13
Biology 427 Biomechanics Lecture 10. • Brief recap of beams, stress and the second moment of area. • Flexural stiffness revisited • The deflection of a simple beam -- both stiffness and shape determine deformation. •A joint effort – analyses of femoral mechanics • How hollow are bones? How hollow should they be?

Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

Biology 427 BiomechanicsLecture 10.

•Brief recap of beams, stress and the second moment of area.•Flexural stiffness revisited•The deflection of a simple beam -- both stiffness and shape determine deformation.

•A joint effort – analyses of femoral mechanics•How hollow are bones? How hollow should they be?

Page 2: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

E I : Flexural stiffness of a structure

Fx

Neutral axisy

tension

compression

-stress + stress

y

δAy

M = (σ/y) ∫ y2dA

Force on dA F = σy dA

Moment about neutral axis dM = F y = (σy dA) y

The total moment about axis

M = ∫ dM = ∫ σ y dA = ∫ (k y) y dA

M = F x

Page 3: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

Fx

Neutral axis

y

tension

compressionstress distributions?

M = (σ/y) ∫ y2dA E I : Flexural stiffness of a structure

M = (σ/y) IM = F x

F x = (σ/y) I

σ = F x y/ I

ε = F x y/ E I

Page 4: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

How does I change as we remove material from the inside of the beam? (rinner = 0.5 router)

Page 5: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

https://en.wikipedia.org/wiki/List_of_area_moments_of_inertia

EITotal = EI1 +EI2 +...

For composites:

EITotal = EI1 +EI2 +...−EIcav1 −EIcav2 −...

For cavities:

Page 6: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

2 cm

2 cm

Area? Second Moment of Area?

What additional arrangement of squares can maximize I?Any examples of I-beams in biology?

Page 7: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

W/2σ = F x y/I

xI = πR4/4

Where do you think the tensile stress is greatest?

Where is the most likely zone for failure?

Page 8: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

How would you estimate I for a cilium from a micrograph? Does the central doublet make a big difference?

Page 9: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

δ(x) = F x2(3L-x)/6 EI

x

F

L

δ(x) = f x2(x2 + 6L2 - 4Lx)/24 EI

x

f

L

http://www.aps.anl.gov/asd/me/Calculators/ElasticBeam2.html

δ(x)

δtip =FL3

3EI

Page 10: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

How do I make a super light and very stiff beam?

Page 11: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

Stress distributions in biological beams: tree branches. Where will this break?

F

x

M, y

, I, σ

x

σ = F x y/ I

0 < x < 2.0 mF = 1000N

Page 12: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

Alligator

Camel Pterosaur

Page 13: Biology 427 Biomechanics Lecture 10.courses.washington.edu/biomechs/lectures/lecture10.pdf · 2016-10-19 · Biology 427 Biomechanics Lecture 10. •Brief recap of beams, stress and

Rr

Bone Hare Fox Lion Camel Buffalo Swanfemur 0.57 0.63 0.56 0.62 0.54 0.60humerus 0.55 0.59 0.57 0.66 0.51 0.92

k = r/R

You’ve decided to trade in your endoskeleton for a sleek shiny exoskeleton. Assuming your exoskeleton is bone how thick would it have to be to surround your biceps for the same EI?