    Suzuki,H.K.,Studiesontheosseoussystemofthesliderturtle,Ann. N.Y. Acad. Sci.,109,351410,1963.Trainor,P.A.,Melton,K.R.,andManzanares,M.,Originsandplasticityofneuralcrestcellsandtheirrolesin

    jawandcraniofacialevolution,Int. J. Dev. Biol.,47,541553,2003.Vickaryous,M.K.,andHall,B.K.,Homologyofthereptiliancoracoidandareappraisaloftheevolutionand

    developmentoftheamniotepectoralapparatus,J. Anat.,208,263285,2006.Vincent,C.,Bontoux,M.,LeDouarin,N.M.,Pieau,C.,andMonsoro-Burq,A.H.,Msxgenesareexpressedin

    thecarapacialridgeofturtleshell:AstudyoftheEuropeanpondturtle,Emys orbicularis.Dev. Genes Evol.213,464469,2003.

    Vortkamp,A.,LeeK.,Lanske,B.,Segre,G.V.,Kronenber,H.M.,andTabin,C.J.,Regulationofrateofcarti-lagedifferentiationbyIndianhedgehogandPTH-relatedprotein,Science,273,613622,1996.

    Weaver,M.,Dunn,N.R.,andHogan,B.L.M.,BMP4andFgf10playopposingrolesduringlungmorphogen-esis,Development,127,26952704,2000.

    Williston,S.,Water Reptiles of the Past and Present,Chicago:ChicagoUniversityPress,1914.Wu, Q., Zhang, Y., and Chen, Q., Indian hedgehog is an essential component of mechanotransduction to

    stimulatechondrocyteproliferation,J. Biol. Chem.,276,3529035296,2001.Yntema,C.L.,Aseriesofstages in theembryonicdevelopmentofChelydra serpentina,J. Morphol.,125,

    219252,1968.Yntema,C.L.,ExtirpationexperimentsontheembryonicrudimentsofthecarapaceofChelydra serpentina,

    J. Morphol.,132,235244,1970.Zangerl,R.,Thehomologyoftheshellelementsinturtles,J. Morphol.,65,383410,1939.Zangerl,R.,Theturtleshell,The Biology of the Reptilia,Vol. 1,C.GansandA.dA.Bellairs(eds.),NewYork:

    AcademicPress,1969,311319.Zardoya,R.,andMeyer,A.,Theevolutionarypositionofturtlesrevised,Naturwissenschaften,88,193200,2001.

    3339.indb 16 11/26/07 11:59:57 AM

  • 2 ComparativeOntogeneticandPhylogeneticAspectsofChelonianChondro-OsseousGrowthandSkeletochronology

    Melissa L. Snover and Anders G.J. Rhodin

    Contents

    2.1 Introduction........................................................................................................................... 172.2 SkeletochronologyinTurtles................................................................................................ 18

    2.2.1 Background................................................................................................................ 182.2.1.1 ValidatingAnnualDepositionofLAGs.......................................................202.2.1.2 ResorptionofLAGs.....................................................................................202.2.1.3 SkeletochronologyandGrowthLinesonScutes......................................... 21

    2.2.2 ApplicationofSkeletochronologytoTurtles............................................................. 212.2.2.1 FreshwaterTurtles........................................................................................ 212.2.2.2 TerrestrialTurtles......................................................................................... 212.2.2.3 MarineTurtles.............................................................................................. 21

    2.3 ComparativeChondro-OsseousDevelopmentinTurtles......................................................222.3.1 ImplicationsforPhylogeny........................................................................................ 322.3.2 ImplicationsforGrowth............................................................................................. 33

    References........................................................................................................................................ 39

    . introduCtion

    Formandfunctionarefundamentalinterdependentstrategiesofalllife.Fromstudiesofskeletaland chondro-osseous structure and development, we can gain insights into phylogenetic differ-encesandtaxonomicclassifications,andwecanalsobetterunderstandhowdifferentspeciesandindividualswithinspeciesgrowtomaturityandrespondtothephysiologicaldemandsof theirparticularlifestrategies.Corticalbandingpatternswithinbonescorrelatetoactivitypatternsoftheindividualaswellasendogenousrhythms,allowingforinferencesnotonlyaboutageandcyclicalgrowthpatternsbutalsopreviousgrowthandcircumstancesthathaveinfluencedgrowth(Suzuki,1963;Enlow,1969;Castanet,2006).Studiesofthesebandingpatternswithincorticalbone(skel-etochronology)havebeenappliedtonumerousspeciesofturtlesandhaveallowedustounderstandpatternsandratesofgrowth.

    In addition to skeletochronology, detailed studies of the chondro-osseous development ofappendicular bones have revealed strong similarities among most living chelonians, but with

    3339.indb 17 11/26/07 11:59:57 AM

  • BiologyofTurtles

    strikingdifferencesforcertainlarge,fast-growingseaturtles(e.g.,theleatherback,Dermochelys)thatseparatesthemfromallotherturtles(Rhodinetal.,1980,1981,1996;Rhodin,1985).

    In thischapter,wesummarize theapplicationofskeletochronologyforestimatesofageandgrowthratesinturtles,reviewthetwobasicpatternsofbonegrowththatoccurinturtles,andcor-relatethesepatternsofchondro-osseousdevelopmentwithphylogeny.Finally,wediscusshowthesefactorsinfluenceratesofgrowthtosexualmaturity,highlightinghowtheleatherbackstandsapartfromotherturtles.

    . sKeletoChronologyinturtles

    2.2.1 BAckground

    Skeletochronologyhasbeenusedtoestimateageandgrowthinnumerousspeciesofreptilesandamphibians(Castanet,1994;Smirina,1994).Bonesaregoodrecordingstructures,astheycontainlayersthatformwithapredictableperiodicityandthelayersaredifferentinmorphologyandopti-caldensity,makingthemeasilydiscernable(Klevezal,1996).Inhistologiccross-sectionsofboneareconcentricthinlayersthatstaindarkwithhematoxylin.Alternatingwiththeseconcentricthinlayersarebroadhomogeneouslight-staininglayers(Castanetetal.,1993;Klevezal,1996).Castanetetal.(1977)introducedthetermline of arrested growth(LAG)toidentifythethindarklineschar-acteristicofskeletalgrowthmarks(Figure2.1).

    Inbonemorphology,LAGsareinthegeneralclassofcementorcementinglinesandarecom-monthroughoutallvertebratebones.ResorptioncementlinesarefoundaroundHaversiancanalsystems(secondarilyremodeledbonewithvascularingrowth),differentiatingthemfromcorticalbone,andinthelamellarperiostealdepositionofsecondaryendostealbone.Restingcementlines(theclasstowhichLAGsbelong)arefoundinthelayeringpatternofperiostealdepositionofnewcorticalbone(Enlow,1969;Francillon-Vieillotetal.,1990).

    Many skeletochronological studies of herpetological species indicate that LAGs are formedasaresultoflowmetabolismandslowedornogrowthassociatedwithseasonalclimaticchanges.Thisislikelytruebutservesonlyasapartialexplanation,consideringthatLAGsalsooccurinthehardstructuresofnonhibernatingmammalianspecies(Klevezal,1996;Castanet2006).Castanetetal.(1993)extendedtheterminologyofLAGstobothpoikilothermsandendothermsasageneraldescriptionofarestingcementlinemarkingperiodicityingrowth.Castanetetal.(1993)alsopro-posedthattheformationofLAGsislikelytobeendogenouswhilestillpotentiallysynchronizedtoenvironmentalconditions.

    CyclicalformationofLAGsappearstobeauniversalphenomenoninvertebrates(Castanetetal.,1993;Klevezal,1996;Simmons,1992),andthereisevidenceforendogenouscontrol(Schauble,1972;Castanetetal.,1993;Simmons,1992;Estebanetal.,1999).Boneformationandremodelingratesarehormonallycontrolledandsynchronizedtocircadianpatterns(Simmons,1992).Parathy-roidhormone(PTH),calcitonin,andvitaminsA,C,D,andKhavebeenfoundtoinfluenceratesofboneformationandremodeling(Buchanan&Preece,1991;Narbaitzetal.,1991).Specifically,PTHwhichstimulatesboneresorptionissecretedinresponsetoserumcalciumlevels.

    Studies have demonstrated seasonal variability in skeletal growth rates, not just in poikilo-therms(Schauble,1972;Snover&Hohn,2004)butalsoinendothermicmammals(Klevezal,1996;Castanet, 2006).Thesepatternsmaypotentiallybe evolutionarily related to an increased avail-abilityofvitaminsA,C,andD,withtheonsetofspringintemperateclimatesorthewetseasonin tropical climates (Buchanan & Preece, 1991; Simmons, 1992). However, there is substantialevidencethatthespringsurgeingrowthratesisalsounderendogenouscontrol,asanimalsthataremaintainedincaptivityalsodemonstratethispattern.Schauble(1972)amputatedlimbsfromthenewt,Notophthalmus viridescens,atdifferenttimesoftheyearandobservedtheregenerationrates.Shefoundthatregenerationratesweresignificantlyhigherinthespringorearlysummermonths,followedbysummer,latesummer,earlyfall,andwinter,respectively.Astemperature,lightlevels,

    3339.indb 18 11/26/07 11:59:58 AM

  • ChelonianChondro-OsseousGrowthandSkeletochronology

    andfoodavailabilitywerecontrolled,thesefactorscouldnothaveplayedaroleintheregeneration

    rates,suggestingthattheresultsimplytheinfluenceofaninternalbiologicalrhythm,eitherendo-

    crineornonendocrineinnature.

    AnotherlineofevidenceforseasonalvariabilityinskeletalgrowthratesisSnoverandHohns

    (2004)analysisofbone-growthincrementspast the lastcompleteLAGinKempsridleyhumeri

    relativetostrandingdate.Theyfoundasignificantandpositiverelationshipbetweentheamount

    ofnewbonedepositedafterthelastLAGandtheJuneNovembertimeframe.FromNovemberto

    June,therelationshipwasnotsignificantlydifferentfromzero,suggestingthatverylittlenewbone

    LAGs

    LAGs

    1 mm

    figure. Cross-sectionsfromhumerioftwoterrapins(Malaclemys terrapin)thathavebeendecalcifiedandstainedwithEhrlichshematoxylin.Arrowshighlightthethin,darklystainedlinesofarrestedgrowth(LAGs),andthelightlystainedregionbetweenLAGsistermedthegrowthzoneandtogetheroneLAGandonezonecompriseagrowthmark.NotehowtheLAGsarebeginningtocompressattheouteredgeofthelowerimage.Theupperimageisfroma15.1-cmstraightcarapacelength(SCL)female,andthelowerisfroma16.5-cmSCLfemale.

    3339.indb 19 11/26/07 12:00:00 PM

  • 0 BiologyofTurtles

    depositionoccursduringthewinterandthatLAGsaredepositedinthespringforKempsridleysalongtheU.S.Atlanticcoast.

    ... validatingannualdepositionoflags

    Three common methods can be employed to directly validate the annual deposition of skeletalgrowthmarks:thestudyofknown-ageanimals,mark-recapturestudies,andmark-recapturestud-ies that incorporatefluorescentmarking (Castanet,1994).All threeof thesemethodshavebeenappliedtoturtles(Castanet&Cheylan,1979;Klinger&Musick,1992;Colesetal.,2001;Snover&Hohn,2004;Curtin,2006;Snoveretal.,2007b).SnoverandHohn(2004)lookedathumerifromknown-ageKempsridleyseaturtles(Lepidochelys kempii)thathadbeentaggedashatchlingsandreleasedintothewild.Theturtlesfromtheirstudyweresubsequentlyrecoveredasdeadstrand-ingsandallowedforvalidationofannualLAGformationand the recognitionofanannulus,ordiffusemarkratherthanadistinctLAG,thatrepresentedanannualgrowthmark.Curtin(2006)usedbonesfromknown-agedeserttortoises(Gopherus agassizii)frommark-recapturestudiestotestandvalidateback-calculationmethodstoaccountforLAGslosttoresorptioninolderanimals.Snover(2007a)usedhumerifromdeadstrandedloggerheadturtles(Caretta caretta)thathadbeenpreviouslycapturedandtaggedtovalidatethatcarapacelengthcanbeback-calculatedfromthedimensionsofearlierLAGs.CastanetandCheylan(1979)usedfluorescentmarkingtovalidatethatgrowthmarkswereannualinHermannstortoises(Testudo hermanni)andGreektortoises(Testudo graeca).KlingerandMusick(1992) injectedwild loggerheadswithoxytetracyclineandreleasedthem.Bonebiopsiesweretakenfromturtlesrecaptured1to2yearslatertovalidateannualLAGformation.Aturtlefromthatsamestudywasfoundstrandeddead8yearsafterinjectionandpre-sentedadditionalvalidation(Colesetal.,2001).

    ... resorptionoflags

    Asboneincreasesinsizeduringgrowth,itisconstantlyremodeledandreshaped(Enlow,1969).Hardbonetissuescannotgrowthroughinternalexpansion,butrathertheygrowbyappositionalprocesses(onperiosteallyderivedcorticalbone)withthedepositionofnewtissueonthesurfacetogetherwithendostealresorption(Enlow,1969).Thisprocessofresorptionresultsinthelossoftheinnermost(earliest)growthmarksandisaseriouslimitationinestimatingageusingskeletochronol-ogy.Whilenotaseriousissueforshorter-livedamphibiansandreptiles,itisespeciallyproblematicin long-lived turtles, and the problem is noted to be extreme in age-estimate studies of marineturtles(Klinger&Musick,1995;Zugetal.,1995,1997,2002;Parham&Zug,1997;Zug&Glor,1998;Snover&Hohn,2004;Snoveretal.,2007b),resultinginthedevelopmentofseveralmethodsofback-calculationtoestimatethenumberofgrowthmarkslost.

    Back-calculation techniques in sea turtles relyon theconcept that the spatialpatternof theLAGsisrepresentativeofthegrowthoftheanimal,andtoconfirmthisassumptionacorrelationmustbeestablishedbetweenbonedimensionsandbodysize (Hutton,1986;Klinger&Musick,1992; Leclair & Laurin, 1996; Snover, 2002; Snover & Hohn, 2004). Using loggerhead turtles,Snover(2007a)demonstratedthattherelationshipbetweencarapacelengthandhumerusdiametercanbeusedtoaccuratelyestimatecarapacelengthatthetimeofearlierLAGdeposition.

    Mostback-calculationproceduresappliedtoturtleshavenotbeenvalidatedandmakeassump-tionsaboutearlygrowthrates(Klinger&Musick,1995;Zugetal.,1995,1997,2002;Parham&Zug,1997;Zug&Glor,1998).Curtin(2006)wasabletotestandvalidateback-calculationpro-cedures for the desert tortoise using humeri from known-age animals. She tested two methodspresentedbyParhamandZug(1997),therankingprotocol,andthecorrectionfactormethodsandfoundthatthecorrectionfactormethodprovidedthemostaccurateageestimatesforjuvenilesandsubadults;however,itunderestimatedadultages.Foradulttortoises,therankingprotocolprovidedthemostaccurateestimates.

    3339.indb 20 11/26/07 12:00:00 PM

  • ChelonianChondro-OsseousGrowthandSkeletochronology

    ...skeletochronologyandgrowthlinesonscutes

    Formostspeciesoffreshwaterandterrestrialturtles,ageismostcommonlyestimatedfromcountsofgrowthlinesonthescutesofeitherthecarapaceortheplastron(Germano&Bury,1998;Wilsonetal.,2003).Thisisapowerfultechniqueas,unlikeskeletochronologyinturtles,itcanbeappliedto livinganimalsandusedtounderstandtheagestructureofpopulations.However,manystud-iesthatapplythistechniquedonotprovideanyvalidation(Castanet&Cheylan,1979;Wilsonetal.,2003)andinaliteraturereview,Wilsonetal.(2003)foundthatofthestudiesthatdidattemptvalidation,37%wereunabletodoso.Similarly,Berry(2002)foundthateveninjuveniledeserttortoises,agecouldnotbeaccuratelydeterminedthroughscutecountsalone.Hence,itappearsthatwhereascountingscutegrowthlinesmaybeaviablemethodofageestimationinsometurtles(i.e.,Stone&Babb,2005),itisnotaccurateforallturtlesandassumptionsshouldnotbemadethatthemethodisapplicabletoagivenspecieswithoutvalidation.Whilenotstrictlyvalidwhenusedinconjunctionwitheachother,skeletochronologyandscutegrowthlinecountsfromdeadturtlescanserveassupportingevidenceoftheannualnatureofthetwomethods(Castanet&Cheylan,1979;Hart&Snover,unpublisheddata).

    Evenwhenscutegrowthlinecountsaccuratelyestimateage,anadvantageofskeletochronologyoverscutegrowthlinecountsappearswitholderadultanimals.Asgrowthslowstonearlyimmea-surableratesinolderanimals,growthlinescannolongerbedifferentiatedonscutes(seeWilsonet al., 2003, for review), hence only minimum ages can be estimated. However, in histologicalpreparationsofbonesLAGscanbegenerallydifferentiatedeveninolderanimalswithnearcessa-tionofgrowth(Snover&Hohn,2004),allowingforestimatesofadultgrowthratesandlongevity(Figure2.1)(Snover,2002;Snover&Hohn,2004;Snoveretal.,2007b).

    2.2.2 ApplIcAtIonofSkeletochronologytoturtleS

    ... freshwaterturtles

    Freshwaterturtleswerethefirstturtlestohaveskeletalgrowthmarksrecognizedintheirlongbones.Mattox(1936)notedskeletalgrowthmarksinthelongbonesofpaintedturtles,Chrysemys picta marginata,andfoundacorrelationbetweencountsofthemarksandturtlesize.Peabody(1961)andHammer(1969)documentedperiostealcyclicalringsinsnappingturtles,Chelydra serpentina.Suzuki (1963) and Enlow (1969) found them in the slider, Trachemys scripta. Hart and Snover(unpublisheddata)comparedskeletochronologypreparationsofhumeriwithplastronscutegrowthlinecountstodemonstratethestrongcomparisonofthetwotechniquesinthebrackish-waterdia-mondbackterrapin(Malaclemys terrapin).Countingofgrowthlinesonplastronorcarapacescutesremainstheprimarymeansofestimatingageforfreshwaterturtles.

    ... terrestrialturtles

    Thefirststudytovalidatetheannualnatureofskeletalgrowthmarkswasconductedwithtwospe-ciesoftortoises.CastanetandCheylan(1979)usedfluorescentmarkingtovalidateannualgrowthmarksinHermanns(Testudo hermanni)andGreek(Testudo graeca)tortoises.Recently,skeleto-chronologyhasbeenappliedtodeserttortoises(Gopherus agassizii):Curtin(2006)validatedtheannualnatureoftheLAGsinhumerifromknown-ageanimalsanddevelopedcorrectiontechniquestoestimatethenumberofLAGslosttoresorption.Similartothefreshwaterturtles,growthlinesonscutescontinuetobeaprimarymeansofestimatingageinthisgroupofturtles.

    ... marineturtles

    Ofalloftheturtlegroups,skeletochronologyhasbeenappliedmostfrequentlytomarineturtles.Thescutesoftheplastronandcarapacedonotretaingrowthlineslikethefreshwaterandterrestrial

    3339.indb 21 11/26/07 12:00:00 PM

  • BiologyofTurtles

    turtles(however,seeTuckeretal.,2001).Hence,skeletochronologyhasbeentheprimarymeansofestimatingageandinferringgrowthratesintheseturtles.

    Todate,skeletochronologyhasbeenappliedtofiveofthesevenspeciesofmarineturtles,theloggerhead(Caretta caretta:Zugetal.,1986,1995;Klinger&Musick,1992,1995;Parham&Zug,1997;Colesetal.,2001;Snover,2002;Bjorndaletal.,2003;Snover&Hohn,2004),theleatherback(Dermochelys coriacea:Zug&Parham,1996),theKempsridley(Lepidochelys kempii:Zugetal.,1997;Snover&Hohn,2004;Snoveretal.,2007b),thegreen(Chelonia mydas:Bjorndaletal.,1998;Zug&Glor,1998;Zugetal.,2002),andtheoliveridley(Lepidochelys olivacea:Zugetal.,2006).TheannualdepositionofLAGshasbeenvalidatedforloggerheads(Klinger&Musick,1992;Colesetal.,2001;Snover&Hohn,2004)andKempsridleys(Snover&Hohn,2004).

    With the exception of leatherbacks, all of these studies used the humerus bone. Generally,LAGsaremostclearlyvisibleinthelongbones,andthehumerusisidealasitiseasilyremovedfromdeadanimalsandithasmuscleinsertionscarsthatcreatelandmarksthatallowfortheiden-tificationofsectioningsitesthatareconsistent(Snover&Hohn,2004).Humeriofleatherbacksaremorphologicallydifferentfromthehard-shelledturtles,andahighlevelofvascularizationandboneremodelingischaracteristicoftheleatherbackskeleton(Rhodin,1985).Thishighlevelofvascu-larizationmaylimittheusefulnessoflongbonestoskeletochronologystudies.However,Rhodin(1985)documentedtwowidecyclicalgrowthzonesintheperiostealboneofthehumerusofanadultfemaleleatherbackturtlethatsuggestedthepossibilityofgrowthcyclesrelatedtomigrationornest-ingpatterns(Figure10inRhodin,1985).ZugandParham(1996)predictedageatsexualmaturityofleatherbacksbyskeletochronologybasedonLAGsfoundinscleralossicles;skeletochronologyofleatherbackshasalsobeenconductedbyAvensandGoshe(unpublisheddata).However,thepos-sibleannualnatureofthesemarkshasnotbeenvalidated,andtheymayinsteadsimplyrepresentthecyclicalresultofvaryingratesofbonedepositionandgrowthrelatedtofeedingormigrationcyclesinthishigh-metabolismspecies.

    . ComparativeChondro-osseousdevelopmentinturtles

    Formandfunctionareindeedfundamentalinterdepen