15
Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review XABIER PEREDA-SUBERBIOLA 1 Key-words – Late Cretaceous, Europe, Laurasia, Gondwana, Tetrapods, Diversity, Palaeobiogeography. Abstract. – The continental tetrapod assemblages from the Santonian-Maastrichtian of Europe consist of dinosaurs (the- ropods: Abelisauroidea, Alvarezsauridae, Dromaeosauridae, ?Oviraptorosauria, ?Troodontidae, and birds: Enantiorni- thes, basal Ornithurae; sauropods: Titanosauria; ankylosaurs: Nodosauridae; ornithopods: Hadrosauridae, Rhabdodontidae; and neoceratopsians), pterosaurs (Azhdarchidae), crocodyliforms (eusuchians: Alligatoroidea, Gavia- loidea, ?Hylaeochampsidae; sebecosuchian-like ziphosuchians; and, probably, basal neosuchians), choristoderes (?Champsosauridae), squamates (lacertilians: Iguanidae s.l., Paramacellodidae, Polyglyphanodontinae, Varanoidea; sna- kes: Madtsoiidae; possible amphisbaenians), turtles (cryptodires: Chelydroidea, Kallokibotionidae, Solemydidae; pleu- rodires: Bothremydidae, Dortokidae), lissamphibians (Albanerpetontidae; anurans: Discoglossidae, Palaeobatrachidae; caudates: Batrachosauroididae, Salamandridae), and mammals (multituberculates: Kogaionidae, ?“Paracimexomys group”; marsupials: Herpetotheriidae; eutherians: “Zhelestidae”). The palaeobiogeographical affinities of the Late Cretaceous continental tetrapods of Europe are complex. The faunas are commonly considered to show a mixed pattern resulting from the addition of “Asiamerican” and Gondwanan forms to European taxa. Albanerpetontids, both paramacellodid and polyglyphonodontine lizards, and hadrosaurid dino- saurs are taxa with Palaeolaurasian (or, in some case, even Neopangean) affinities. Other forms, such as paleobatrachid and batrachosauroidid lissamphibians, solemydid turtles, alligatoroid crocodyliforms, and nodosaurid dinosaurs can be considered as Euramerican taxa. Kallokibotionid and dortokid turtles, rhabdodontid dinosaurs and kogaionid mammals are endemic to Europe. The Gondwanan taxa have been regarded as African immigrants that reached southern Europe via the Mediterranean Tethyan sill. Abelisaurid and titanosaurid dinosaurs, trematochampsid crocodyliforms, podocnemidid and bothremydid turtles, and boid and madtsoiid snakes constitute the basic pattern of the so-called “Eurogondwanan fauna”. However, the validity of some of these taxa is a disputed matter (Titanosauridae, Trematochampsidae), and the presence of other taxa in the Late Cretaceous of Europe is based on controversial data (Boidae, Podocnemididae). Only Abelisauroidea, Madtsoiidae and Bothremydidae (and, yet for confirming, Sebecosuchia) provide evidence of interchanges between Africa and Europe. At least abelisauroids might have reached Europe before the Late Cretaceous. In conclusion, most of the continental tetrapod taxa from the latest Cretaceous of Europe show affinities with those of northern Hemisphere landmasses. Latest Cretaceous trans-Tethyan dispersal events between Africa and Europe remain poorly documented. Affinités paléobiogéographiques des tétrapodes continentaux du Crétacé supérieur d’Europe : une mise au point Mots-clés. – Crétacé supérieur, Europe, Laurasie, Gondwana, Tétrapodes, Diversité, Paléobiogéographie. Résumé. – Les associations de tétrapodes continentaux du Santonien-Maastrichtien d’Europe incluent des dinosaures (thé- ropodes : Abelisauroidea, Alvarezsauridae, Dromaeosauridae, ?Oviraptorosauria, ?Troodontidae, et oiseaux: Enantiorni- thes, Ornithurae basaux ; sauropodes : Titanosauria ; ankylosaures : Nodosauridae; ornithopodes : Hadrosauridae, Rhabdodontidae ; et néocératopsiens), des ptérosaures (Azhdarchidae), des crocodyliformes (eusuchiens : Alligatoroidea, Gavialoidea, ?Hylaeochampsidae ; ziphosuchiens de type sébécosuchien, et probablement des néosuchiens basaux), des choristodères (?Champsosauridae), des squamates (lacertiliens : Iguanidae s.l., Paramacellodidae, Polyglyphanodontinae, Varanoidea ; serpents : Madtsoiidae ; possibles amphisbènes), des tortues (cryptodires : Chelydroidea, Kallokibotionidae, Solemydidae ; pleurodires : Bothremydidae, Dortokidae), des lissamphibiens (Albanerpetontidae ; anoures : Discoglos- sidae, Palaeobatrachidae; urodèles : Batrachosauroididae, Salamandridae), et des mammifères (multituberculés : Kogaio- nidae, ?“groupe Paracimexomys” ; marsupiaux : Herpetotheriidae ; euthériens : “Zhelestidae”). Les affinités paléobiogéographiques des tétrapodes continentaux du Crétacé supérieur d’Europe sont complexes. Ces faunes sont généralement interprétées comme ayant un cachet mixte résultant de l’addition de formes “asiati- co-américaines” et gondwaniennes aux taxons européens. Les albanerpetontidés, les lézards paramacellodidés et poly- glyphanodontinés, ainsi que les dinosaures hadrosauridés sont des taxons qui ont des affinités paléolaurasiatiques (voire même pangéennes dans certains cas). D’autres formes, comme les lissamphibiens paléobatrachidés et batrachosauroï- didés, les tortues solemydidés, les crocodyliformes alligatoroïdes et les dinosaures nodosauridés sont considérés comme étant des taxons euro-américains. Les tortues kallokibotionidés et dortokidés, les dinosaures rhabdodontidés et les mam- mifères kogaïonidés sont endémiques à l’Europe. Les formes gondwaniennes ont été considérées comme des immi- Bull. Soc. géol. Fr., 2009, t. 180, n o 1, pp. 57-71 Bull. Soc. géol. Fr., 2009, n o 1 1. Universidad del País Vasco/EHU, Facultad de Ciencia y Tecnología, Departamento de Estratigrafía y Paleontología, Apartado 644, 48080 Bilbao. [email protected] Manuscrit déposé le 13 juillet 2007; accepté après révision le 30 juin 2008

Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

  • Upload
    x

  • View
    249

  • Download
    7

Embed Size (px)

Citation preview

Page 1: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

Biogeographical affinities of Late Cretaceous continental tetrapods of Europe:a review

XABIER PEREDA-SUBERBIOLA1

Key-words – Late Cretaceous, Europe, Laurasia, Gondwana, Tetrapods, Diversity, Palaeobiogeography.

Abstract. – The continental tetrapod assemblages from the Santonian-Maastrichtian of Europe consist of dinosaurs (the-ropods: Abelisauroidea, Alvarezsauridae, Dromaeosauridae, ?Oviraptorosauria, ?Troodontidae, and birds: Enantiorni-thes, basal Ornithurae; sauropods: Titanosauria; ankylosaurs: Nodosauridae; ornithopods: Hadrosauridae,Rhabdodontidae; and neoceratopsians), pterosaurs (Azhdarchidae), crocodyliforms (eusuchians: Alligatoroidea, Gavia-loidea, ?Hylaeochampsidae; sebecosuchian-like ziphosuchians; and, probably, basal neosuchians), choristoderes(?Champsosauridae), squamates (lacertilians: Iguanidae s.l., Paramacellodidae, Polyglyphanodontinae, Varanoidea; sna-kes: Madtsoiidae; possible amphisbaenians), turtles (cryptodires: Chelydroidea, Kallokibotionidae, Solemydidae; pleu-rodires: Bothremydidae, Dortokidae), lissamphibians (Albanerpetontidae; anurans: Discoglossidae, Palaeobatrachidae;caudates: Batrachosauroididae, Salamandridae), and mammals (multituberculates: Kogaionidae, ?“Paracimexomysgroup”; marsupials: Herpetotheriidae; eutherians: “Zhelestidae”).

The palaeobiogeographical affinities of the Late Cretaceous continental tetrapods of Europe are complex. Thefaunas are commonly considered to show a mixed pattern resulting from the addition of “Asiamerican” and Gondwananforms to European taxa. Albanerpetontids, both paramacellodid and polyglyphonodontine lizards, and hadrosaurid dino-saurs are taxa with Palaeolaurasian (or, in some case, even Neopangean) affinities. Other forms, such as paleobatrachidand batrachosauroidid lissamphibians, solemydid turtles, alligatoroid crocodyliforms, and nodosaurid dinosaurs can beconsidered as Euramerican taxa. Kallokibotionid and dortokid turtles, rhabdodontid dinosaurs and kogaionid mammalsare endemic to Europe. The Gondwanan taxa have been regarded as African immigrants that reached southern Europevia the Mediterranean Tethyan sill. Abelisaurid and titanosaurid dinosaurs, trematochampsid crocodyliforms,podocnemidid and bothremydid turtles, and boid and madtsoiid snakes constitute the basic pattern of the so-called“Eurogondwanan fauna”. However, the validity of some of these taxa is a disputed matter (Titanosauridae,Trematochampsidae), and the presence of other taxa in the Late Cretaceous of Europe is based on controversial data(Boidae, Podocnemididae). Only Abelisauroidea, Madtsoiidae and Bothremydidae (and, yet for confirming,Sebecosuchia) provide evidence of interchanges between Africa and Europe. At least abelisauroids might have reachedEurope before the Late Cretaceous. In conclusion, most of the continental tetrapod taxa from the latest Cretaceous ofEurope show affinities with those of northern Hemisphere landmasses. Latest Cretaceous trans-Tethyan dispersal eventsbetween Africa and Europe remain poorly documented.

Affinités paléobiogéographiques des tétrapodes continentaux du Crétacé supérieur d’Europe :une mise au point

Mots-clés. – Crétacé supérieur, Europe, Laurasie, Gondwana, Tétrapodes, Diversité, Paléobiogéographie.

Résumé. – Les associations de tétrapodes continentaux du Santonien-Maastrichtien d’Europe incluent des dinosaures (thé-ropodes : Abelisauroidea, Alvarezsauridae, Dromaeosauridae, ?Oviraptorosauria, ?Troodontidae, et oiseaux: Enantiorni-thes, Ornithurae basaux ; sauropodes : Titanosauria ; ankylosaures : Nodosauridae; ornithopodes : Hadrosauridae,Rhabdodontidae ; et néocératopsiens), des ptérosaures (Azhdarchidae), des crocodyliformes (eusuchiens : Alligatoroidea,Gavialoidea, ?Hylaeochampsidae ; ziphosuchiens de type sébécosuchien, et probablement des néosuchiens basaux), deschoristodères (?Champsosauridae), des squamates (lacertiliens : Iguanidae s.l., Paramacellodidae, Polyglyphanodontinae,Varanoidea ; serpents : Madtsoiidae ; possibles amphisbènes), des tortues (cryptodires : Chelydroidea, Kallokibotionidae,Solemydidae ; pleurodires : Bothremydidae, Dortokidae), des lissamphibiens (Albanerpetontidae ; anoures : Discoglos-sidae, Palaeobatrachidae; urodèles : Batrachosauroididae, Salamandridae), et des mammifères (multituberculés : Kogaio-nidae, ?“groupe Paracimexomys” ; marsupiaux : Herpetotheriidae ; euthériens : “Zhelestidae”).

Les affinités paléobiogéographiques des tétrapodes continentaux du Crétacé supérieur d’Europe sont complexes.Ces faunes sont généralement interprétées comme ayant un cachet mixte résultant de l’addition de formes “asiati-co-américaines” et gondwaniennes aux taxons européens. Les albanerpetontidés, les lézards paramacellodidés et poly-glyphanodontinés, ainsi que les dinosaures hadrosauridés sont des taxons qui ont des affinités paléolaurasiatiques (voiremême pangéennes dans certains cas). D’autres formes, comme les lissamphibiens paléobatrachidés et batrachosauroï-didés, les tortues solemydidés, les crocodyliformes alligatoroïdes et les dinosaures nodosauridés sont considérés commeétant des taxons euro-américains. Les tortues kallokibotionidés et dortokidés, les dinosaures rhabdodontidés et les mam-mifères kogaïonidés sont endémiques à l’Europe. Les formes gondwaniennes ont été considérées comme des immi-

Bull. Soc. géol. Fr., 2009, t. 180, no 1, pp. 57-71

Bull. Soc. géol. Fr., 2009, no 1

1. Universidad del País Vasco/EHU, Facultad de Ciencia y Tecnología, Departamento de Estratigrafía y Paleontología, Apartado 644, 48080 [email protected] déposé le 13 juillet 2007; accepté après révision le 30 juin 2008

Page 2: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

grants qui atteignirent le Sud de l’Europe à travers le Seuil méditerranéen. Les dinosaures abélisauridés ettitanosauridés, les crocodyliformes trématochampsidés, les tortues podocnémididés et bothrémydidés, et les serpentsboidés et madtsoiidés constituent le modèle de base de ce qui a été appelé la “faune euro-gondwanienne”. Cependant, lavalidité de certains taxons est contestée (Titanosauridae, Trematochampsidae) et la présence de quelques autres dans leCrétacé supérieur d’Europe est basée sur des données controversées (Boidae, Podocnemididae). Il en résulte que seule-ment les Abelisauroidea, Madtsoiidae et Bothremydidae (la présence de Sebecosuchia reste à confirmer) attestent deséchanges entre l’Afrique et l’Europe. Au moins les abélisauroïdes auraient pu atteindre l’Europe avant le Crétacé supé-rieur. En définitive, la plupart des taxons de tétrapodes continentaux du Crétacé terminal d’Europe montrent des affini-tés avec ceux des continents de l’Hémisphère nord. Les dispersions trans-téthysiennes entre l’Afrique et l’Europe aucours du Crétacé terminal demeurent mal connues.

INTRODUCTION

Fossil remains of Late Cretaceous continental vertebrateshave been known in Europe since the first half of the nine-teenth century. The first discoveries were made in southernFrance between 1825 and 1846 [Buffetaut et al., 1993; Ta-quet, 2001]. Later, new finds mainly linked to the exploita-tion of natural resources in mines and quarries and thedevelopment of the network of roads and railways led tocollect abundant vertebrate fossils in France and othercountries: Austria, Belgium, the Netherlands, Portugal,Transylvania (now Romania), Spain, and Ukraine [Brink-mann, 1988; Buffetaut and Le Loeuff, 1991; Le Loeuff,1991; Weishampel et al., 1991; Pereda Suberbiola, 1999;Laurent, 2003; Dalla Vecchia, 2006]. In the last few deca-des, further discoveries have been made in old and new lo-calities, including those that have been found in Germany,Hungary, Italy, Slovenia and Sweden [Wellnhofer, 1994;Debeljak et al., 2002; Dal Sasso, 2003; Ösi, 2006; Lindgrenet al., 2007]. Systematic excavations and the use of screen-washing and other modern techniques have considerablyimproved our knowledge of the European continental biotasand led to a better understanding of their composition andaffinities [see Rage, 2002 and references therein]. Most ofthe fossiliferous localities are Campanian-Maastrichtian inage, but significant Santonian sites have been recently dis-covered as well [e.g., Ösi et al., 2003], enlarging our pictureof Late Cretaceous tetrapod assemblages of Europe.

Although some tetrapod fossils have been found in ma-rine rocks, most of the finds have been made in continental(i.e., fluviatile, lacustrine or deltaic) deposits, where precisedating is often problematic [Buffetaut and Le Loeuff,1991]. Marine-continental correlations are difficult, andthus many Late Cretaceous dinosaur localities of Europe arenot well-constrained stratigraphically. In a few cases,high-resolution stratigraphic correlation between dino-saur-bearing sites and marine deposits is likely [López-Martínez et al., 2001]. However, the accurate age of a num-ber of tetrapod sites is still imprecise and some correlationproblems remain to the adjustment of the charophyte scaleto biochronological evidences [Laurent et al., 2002a].

Late Cretaceous continental tetrapods of Europe consistof lissamphibians, squamates, turtles, choristoderes, croco-dyliforms, dinosaurs (including birds), pterosaurs, andmammals. Le Loeuff [1991: Tables 1-2] compiled the conti-nental tetrapods from the Campanian-Maastrichtian of sou-thern Europe and recognized 16 families. Seven of them areretained here, the others are not taken into account becauseeither their status is questioned or they are doubtfully repre-sented by fossils (see below). Only continental tetrapods are

here considered. Taxa whose fossils have been collected inmarine or transitional deposits in association to those of ty-pical continental tetrapods are indicated, but fully marinetetrapods are dismissed. In addition to the Campa-nian-Maastrichtian, the Santonian tetrapod record of Europehas been taken into account. Moreover, the pterosaur, birdand choristodere families have been added to the list. In to-tal, about 40 families (some of them are incertae sedis or in-determinate) are listed in table I for the Santonian-Maastrichtian of Europe (about 20 Ma; [Gradstein et al.,2004]). In some cases (e.g., crocodyliforms and dinosaurs),a taxonomic level higher than the family has been adopted.

THE CONTINENTAL TETRAPOD RECORD FROMTHE SANTONIAN-MAASTRICHTIAN OF EUROPE

Lissamphibians

They are represented by the Albanerpetontidae, anurans(Discoglossidae, Palaeobatrachidae) and caudates (Batra-chosauroididae, Salamandridae) [Duffaud and Rage, 1999;Duffaud, 2000; Folie and Codrea, 2005]. The European re-cord has provided the oldest occurrences of palaeobatra-chids and salamandrids [Duffaud, 2000]. Albanerpetontidsfrom the Late Cretaceous consist of the genus Albanerpetonin southern France and Romania [Duffaud, 2000; Folie andCodrea, 2005; Venczel and Gardner, 2005]. Albanerpetonwas first included into the Prosirenidae (Caudata) [Estes,1981], and posteriorly transferred to a new family distinctfrom Caudata [Fox and Naylor, 1982]. Prosirenid fossils arecurrently unknown in Mesozoic deposits [Rocek, 2000]. Eu-ropean batrachosauroidids consist of aff. Batrachosauroidesfrom southern France [Duffaud, 1997]. Discoglossids havea relatively good record in Transylvania, with the presenceof Paralatonia and forms closely related to Eodiscoglossusand Paradiscoglossus [Codrea et al., 2002; Venczel and Csiki,2003; Folie and Codrea, 2005]. Palaeobatrachids seem tohave affinities with the genus Palaeobatrachus [Duffaud,2000]. Finally, Hatzegobatrachus is provisionally referred toAnura incertae sedis [Venczel and Csiki, 2003].

Squamates

The squamate fossil record consists of lacertilians, snakesand possible amphisbaenians [Rage, 1996, 1999; Folie andCodrea, 2005]. Lacertilians include nonacrodontan igua-nians (Iguanidae sensu lato [Sigé et al., 1997; Rage, 1999]),scincomorphans (Paramacellodidae, Polyglyphanodontinae)[Folie and Codrea, 2005; Makádi, 2006], and anguimorphs

58 PEREDA-SUBERBIOLA X.

Bull. Soc. géol. Fr., 2009, no 1

Page 3: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

(Varanoidea indet.) [Laurent et al., 2002a]. The Iguanidae isretained as a metataxon because its monophyly is neithersupported nor rejected [Estes et al., 1988]. In Transylvania,the paramacellodids are represented by Becklesius and thepolyglyphanodontines by Bicuspidon [Folie and Codrea,2005]. The Teiidae sensu stricto has no demonstrablepre-Tertiary occurrence: teiid-like scincomorphans from theCretaceous of North America, Europe and Asia are now pla-ced into the Polyglyphanodontinae [sensu Estes, 1983] as

borioteiioid lizards [Nydam et al., 2007]. Snake fossils ofEurope have been referred to the Madtsoiidae [Rage, 1996,1999; Sigé et al., 1997; Folie and Codrea, 2005]. The Ibe-rian record includes species of Madtsoia and Herensugea[Rage, 1996, 1999]. The Madtsoiidae are now excludedfrom the Boidae [McDowell, 1987]. The occurrence of scin-coids in Central Europe is likely [Smith et al., 2002; Folieet al., 2005]. On the contrary, the presence of both Aniliidaeand Boidae [see Rage, 1981; Astibia et al., 1990] is doubt-ful [Rage, 1999, pers. comm.]. Iberian remains have tentati-vely been referred to the Amphisbaenia [Astibia et al.,1990], but this assignment is uncertain; a referral to anguidlizards cannot be ruled out [Rage, 1999]. The relationshipsof the lacertilian Araeosaurus from the Campanian of Aus-tria are uncertain.

Turtles

Both cryptodire and pleurodire fossils are abundant in theLate Cretaceous continental sites of Europe [Broin, 1977;Lapparent de Broin, 2001]. They have been referred to thetaxa Kallokibotionidae, Solemydidae, Chelydroidea, Both-remydidae and Dortokidae [Antunes and Broin, 1988; Gaff-ney and Meylan, 1992; Lapparent de Broin and Murelaga,1996, 1999; Lapparent de Broin, 2001; Gaffney et al.,2006]. Kallokibotion from Transylvania [Nopcsa, 1923] hasbeen regarded as the sister group of Selmacryptodira [Gaff-ney and Meylan, 1992], although Joyce [2004] excluded itfrom Cryptodria and even from Testudines [see Joyce et al.,2004; Gaffney et al., 2006 for a discussion on turtle syste-matics]. The solemydid Solemys is known in several locali-ties of the Iberian Peninsula and southern France[Lapparent de Broin and Murelaga, 1996, 1999]. The rela-tionships of Solemydidae with Pleurosternidae are not wellestablished owing to the absence of skull remains associa-ted with shells in solemydids [Lapparent de Broin and Mu-relaga, 1999]. Solemys is regarded as a junior synonym ofTretosternon and included within Kallokibotionidae by Hi-rayama et al. [2000]. Chelydroids are only represented byan unnamed taxon from Provence [Lapparent de Broin,2001]. Among pleurodires, the bothremydids, which in-clude both freshwater and littoral forms, were the dominantturtles in southwestern Europe [Lapparent de Broin andMurelaga, 1999; Lapparent de Broin, 2001]. They consist ofthe genera Elochelys, Foxemys, Polysternon, Rosasia [Antu-nes and Broin, 1988; Lapparent de Broin and Murelaga,1996, 1999; Tong et al., 1998; Laurent et al., 2002b] and anew, unnamed taxon [Rabi and Botfalvai, 2006]. Finally, dor-tokids are represented by the genus Dortoka in the Iberian Pe-ninsula and southern France [Lapparent de Broin andMurelaga, 1996, 1999]. There is no evidence of podocnemi-dids reaching Europe before the Paleogene [Lapparent deBroin and Murelaga, 1999]. The occurrence of pelomedusids,dermatemyids or nahnsiungchelyids in the latest Cretaceousdeposits of Europe [Broin, 1977; Jiménez Fuentes, 1992;Sigé et al., 1997] cannot be unequivocally demonstrated[Lapparent de Broin, 2001].

Choristoderes

A possible champsosaurid of Austria is the only known re-cord of choristoderes in the Late Cretaceous of Europe[Buffetaut, 1989a].

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 59

TABLE I. – List of continental tetrapod families (or higher-level taxa) fromthe Santonian-Maastrichtian of Europe. Taxa with problematic monophylyin inverted commas; inc. sed., incertae sedis; indet., indeterminate; †, ex-tinct taxa; “?” indicates the presence with uncertainty of a taxon. Main re-ferences are in brackets.TABL. I. – Liste des familles (ou taxons de rang supérieur) de tétrapodescontinentaux du Santonien-Maastrichtien d’Europe. Les taxons dont la mo-nophylie est problématique sont entre guillements; inc. sed., incertae se-dis; indet., indéterminés; †, taxons éteints; “?” taxon de présenceincertaine. Références principales entre crochets.

LissamphibiaAllocaudata: †Albanerpetontidae [Duffaud, 2000; Folie and Codrea,2005; Venczel and Gardner, 2005]Anura: Discoglossidae, †Palaeobatrachidae [Duffaud, 2000; Venczel andCsiki, 2003; Folie and Codrea, 2005]Caudata: †Batrachosauroididae, Salamandridae [Duffaud, 2000]

SquamataLacertilia: Iguanidae s.l. (nonacrodont iguanians), † Paramacellodidae,†Polyglyphanodontinae, Varanoidea indet. [Rage, 1999; Laurent et al.,2002a; Folie and Codrea, 2005; Nydam et al., 2007]Serpentes: †Madtsoiidae [Rage, 1996, 1999]?Amphisbaenia indet. (or Anguidae) [Rage, 1999]

TestudinesCryptodira: †Kallokibotionidae, Chelydroidea indet., †Solemydidae[Gaffney and Meylan, 1992; Lapparent de Broin and Murelaga, 1999;Lapparent de Broin, 2001]Pleurodira: †Bothremydidae, †Dortokidae [Lapparent de Broin and Mure-laga, 1999; Lapparent de Broin, 2001; Gaffney et al., 2006]

Choristodera†Champsosauridae (?) [Buffetaut, 1989a]

CrocodyliformesZiphosuchia: †Sebecosuchia (?) [Company et al., 2005]Basal Neosuchia: †Family indet. (“Trematochampsidae”) [Vasse, 1995;Buscalioni et al., 1999, 2003]Eusuchia: †Hylaeochampsidae (?), Alligatoroidea (Alligatoridae?), Ga-vialoidea (“thoracosaurs”) [Buscalioni et al., 1999, 2001, 2003; Laurentet al., 2000; Ösi et al., 2005; Martin, 2007]

DinosaursTheropoda: †Abelisauroidea, †Dromaeosauridae, †Alvarezsauridae, †Troodontidae (?), †Oviraptorosauria (?); Avialae: †Enantiornithes, Orni-thurae inc. sed. [Le Loeuff and Buffetaut, 1991; Csiki and Grigorescu,1998; Allain and Pereda Suberbiola, 2003; Naish and Dyke, 2004; Norelland Makovicky, 2004]Sauropoda: †Titanosauria inc. sed. [Le Loeuff, 1993, 2005a; Sanz et al.,1999; Upchurch et al., 2004]Ankylosauria: †Nodosauridae [Pereda Suberbiola and Galton, 2001; Gar-cia and Pereda Suberbiola, 2003; Ösi, 2005]Ornithopoda: †Hadrosauridae, †Rhabdodontidae [Brinkmann, 1988;Weishampel et al., 1993, 2003; Dalla Vecchia, 2006]Ceratopsia: †Neoceratopsia (Leptoceratopsidae?) [Godefroit and Lam-bert, 2007; Lindgren et al., 2007]

PterosaursPterodactyloidea: †Azhdarchidae [Company et al., 1999; Ösi et al., 2005]

MammalsMultituberculata: †Kogaionidae, †“Paracimexomys group” (?) [Csiki andGrigorescu, 2000; Kielan-Jaworowska et al., 2004]Marsupialia: †Herpetotheriidae [Martin et al., 2005]Eutheria: † “Zhelestidae” [Gheerbrant and Astibia, 1999; Kielan-Jawo-rowska et al., 2004]

Page 4: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

Crocodyliforms

The Late Cretaceous crocodyliform assemblages of Europewere dominated by eusuchians [Buscalioni and Ortega,2002; Buscalioni et al., 2003]. Basal eusuchians include thepossible hylaeochampsid Iharkutosuchus from Hungary[Ösi et al., 2007] and the ubiquitous Allodaposuchus, whichis considered to be a non-crocodylian eusuchian [Buscalioniet al., 2001; Delfino et al., 2008]. Alligatoroids consist ofthe broadened-rostrum Musturzabalsuchus and theshort-snouted Acynodon, both from southwestern Europe;Acynodon is regarded either as alligatorid or basal globi-dontan [Buscalioni et al., 1997, 1999; Martin, 2007]. Anunnamed taxon from the Santonian of Hungary may be theoldest alligatoroid ever reported [Rabi, 2006]. “Crocodilus”affuvelensis [Matheron, 1869] might be a basal alligatoroid,but its affinities with Musturzabalsuchus and other Euro-pean forms are currently unclear [Martin, 2006]. Gavialoidfossils have been referred to Thoracosaurus [Mulder, 1998;Laurent et al., 2000]. “Thoracosaurs” were marine or coas-tal animals [Brochu, 2004], although their fossils are occa-sionally found in association with those of terrestrialvertebrates such as dinosaurs [Laurent et al., 2002a]. Theaffinities of the longirostrine Aigialosuchus from Scandina-via [Persson, 1959] are problematic; the occurrence of cro-codyloids in the latest Cretaceous of Europe cannot yet beconfirmed [Buscalioni and Ortega, 2002]. Non-eusuchiancrocodyliforms are represented by ziphosuchians, e.g. thesebecosuchian-like Doratodon [Company et al., 2005] and asecond unnamed taxon [Martin et al., 2006], as well as thetrematochampsid-like Ischyrochampsa [Vasse, 1995; Busca-lioni et al., 1999]. The latter genus is probably a member ofNeosuchia [Buscalioni et al., 2003], but its relationships re-main uncertain.

Dinosaurs (including birds)

Dinosaurs are a significant component of the Late Creta-ceous European assemblages: theropods (including birds),sauropods, ankylosaurs, ornithopods, and ceratopsians are

known. Non-avian theropods consist of Dromaeosauridae,Alvarezsauridae, possible Troodontidae and Oviraptorosau-ria among maniraptoran tetanurans, and Abelisauroidea ce-ratosaurians [Le Loeuff and Buffetaut, 1991; Le Loeuff etal., 1992; Csiki and Grigorescu, 1998, 2005; Allain and Pe-reda Suberbiola, 2003; Naish and Dyke, 2004; Kessler etal., 2005]. Most of the theropod material cannot be assignedto generic or specific level. Only the dromaeosaurids Vari-raptor and Pyroraptor from southern France have been des-cribed as valid genera [Le Loeuff and Buffetaut, 1998;Allain and Taquet, 2000; both regarded as problematic taxaby Norell and Makovicky, 2004]. The bird-like “Heptap-teornis” from central Europe has been recently interpretedas an alvarezsaurid [Naish and Dyke, 2004]. Other Transyl-vanian theropods are: “Elopteryx”, which is considered tobe a troodontid or bird, and the non-avian maniraptoran“Bradycneme” [Csiki and Grigorescu, 1998; Naish andDyke, 2004; Kessler et al., 2005]. “Euronychodon” fromPortugal and other European sites [Antunes and Sigo-gneau-Russell, 1991; López-Martínez et al., 2001] may be ajunior synonym of Paronychodon from North America; thistaxon is provisionally regarded as an enigmatic theropodthat can be related to Maniraptoriformes [Csiki and Grigo-rescu, 1998; Ruiz-Omeñaca, 2006]. The rather scarce cera-tosaurians of Europe are represented by abelisauroid taxa:Tarascosaurus and an unnamed taxon, both from Provence[Le Loeuff and Buffetaut, 1991; Allain and Pereda Suber-biola, 2003]. Primitive Avialae include Enantiornithes andthe basal Ornithurae Gargantuavis from southern France[Buffetaut and Le Loeuff, 1998a; Buffetaut et al., 2000].Ichthyornithiforms and hesperornithiforms have not beentaken into account here because they were marine birds[Dyke et al., 2002; Rees and Lindgren, 2005]. Among sau-ropods, titanosaurians are represented by at least three li-thostrotian genera: Ampelosaurus, Lirainosaurus andMagyarosaurus [Huene, 1932; Le Loeuff, 1993, 1995, 2005a;Sanz et al., 1999; Upchurch et al., 2004]. “Hypselosaurus” isa nomen dubium [Le Loeuff, 1993]. Within Ornithischia, an-kylosaurs consist of the nodosaurids Struthiosaurus and

Bull. Soc. géol. Fr., 2009, no 1

60 PEREDA-SUBERBIOLA X.

FIG. 1. – Late Cretaceous (Campanian) map [from Smith et al., 1994] and palaeobiogeographical realms [sensu Russell, 1993]. Key: Af, Africa; An, Antarcti-ca; As, Asia; Au, Australia; eNA, eastern North America; Eu, Europe: In, India; M, Madagascar; SA, South America; wNa, western North America.FIG. 1. – Carte du Crétacé supérieur (Campanien) [d’après Smith et al., 1994] et domaines paléobiogéographiques [sensu Russell, 1993]. Abréviations:Af, Afrique ; An, Antarctique; As, Asie ; Au, Australie ; eNA, est de l’Amérique du Nord ; Eu, Europe : In, Inde ; M, Madagascar ; SA, Amérique duSud ; wNa, ouest de l’Amérique du Nord.

Page 5: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

Hungarosaurus [Pereda Suberbiola and Galton, 2001; Gar-cia and Pereda Suberbiola, 2003; Ösi, 2005]. Ornithopodsinclude both basal and derived iguanodontians. The formerare represented by the rhabdodontids Rhabdodon and Zal-moxes [Weishampel et al., 2003; Norman, 2004]. Hadrosau-roid fossils are abundant in the Maastrichtian sites ofEurope [Brinkmann, 1988; Laurent, 2003; Dalla Vecchia,2006]. Three genera have been described to date: Telmato-saurus from Transylvania [Weishampel et al., 1993], Para-rhabdodon and Koutalisaurus from the Iberian Peninsula[Casanovas et al., 1999; Prieto-Márquez et al., 2006];“Orthomerus” is regarded as nomen dubium [Brinkmann,1988]. Finally, the ceratopsians are represented by leptoce-ratopsid-like material from Sweden, which represents thefirst occurrence of Neoceratopsia in Europe [Lindgren etal., 2007]. Teeth of “Craspedodon” from Belgium havebeen reinterpreted as neoceratopsian [Godefroit and Lam-bert, 2007].

Pterosaurs

The Azhdarchidae is the only pterosaur family representedin the latest Cretaceous of Europe [Company et al., 1999].Azhdarchids include Bakonydraco from Hungary [Ösi etal., 2005], Hatzegopteryx from Romania [Buffetaut et al.,2002], and cf. Azhdarcho from the Iberian Peninsula [Buffe-taut, 1999]. Although fragmentary fossils from central Eu-rope have been referred to the Ornithocheiridae,Nyctosauridae and Pteranodontidae [Wellnhofer, 1980; Jia-nu et al., 1997], their status remain controversial [Companyet al., 1999; Unwin, 2003, pers. comm.].

Mammals

Latest Cretaceous mammals of Europe consist of multitu-berculates, marsupials and eutherians [Kielan-Jaworowskaet al., 2004]. In Romania, basal cimolodontan multitubercu-lates include the aberrant kogaionids Kogaionon and Haini-na [Radulescu and Samson, 1996; Csiki and Grigorescu,2000]; Barbatodon is regarded either as a member of the“Paracimexomys group” [apparently paraphyletic; see Kie-lan-Jaworowska and Hurum, 2001] or as kogaionid [Csiki,2005]. In the Netherlands, the herpetotheriid Maastrichti-delphys is the single marsupial record of the end-Cretaceousof Europe [Martin et al., 2005]. Previously described occur-rences of marsupials (?Alphadontidae, ?“Pediomyidae”)from Portugal [Antunes et al., 1986] are highly dubious[Gheerbrant and Astibia, 1999; Kielan-Jaworowska et al.,2004]. In southwestern Europe, the placentals are represen-ted by the “zhelestid” laurasiatherians Labes, Lainodon andValentinella [Pol et al., 1992; Gheerbrant and Astibia, 1994,1999; Sigé et al., 1997; Tabuce et al., 2004]. The records ofan insectivore said to be similar to Leptacodon (?Nyctithe-riidae) in Portugal, and of possible “paleoryctids” in Spainare questionable [Kielan-Jaworowska et al., 2004].

PALAEOBIOGEOGRAPHICAL SIGNIFICANCE

During the Cretaceous, the configuration of the continentalmasses changed from the prevailing pattern of two super-continents (Laurasia and Gondwana) straddling an equato-rial ocean (Tethys), to one with several landmassesseparated by oceans [see Skelton et al., 2003]. Russell

[1993] recognized three palaeobiogeographical realms forthe Late Cretaceous: Palaeolaurasia (Central Asia withNorth America and ?Europe) in the northern Hemisphere,Neogondwana (South America, Antarctica and Australasia)and Indoafrica (Africa, Madagascar and India) in the sou-thern Hemisphere (fig. 1). Europe is regarded as a “bufferarea” between Palaeolaurasia and Gondwana [Russell,1993]. According to Cox [1980], the northern Hemispherewas divided in the Late Cretaceous into two palaeoconti-nents: Asiamerica (Asia plus western North America) andEuramerica (Europe plus eastern North America). Westernand eastern North America were separated by the Mid-Con-tinental Seaway [Sanmartín et al., 2001]. Le Loeuff [1998]distinguished Europe from Mesolaurasia (western and eas-tern North America plus Asia) in the northern Hemisphere,and West Mesogondwana (South America, Africa, Mada-gascar and India) from East Mesogondwana (Antarctica andAustralia) [see Buffetaut and Le Loeuff, 1998b]. Late Cre-taceous bioprovinces include western North America, eas-tern North America, Europe, Asia, South America,Antarctica, Australasia, Africa, Madagascar and India [Rus-sell, 1993; Le Loeuff, 1998]. Intermittent connections andfaunal interchanges between Asia and western North Ame-rica, South America and western North America, southernEurope and Africa, Africa and other Gondwanan landmas-ses, Asia and India, have been described for the Campa-nian-Maastrichtian times [see Le Loeuff, 1991, 1997, 1998;Russell, 1993; Milner et al., 2000; Gheerbrant and Rage,2006; Krause et al., 2007 and references].

During the Late Cretaceous, most of Europe was an ar-chipelago isolated from other landmasses [Dercourt et al.,2000]. The West Siberian Sea and Turgai Strait separatedEurope from Asia to the east; epicontinental seaways andthe proto-North Atlantic Ocean separated Europe from eas-tern North America to the west; the Tethys separated Eu-rope from Africa to the south [Le Loeuff, 1991]. From theFennoscandian shield to the Uralian range, northern Europewas a wide emergent landmass. The southern, western, cen-tral and eastern domains of Europe consisted of a chaplet ofmoderate to small-size islands separated from each other byshallow epicontinental seas (fig. 2). According to differentauthors, the physiography, dimensions and relative positionof the European islands are variable [see Dalla Vecchia,2006].

The main European areas that have yielded Santonian-Maastrichtian tetrapod fossils are the following (fig. 2): theIbero-Armorican island (with numerous localities in theIberian peninsula and southern France [Le Loeuff, 1991]);the Renish-Bohemian island (mainly the Namur, Liège andLimburg sites in Belgium and the Netherlands); the Aus-troalpine island (including the Austrian, Bavarian and, pos-sibly, Hungarian outcrops); the Rhodope-Moesian platform(including the Transylvanian sites [Weishampel et al., 1991;Dalla Vecchia, 2006]); the Fennoscandian shield (only afew Danish and Swedish sites); and, to a lesser degree, theAdriatic-Dinaric island (Trieste in northern Italy, Slovenia)and the Crimean island (Ukraine) [see Le Loeuff, 1991,1992; Laurent, 2003; Company, 2004; Dalla Vecchia, 2006].Most of the significant tetrapod outcrops are located in theIbero-Armorican and Transylvanian areas. The former ofthese two landmasses may have covered between 600,000and 1,500,000 km2 [Le Loeuff, 2005b].

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 61

Page 6: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

From a palaeobiogeographical point of view, the historyof the Late Cretaceous tetrapod assemblages of Europe iscomplex [Le Loeuff, 1991; Upchurch et al., 2002]. Early,Nopcsa [1934] noticed that “owing to the separation of Eu-rope from the rest of the world by an epicontinental sea du-ring the period ranging from the Cenomanian to thebeginning of the Tertiary, the Upper Cretaceous fauna ofEurope evolved on a special line”. He thought that someelements of the latest Cretaceous vertebrate fauna of Europewere the survivals of a primitive (“Wealden”) fauna andothers were the result of connections between Africa andEurope during the Early Cretaceous [Nopcsa, 1923, 1934].Following and completing Nopcsa’s ideas, the European as-semblages are now considered to show a mixed pattern re-sulting from the addition of Gondwanan and “Asiamerican”forms to European taxa [Buffetaut, 1989c; Le Loeuff, 1991,1997; Csiki, 1997; Rage, 2002]. This pattern is discussedbelow.

Taxa with Palaeolaurasian affinities

Among lissamphibians, albanerpetontids may have a Neo-pangean or, more probably, a Palaeolaurasian [sensu Rus-sell, 1993] origin; in the latter case, their occurrence inAfrica could be the result of a dispersal event after the ope-ning of the Tethys Ocean in the Late Jurassic [Gardner etal., 2003]. A similar interpretation has been suggested toexplain the distribution of paramacellodid scincomorphans

[Evans, 2003]. With regard to polyglyphanodontine lizards,they probably dispersed throughout the Palaeolaurasianlandmasses prior to the latest Cretaceous [Nydam et al.,2007]. Discoglossid anurans are primarily Palaeolaurasianand probably extended their distribution to India during theLate Cretaceous [Prasad and Rage, 1995].

Basal members of the clade Crocodylia (modern croco-dyliforms) are probably of Palaeolaurasian origin. Duringthe Late Cretaceous, the three major lineages of crocody-lians radiated throughout the northern Hemisphere land-masses (alligatoroids in North America and Europe, croco-dyloids only in North America; there is no record of conti-nental representatives of Crocodylia in Asia – earliestgavialoids, which are commonly found in marginal marinedeposits, are not taken into account because of their capaci-ty to cross significant marine barriers) [Brochu, 2003; Bus-calioni et al., 2003].

Hadrosauroid and neoceratopsian dinosaurs also mayhave Palaeolaurasian affinities. A North American originhas been suggested for the Hadrosauridae, with dispersalevents to Asia, Europe and South America in the mid-Creta-ceous and in the Late Cretaceous [Horner et al., 2004]. AnAsian origin for Neoceratopsia is likely [You and Dodson,2004]. Neoceratopsians were widely distributed in Asia andwestern North America (with dispersal events across Berin-gia), but they probably also reached Europe. The time ofthis event is not accurately known [Godefroit and Lambert,2007]. A mid-Cretaceous dispersal route from Eurasia toNorth America has been envisaged for the leptoceratopsids[Lindgren et al., 2007].

Unquestionable remains of oviraptorosaur theropodsare so far known only from the northern Hemisphere; mostof the remains come from the Late Cretaceous of Asia andNorth America [Osmólska et al., 2004]. The earliest and ba-sal representatives of the clade come from the Early Creta-ceous of China, and thus the oviraptorosaurs arepresumably of Asian origin; they could reach North Ameri-ca during the late Early Cretaceous. Its presence in the Ear-ly Cretaceous of Europe has been suggested on the basis offragmentary material [Naish and Martill, 2002].

The distribution of “zhelestid” mammals is heavily bia-sed toward northern Hemisphere landmasses. This taxon isregarded as of Middle Asian origin and probably dispersedto western North America via Beringia during the Late Cre-taceous [Averianov and Archibald, 2003]. “Zhelestids” mayhave reached Europe from Asia before the formation of theTurgai strait in the Turonian [Averianov and Archibald,2005]. The occurrence of a “zhelestid” in the latest Creta-ceous of Madagascar is more problematic: a late dispersalroute between Europe (specifically, Iberia) and Gondwana(Africa) has been suggested [Averianov et al., 2003], but analternative route between Asia and Madagascar, throughIndia and the Seychelles plateau, is likely [Rage, 2003].

According to Averianov and Archibald [2003], themultituberculates of the “Paracimexomys group” are ofAsian origin, originating from Central Asian Early Creta-ceous Eobaatarinae and giving rise to more derived NorthAmerican multituberculates. The endemic kogaionids ofEurope are quite primitive and resemble the North Ameri-can “Paracimexomys group”. They may have evolved fromAsian Eobaatarinae as well [Averianov and Archibald,2003]. If so, a dispersal event occurred between Asia and

Bull. Soc. géol. Fr., 2009, no 1

62 PEREDA-SUBERBIOLA X.

FIG. 2. – Simplified palaeogeographical map of Europe and Peri-Tethyanarea between latitutes 10o and 50o N for the Late Cretaceous (Maastrich-tian) [modified from Philip et al., 2000 in Dercourt et al., 2000]. Key: A,Apennine platform; Al, Alboran islands; Ap, Apulian platform; AA, Aus-tralpine island; AD, Adriatic-Dinaric island; AS, Anglo-Scottish island; C,Crimean island; FS, Fennoscandian shield; I, Irish island; IA, Ibero-Armo-rican island; M, Moesian platform; RB, Renish-Bohemian island; Rh, Rho-dope; T, Transylvanian basin; US, Ukrainian shield. Colour marks: light,exposed land; light grey, epicontinental seas; dark grey, oceanic basins;white, unknown; black, volcanics.FIG. 2. – Carte paléogéographique simplifiée de l’Europe et du domainepéri-Téthysien entre 50o et 10o de latitude Nord au Crétacé supérieur(Maastrichtien) [modifiée d’après Philip et al., 2000 dans Dercourt et al.,2000]. Abréviations : A, plate-forme apennienne ; Al, îles d’Alboran ; Ap,plate-forme apulienne; AA, île austro-alpine ; AD, île adriatico-dinarique ;AS, île anglo-écossaise ; C, île criméenne ; FS, bouclier fennoscandien ; I,île irlandaise ; IA, île ibéro-armoricaine ; M, plate-forme moésienne ; RB,île rhéno-bohémienne ; Rh, Rhodope; T, bassin transylvanien ; US, bouclierukrainien. Trames de couleur : en clair, terres emergées ; gris clair, mersépicontinentales ; gris foncé, basins océaniques ; blanc, inconnu ; noir, vol-canique.

Page 7: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

Europe during the Early Cretaceous. At this time, Asia wasconnected with Europe, and both the Atlantic Ocean and theWestern Interior Seaway were not open.

Taxa with Euramerican affinities

A number of taxa are restricted to Europe and North Ameri-ca, mainly the western portion of the latter (as the tetrapodrecord from eastern North America is very incomplete) [seeWeishampel et al., 2004 for dinosaurs]. Taxa that are hereconsidered as Euramerican [Mesoeuramerican sensu LeLoeuff, 1998] are the palaeobatrachid and batrachosauroi-did lissamphibians [Duffaud, 2000], solemydid and, tentati-vely, chelydroid turtles [Lapparent de Broin and Murelaga,1999; Lapparent de Broin, 2001], alligatoroid crocodyli-forms [Buscalioni et al., 2003], and nodosaurid dinosaurs[Vickaryous et al., 2004].

The batrachosauroidid fossil record is consistent with avicariant model [Milner, 2000]. Duffaud [1997] emphasizedthe idea of vicariance to explain similarities between theLate Cretaceous batrachosauroidids from Europe and NorthAmerica, but cautioned that this scenario remains highlyhypothetical because of the lack of knowledge of the earlyhistory of the group [Duffaud, 2000]. According to the vica-riant pattern, palaeobatrachid frogs and salamandroidsarose in Euramerica as well [Duffaud, 2000; Evans et al.,2005]. Both groups have their center of diversity in NorthAmerica and Europe [Sanchiz, 1998; Milner, 2000]. Theearliest reported palaeobatrachid and salamandrid remainscome from the Late Cretaceous of southwestern Europe[Duffaud and Rage, 1999; Duffaud, 2000].

Solemydid turtles are known from the Late Cretaceousof southern Europe [Lapparent de Broin and Murelaga,1999], and in less extent of North America [Brinkman,2003]. A number of vermiculated pleurodire taxa from theLate Jurassic-Early Cretaceous of Europe and North Ameri-ca has been provisionally referred to Solemydidae, but theiraffinities remain unclear [Lapparent de Broin and Murela-ga, 1999; Hirayama et al., 2000]. Inversely, chelydroids areknown from the Late Cretaceous of North America and,possibly, of Europe [Lapparent de Broin, 2001]. Chely-droid-like remains have also been recorded from the EarlyCretaceous of the Iberian peninsula [Lapparent de Broinand Murelaga, 1999].

Alligatoroid crocodyliforms are geographically restric-ted to North America and Europe during the Late Creta-ceous [Buscalioni et al., 2003]. Based on current data, nobiogeographic models can be favoured to explain alligato-roid dispersal between North America and Europe [Rabi,2006; Martin, 2007].

Nodosaurid ankylosaurs are known mostly from theCretaceous of North America and Europe [Coombs and Ma-ryanska, 1990; Vickaryous et al., 2004]. Their presence inthe Late Jurassic of Europe has also been suggested [Gal-ton, 1983], but there is no consensus [Vickaryous et al.,2004]. The occurrence of nodosaurids in the Cenomanian ofJapan is probably the result of a connection between NorthAmerica and Asia during mid-Cretaceous times [Hayakawaet al., 2005].

Finally, herpethoteriid marsupials are considered to havelikely originated among (or to have been derived from) taxaknown from the Late Cretaceous of western North America,

with a plausible high-latitude dispersal (Thulean route) fromeastern North America to Europe across the North Atlanticabout that time [Martin et al., 2005]. A possible marsupial isknown from the early Late Cretaceous of France, but its affi-nities remain obscure [Vullo, 2007].

Taxa endemic to Europe

Taxa that are interpreted as endemic to Europe are Kalloki-botion and dortokid turtles [Lapparent de Broin, 2001],rhabdodontid dinosaurs [Weishampel et al., 2003], kogaio-nid mammals [Csiki and Grigorescu, 2002; Csiki, 2005]and, tentatively, hylaeochampsid crocodyliforms [Ösi et al.,2007]. Large flightless birds such as Gargantuavis (Orni-thurae family indeterminate) may have been endemic formsto Europe [Buffetaut and Le Loeuff, 1998a]. Dortokids, hy-laeochampsids and, tentatively, rhabdodontids are knownsince the Early Cretaceous [Murelaga, 1998; Clark and No-rell, 1992; Torcida et al., 2005, respectively]. They are pro-bably relict components of a fauna that evolved in isolationin the European archipelago during Late Cretaceous times[see Weishampel et al., 1991; Csiki, 1997; Allain and Pere-da Suberbiola, 2003]. Dortokids and kogaionids survivedthe Cretaceous-Tertiary boundary mass extinction event asthey are known in the Paleogene of Europe [Gheerbrant etal., 1999; Peláez-Campomanes et al., 2000].

Taxa with “Gondwanan” affinities

Various tetrapod taxa of Europe have been regarded asGondwanan immigrants that did reach southern insular

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 63

FIG. 3. – Schematic map showing the relationships of Europe with othercontinental blocks during the Late Cretaceous [modified from Russell,1993; Milner et al., 2000]. Arrows: 1, early Late Cretaceous dispersalroute (“zhelestids”, hadrosaurids?) from Asia to Europe [Averianov andArchibald, 2005]; 2, latest Cretaceous dispersal route (herpethoteriid mar-supials, hadrosaurids?) between eastern North America and Europe [Mar-tin et al., 2005]; 3, undated dispersal route (abelisauroids, bothremydids,madtsoiids, ziphosuchians) between Africa and Europe via the Mediterra-nean Tethyan Sill [Le Loeuff, 1991; Gheerbrant and Rage, 2006; this pa-per]. See figure 1 for abbreviations.FIG. 3. – Carte schématique montrant les relations entre l’Europe et les autresblocs continentaux au Crétacé supérieur [modifiée d’après Russell, 1993 ;Milner et al., 2000]. Flèches : 1, dispersion (“zhélestidés” ; hadrosauridés ?)au début du Crétacé supérieur entre l’Asie et l’Europe [Averianov et Archi-bald, 2005] ; 2, dispersion (marsupiaux herpéthotériidés, hadrosauridés ?) auCrétacé terminal entre la partie est de l’Amérique du Nord et l’Europe [Mar-tin et al., 2005] ; 3, dispersion non daté (abélisauroïdes, bothrémydidés,madtsoiidés, ziphosuchiens) entre l’Afrique et l’Europe à travers le Seuil mé-diterranéen de la Tethys [Le Loeuff, 1991 ; Gheerbrant et Rage, 2006 ; cetravail]. Pour les abréviations voir la figure 1.

Page 8: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

Europe via the Mediterranean Tethyan sill (Alboran andApulian routes) [Buffetaut, 1989c; Rage, 2002; Gheerbrantand Rage, 2006].

To emphasize the African affinities of the latest Creta-ceous terrestrial tetrapods from southwestern Europe, LeLoeuff [1991] named the latter area “Eurogondwana”. Tita-nosaurid dinosaurs, trematochampsid crocodyliforms, po-docnemidid turtles, and boid and madtsoiid snakesconstitute the basic pattern of the “Eurogondwanan fauna”[Le Loeuff, 1991]. Abelisaurid theropods have been consi-dered as additional evidence of Gondwanan elements in Eu-rope [Buffetaut, 1989c]. However, the validity of a numberof “Eurogondwanan” taxa is a disputed matter (Titanosau-ridae, Trematochampsidae) and the presence of other in theLate Cretaceous sites of Europe is based on controversialevidence (Boidae, Podocnemididae) (see below).

Among sauropods, the Titanosauridae are not recommen-ded for continued use. The type species of Titanosaurus isnow considered to be invalid, and thus all family group na-mes based on this genus should be abandoned [Wilson andUpchurch, 2003; Upchurch et al., 2004; but see Salgado,2003 for a different point of view]. Titanosaurians reached anear-global distribution during the Cretaceous and were thepredominant or exclusive sauropods worldwide by the latestCretaceous. They are no longer regarded as typical Gondwa-nan forms because their wide geographical distribution wasunderway since the Late Jurassic [Wilson and Sereno, 1998;Wilson, 2006]. Titanosaurians are known from Europe du-ring the Early Cretaceous and the early Late Cretaceous [LeLoeuff, 1993; Wilson and Upchurch, 2003]. Their apparentabsence from the Cenomanian to the Campanian has been ex-plained by regional extinction (coeval with the sauropod hia-tus in North America) followed by reinvasion from southerncontinents via Africa [Le Loeuff, 1991], but other hypotheses(e.g., taphonomic or sampling bias) are likewise plausible[Wilson and Upchurch, 2003]. In fact, titanosaurian-like ich-nites are known in the Turonian-Santonian outcrops of thePeriadriatic region [Mezga et al., 2006; Nicosia et al., 2007].Anyway, the appearance of titanosaurians in the Campanianof Europa as the result of a dispersal event from Africa is notsupported by phylogenetical data [Wilson and Sereno, 1998].The resolution of titanosaurian phylogeny needs to be impro-ved for a better assessment of their palaeobiogeographicalhistory [Wilson, 2006].

With regard to wastebasket taxon Trematochampsidae,Buffetaut [1988, 1989b, 1994] assigned to it various prima-rily Gondwanan crocodyliforms that are mainly characteri-zed by ziphodont teeth. The monophyly of Tremato-champsidae has been questioned or even rejected [Ortega etal., 1996; Buckley and Brochu, 1999; Larsson and Sues,2007; but see Rasmusson, 2002]. Some “trematochampsids”have been reassigned either to Sebecosuchia [Ortega et al.,1996] among basal mesoeucrocodylians, or to Peirosauridaeand related forms of basal Neosuchia [Gasparini et al.,1991; Larsson and Sues, 2007]. Thus far, “trematochamp-sids” are known in Africa, Arabian Peninsula and Madagas-car [Buscalioni et al., 2004]. Their presence in the LateCretaceous of Europe [Vasse, 1995] should be taken withcaution because of the questionable composition and validi-ty of this taxon [Buscalioni et al., 1999, 2004].

Ziphodont crocodyliform teeth from the early Late Cre-taceous of western France have been compared with those

of Hamadasuchus from Morocco [Vullo et al., 2005]. Thisgenus was originally referred to the “Trematochampsidae”[Buffetaut, 1994], but a recent phylogenetical analysis ba-sed on more complete material suggests close relationshipswith the Peirosauridae [Larsson and Sues, 2007], a taxonwith a West Gondwanan distribution (mainly South Ameri-ca) [Gasparini, 1996]. If the Charentes teeth belong to Pei-rosauridae, so the presence of this group in Europe couldresult from a dispersal across the Tethys during either theCenomanian or the Early Cretaceous [see Rage, 1997 foradditional evidence].

The assignment of Cretaceous turtle material of Europeto the Podocnemididae is based on the assumption that bot-hremydids belong of this taxon. In fact, both podocnemi-dids and bothremydids, together with other pleurodiregroups, are components of Pelomedusoides [Broin, 1988;Lapparent de Broin, 2001; Gaffney et al., 2006]. Only bot-hremydids are present in the Late Cretaceous of Europe[Lapparent de Broin and Murelaga, 1999]. They consist ofseveral representatives of the Foxemydina and a Bothremy-dina member [sensu Gaffney et al., 2006]: the former areexclusive of Europe, whereas bothremydines are alsoknown in North America and the African-Arabian plate.The occurrence of bothremydids in the Early Cretaceous ofAfrica [Lapparent de Broin and Werner, 1998; Lapparent deBroin, 2000] and South America [Gaffney et al., 2001,2006] argues for a West Gondwanan origin of the taxon[Gheerbrant and Rage, 2006]. The latter authors envisageddispersal from Africa to Europe during the Cretaceous, butthis event has not been dated accurately. Rabi and Botfavai[2006] have suggested that the earliest representatives ofBothremydini (“Bothremys group”) appeared in the Medi-terranean Tethys area and then dispersed from Europe toeastern North America during the Late Cretaceous.

Madtsoiid snakes of Europe are the only known mem-bers of this Gondwanan family in a Palaeolaurasian conti-nent [Rage, 1996, 1999]. For a time, madtsoiids wereplaced within the Boidae, but they are two distinct families[McDowell, 1987]. Previous mentions of Boidae in the LateCretaceous of Europe might be either a boid or a madtsoiid,but the only relevant fossil is now lost [Rage, 1987, pers.comm.]. Out of Europe, the oldest madtsoiid remains areknown from the Cenomanian [Rage and Werner, 1999]. Theoccurrence of this taxon in Europe is regarded as the resultof immigration from Gondwana, probably via Africa[Gheerbrant and Rage, 2006].

Other taxa that can be interpreted as indicating Gond-wanan affinities are the Abelisauroidea and Sebecosuchia.The distribution of both clades is almost restricted tothe southern Tethyan landmasses, although fragmentaryremains are also known from Europe [Allain and PeredaSuberbiola, 2003; Company et al., 2005]. Abelisauroids di-versified in Gondwanan landmasses during the Early Creta-ceous, and probably reached Europe at this time as theyhave been reported in the Albian of southern France [Accarieet al., 1995]. By the latest Cretaceous, the clade is known tohave been widespread: South America, India, Madagascar,Africa and Europe [Sereno et al., 2004; Carrano and Samp-son, 2008]. On the other hand, a sebecosuchian-like crocody-liform from the Late Cretaceous of the Iberian peninsulaconfirms the presence of Ziphosuchia [sensu Ortega et al.,2000; equivalent of Notosuchia: Sereno et al., 2001; Pol,2003] in Europe before the Tertiary [Company et al., 2005].

64 PEREDA-SUBERBIOLA X.

Bull. Soc. géol. Fr., 2009, no 1

Page 9: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

During the Late Cretaceous, sebecosuchians are fairlywell-known in South America, but a wider distribution inother continents is not unlikely. A temporal calibration ofZiphosuchia (based on the stratigraphic range of its sistergroup, Neosuchia) suggests that the Gondwanan commonstock should have been there since the Jurassic [Buscalioniet al., 2003, 2004; Turner, 2004].

In conclusion, only Abelisauroidea, Madtsoiidae andBothremydidae (and, if it is confirmed, Sebecosuchia) pro-vide evidence of interchanges between the Gondwanancontinents and Europe. Abelisauroid theropods might havereached Europe before the Late Cretaceous. The trans-Te-thyan dispersal of bothremydids, madtsoiids, and ziphosu-chians is not precisely dated. Gheerbrant and Rage [2006]assumed that these taxa did reach Europe during the LateCretaceous, but at least bothremydids are known since theEarly Cretaceous and, consequently, nothing excludes an in-terchange at this time.

Taxa with ambiguous affinities

The palaeobiogeographical affinities of a number of tetrapodtaxa are ambiguous or unresolved. The paucity of the fossilrecord in the Gondwanan landmasses contributes little to thediscussion of squamate biogeography [Evans, 2003]. LateCretaceous iguanids sensu lato are mainly distributed in Pa-laeolaurasia, but their occurrence in southern continents mayreflect a continental drift vicariance associated with thebreak-up of Gondwana [Noonan and Chippindale, 2006].

The biogeographical origin of the enigmatic amphisbae-nians remains obscure [Kearney, 2003]. A Pangean originfor the group has been suggested [Gans, 1990]. Recent ana-lyses support the hypothesis that the Amphisbaenia had ori-ginated before the breakup of Pangea; vicariance probablyplayed an important role in directing the distribution of am-phisbaenians [Hembree, 2006].

The extinct Choristodera have a long phylogeneticalhistory, but their fossil record is very incomplete [Evansand Hecht, 1993]. Only the Champsosauridae is tentativelyknown in the Late Cretaceous of Europe [Buffetaut, 1989a];this family has a broader temporal distribution (Early Creta-ceous-Paleogene) in North America [Gao and Fox, 1998].Both champsosaurids and simoedosaurids are represented inthe Paleocene-Eocene of Europe and western North Ameri-ca [Sigogneau-Russell, 1975; Gao and Fox, 1998].

With regard to dinosaurs, the biogeographical history ofseveral theropod clades, such as the Alvarezsauridae, Dro-maeosauridae, Ornithomimosauria and Troodontidae, is dif-ficult to ascertain. Derived ornithomimosaurs are mainlyknown from Central Asia and western North America, butthe basalmost taxon comes from the Early Cretaceous ofEurope [Pérez-Moreno et al., 1994]. This distribution pat-tern is also known in other dinosaur clades, e.g. tyrannosau-roids and pachycephalosaurs [Makovicky et al., 2004],although no fossils have been found to date in the latestCretaceous rocks of Europe. Russell [1993] hypothesizedthat ornithomimosaurs and dromaeosaurids have originatedin Neopangea (Pangea without Central Asia). Current dataappear to support that most of the evolutionary historyof the dromaeosaurids and troodontids is endemic to Cen-tral Asia [Makovicky and Norell, 2004; Norell and Macko-vicky, 2004]. However, this interpretation can easily befalsified with the discovery of diagnostic material of these

maniraptoran clades from the Jurassic of Europe or NorthAmerica. In the case of alvarezsaurids (a maniraptorantaxon whose relationships with birds are controversial[Chiappe et al., 2002; Novas and Pol, 2002]), they are main-ly distributed in the Late Cretaceous of Asia, North Ameri-ca, South America and Europe, but the early forms areknown from the Early Cretaceous of North and South Ame-rica. The occurrence of both alvarezsaurids and dromaeo-saurids in Gondwanan continents (mainly South America),together with the basal phylogenetic positions that they oc-cupy, have been interpreted as evidence for a vicariant dis-tribution of maniraptoran lineages after the separationbetween northern and southern landmasses [Novas and Pol,2005; Makovicky et al., 2005]. If so, several maniraptoranlineages diversified separately in Palaeolaurasian andGondwanan landmasses for most of the Cretaceous period.

It is difficult to reconstruct the biogeographical historyof early birds because of preservation bias and other factors.Enantiornithines seem to have reached a nearly global dis-tribution during the Late Cretaceous; the oldest knownforms come from the Early Cretaceous of Asia and Europe[Padian, 2004; Zhou, 2004]. Primitive ornithurines are lesswell known than enantiornithes in the Early Cretaceous:their fossils have been found only in Asia. Contrary toEnantiornithes, Ornithurinae survived the K/T extinctionevent and experienced an explosive radiation during the Ce-nozoic [Feduccia, 1999; Hope, 2002].

Finally, azhdarchids seem to have dominated the lastmillion years of the pterosaur history [Wellnhofer, 1991;Unwin, 2005]. They are more widespread in the northernHemisphere than in the southern, with a relatively good re-cord in the Late Cretaceous of North America, Asia and Eu-rope [Witton, 2007]. Earliest occurrences come from theEarly Cretaceous of Asia and South America (and contro-versial material has been reported from the Late Jurassic ofAfrica), so the origin of the Azhdarchidae remains unclear.

CONCLUSIONS

An overview of the Late Cretaceous continental tetrapods ofEurope shows that about 40 families (or higher-rank taxa) arerepresented in the Santonian-Maastrichtian interval. The as-semblages consist of lissamphibians, squamates, turtles, cho-ristoderes, crocodyliforms, dinosaurs (including birds),pterosaurs and mammals (table I). Many taxa show biogeogra-phical affinities with northern Tethyan landmasses (eitherfrom Palaeolaurasia, Euramerica, Asia or endemic to Europe).Europe also contained Gondwanan elements during the LateCretaceous (abelisauroid dinosaurs, bothremydid turtles,madtsoiid snakes and sebecosuchian-like crocodyliforms).According to the present data, the picture that emerges is thatof continental faunas that evolved isolated in the European ar-chipelago as a result of vicariance during the Late Cretaceous.This means that isolation from other landmasses may havefacilitated survival of relict taxa in Europe until Campa-nian-Maastrichtian times. Contrary to previous assertions, evi-dences of trans-Tethyan dispersal events between Gondwanaand Europe via Africa seem very rare during the latest Creta-ceous, although such interchanges cannot be definitively rejec-ted. Sporadic dispersals between Europe and otherPalaeolaurasian landmasses by the Late Cretaceous are likely:

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 65

Page 10: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

a connection to Asia during the early Late Cretaceous and ahigh-latitude route from eastern North America into Europeduring latest Cretaceous have been envisaged.

Acknowledgements. – Financial support provided by the Spanish Ministe-rio de Educación y Ciencia (projects CGL2004-02338/BTE and

CGL2007-64061/BTE), the Universidad del País Vasco/EHU (9/UPV00121.310-15303/2003) and the Gobierno Vasco/EJ (research groupGIC07/14-361). This research work was supported by the ProgramaRamón y Cajal (Ministerio de Educación y Ciencia, Spain). Sincere thanksto H. Astibia, N. Bardet, J. Company and J.I. Ruiz-Omeñaca for your help,and to Jean-Claude Rage and an anonymous referee for useful commentsregarding the manuscript.

References

ACCARIE H., BEAUDOIN B., DEJAX J., FRIES G., MICHARD J.G. & TAQUET P.(1995). – Découverte d’un dinosaure théropode nouveau (Genu-saurus sisteronis n.g., n.sp.) dans l’Albien marin de Sistéron(Alpes de Haute-Provence, France) et extension du Crétacé infé-rieur de la lignée cératosaurienne. – C. R. Acad. Sci., Paris, 320,327-334.

ALLAIN R. & PEREDA-SUBERBIOLA X. (2003). – Dinosaurs of France. – C.R. Palevol, 2, 27-44.

ALLAIN R. & TAQUET P. (2000). – A new genus of Dromaeosauridae (Dino-sauria, Theropoda) from the Upper Cretaceous of France. – J.Vert. Paleontol., 20, 404-407.

ANTUNES M.T. & BROIN F. de (1988). – Le Crétacé terminal de Beira Lito-ral, Portugal: remarques stratigraphiques et écologiques, étudecomplémentaire de Rosasia soutoi (Chelonii, Bothremydidae). –Ciênc. Terra, 9, 153-200.

ANTUNES M.T. & SIGOGNEAU-RUSSELL D. (1991). – Nouvelles données surles Dinosaures du Crétacé supérieur du Portugal. – C. R. Acad.Sci., Paris, II, 313, 113-119.

ANTUNES M.T., SIGOGNEAU-RUSSELL D. & RUSSELL D.E. (1986). – Surquelques dents de Mammifères du Crétacé supérieur de Taveiro,Portugal (Note préliminaire). – C. R. Acad. Sci., Paris, 303,1247-1250.

ASTIBIA H., BUFFETAUT E., BUSCALIONI A.D., CAPPETTA H., CORRAL C.,ESTES R., GARCIA-GARMILLA F., JAEGER J. J., JIMENEZ-FUENTES

E., LE LOEUFF J., MAZIN J.M., ORUE-ETXEBARRIA X., PEREDA SU-

BERBIOLA J., POWELL J.E., RAGE J.C., RODRIGUEZ-LAZARO J.,SANZ J.L. & TONG H. (1990). – The fossil vertebrates from Laño(Basque Country, Spain); new evidence on the composition andaffinities of the Late Cretaceous continental faunas of Europe. –Terra Nova, 2, 460-466.

AVERIANOV A. & ARCHIBALD J.D. (2003). – Mammals from the Upper Cre-taceous Aitym Formation, Kyzylkum Desert, Uzbekistan. –Cret. Res., 24, 171-191.

AVERIANOV A. & ARCHIBALD J.D. (2005). – Mammals from the mid-Creta-ceous Khodzhakul Formation, Kyzylkum Desert, Uzbekistan. –Cret. Res., 26, 593-608.

AVERIANOV A.O., ARCHIBALD J.D. & MARTIN T. (2003). – Placental natureof the alleged marsupial from the Cretaceous of Madagascar. –Acta Paleontol. Pol., 48, 149-151.

BRINKMANN W. (1988). – Zur Fundgeschichte und Systematik der Ornitho-poden (Ornithischia, Reptilia) aus der Ober-Kreide von Europa.– Documenta Naturae, 45, 1-157.

BRINKMAN D.B. (2003). – A review of nonmarine turtles from the Late Cre-taceous of Alberta. – Can. J. Earth Sci., 40, 557-571.

BROCHU C.A. (2003). – Phylogenetic approaches toward crocodylian histo-ry. – Ann. Rev. Earth Planet. Sci., 31, 357-397.

BROCHU C.A. (2004). – A new gavialoid crocodylian from the Late Creta-ceous of eastern North America and the phylogenetic relations-hips of thoracosaurs. – J. Vert. Paleontol., 24, 610-633.

BROIN F. de (1977). – Contribution à l’étude des Chéloniens. Chélonienscontinentaux du Crétacé et du Tertiaire de France. – Mém. Mus.Natl. Hist. Nat. Paris, C, 38, 1-366.

BROIN F. de (1988). – Les tortues et le Gondwana. Examen des rapportsentre le fractionnement du Gondwana au Crétacé et la dispersiongéographique des tortues pleurodires à partir du Crétacé. – Stud.Geol. Salmant., Stud. Palaeocheloniol. 2, 103-142.

BUFFETAUT E. (1988). – The ziphodont mesosuchian crocodile from Mes-sel: a reassessment. – Cour. Forsch. Inst. Senckenberg, 107,211-221.

BUFFETAUT E. (1989a). – Erster Nachweis von Choristodera (Reptilia,Diapsida) in der Oberkreide Europas: Champosaurierwirbel ausden Gosau-Schichten (Campan) Niederösterreichs. – Sitzung.Öst. Akad. Wiss. Mathem.-natur. Kl., 197, 389-394.

BUFFETAUT E. (1989b). – A ziphodont mesosuchian crocodile from the Eo-cene of Algeria. – Palaeontographica A, 208, 1-10.

BUFFETAUT E. (1989c). – Archosaurian reptiles with Gondwanan affinitiesin the Upper Cretaceous of Europe. – Terra Nova, 1, 69-74.

BUFFETAUT E. (1994). – A new crocodilian from the Cretaceous of southernMorocco. – C. R. Acad. Sci., Paris, 319, 1563-1568.

BUFFETAUT E. (1999). – Pterosauria from the Upper Cretaceous of Laño(Iberian Peninsula): a preliminary comparative study. – Est.Mus. Cienc. Nat. Alava, 14, Núm. Esp. 1, 289-294.

BUFFETAUT E. & LE LOEUFF J. (1991). – Late Cretaceous dinosaur faunas ofEurope: some correlation problems. – Cret. Res., 12, 159-176.

BUFFETAUT E. & LE LOEUFF J. (1998a). – A new giant ground bird from theUpper Cretaceous of southern France. – J. Geol. Soc. Lond.,155, 1-4.

BUFFETAUT E. & LE LOEUFF J. (1998b). – Les Mondes disparus. Atlas de ladérive des continents. – Berg Internatl. Eds., Paris, 160 p.

BUFFETAUT E., CUNY G. & LE LOEUFF J. (1993). – The discovery of Frenchdinosaurs. – Mod. Geol., 18, 161-182.

BUFFETAUT E., GRIGORESCU D. & CSIKI Z. (2002). – A new giant pterosaurwith a robust skull from the latest Cretaceous of Romania. – Na-turwissenschaften, 89, 180-180.

BUFFETAUT E., LE LOEUFF J., MECHIN P., MECHIN-SALESSY A. (2000). – Anarchaic bird (Enanthiornithes) from the Upper Cretaceous ofProvence (southern France). – C. R. Acad. Sci., Paris, IIa, 331,557-561.

BUCKLEY G.A. & BROCHU C.A. (1999). – An enigmatic new crocodile fromthe Upper Cretaceous of Madagascar. In: D.M. UNWIN, Ed., Cre-taceous fossil vertebrates. – Spec. Pap. Palaeontol., 60,149-175.

BUSCALIONI A.D. & ORTEGA F. (2002). – The European Upper Cretaceouscrocodylian fossil record. – Sargetia, Sci. Nat., 19, 5-11.

BUSCALIONI A.D., ORTEGA F. & VASSE D. (1997). – New crocodiles (Eusu-chia: Alligatoroidea) from the Upper Cretaceous of southern Eu-rope. – C. R. Acad. Sci., Paris, II, 325, 525-530.

BUSCALIONI A.D., ORTEGA F. & VASSE D. (1999). – The upper Cretaceouscrocodilian assemblage from Laño (north-central Spain): impli-cations in the knowledge of the fini-Cretaceous European fau-nas. – Est. Mus. Cien. Nat. Alava, 14, Num. Esp. 1, 213-233.

BUSCALIONI A.D., ORTEGA F., WEISHAMPEL D.B. & JIANU C.M. (2001). – Arevision of the crocodyliform Allodaposuchus precedens fromthe Upper Cretaceous of the Hateg basin, Romania. Its relevancein the phylogeny of Eusuchia. – J. Vert. Paleontol., 21, 74-86.

BUSCALIONI A.D., PÉREZ-MORENO B.P. & SANZ J.L. (2003). – Pattern ofbiotic replacement in modern crocodiles during the Late Creta-ceous. – Col. Paleontol., vol. extr., 1, 77-94.

BUSCALIONI A.D., SCHULP A.S., JAGT J.W.M., HANNA S.S. & HARTMAN

A.F. (2004). – Late Cretaceous neosuchian crocodiles from theSultanate of Oman. – Cret. Res., 25, 267-275.

CARRANO M.T. & SAMPSON S.D. (2008). – The phylogeny of Ceratosauria(Dinosauria: Theropoda). – J. Syst. Palaeont., 6, 183-236.

66 PEREDA-SUBERBIOLA X.

Bull. Soc. géol. Fr., 2009, no 1

Page 11: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

CASANOVAS M.L., PEREDA SUBERBIOLA X., SANTAFÉ J.V. & WEISHAMPEL

D.B. (1999). – First lambeosaurine hadrosaurid from Europe: pa-laeobiogeographical implications. – Geol. Mag., 136, 205-211.

CHIAPPE L.M., NORELL M.A. & CLARK J.M. (2002). – The Cretaceous,shortarmed Alvarezsauridae: Mononykus and its kin. In: L.M.CHIADDE & L.M. WITMER, Eds., Mesozoic birds above the headsof dinosaurs. – Univ. California Press, Berkeley, 87-120.

CLARK J.M. & NORELL M.A. (1992). – The Early Cretaceous crocodylo-morph Hylaeochampsa vectiana from the Wealden of the Isle ofWight. – Am. Mus. Novit., 3032, 1-19.

CODREA V., SMITH T., DICA P., FOLIE A., GARCIA G., GODEFROIT P. & VAN

ITTERBEECK J. (2002). – Dinosaur egg nests, mammals and othervertebrales from a new Maastrichtian site of the Hateg Basin(Romania). – C. R. Palevol, 1, 173-180.

COMPANY J. (2004). – Vertebrados continentales del Cretácico superior(Campaniense-Maastrichtiense) de Valencia. – PhD dissertation,Univ. Valencia, 410 p. (unpublished).

COMPANY J., PEREDA SUBERBIOLA X., RUIZ-OMEÑACA J.I. & BUSCALIONI

A.D. (2005). – A new species of Doratodon (Crocodyliformes:Ziphosuchia) from the Late Cretaceous of Spain. – J. Vert. Pa-leontol., 25, 343-353.

COMPANY J., RUIZ-OMEÑACA J.I. & PEREDA SUBERBIOLA X. (1999). – Along-necked pterosaur (Pterodactyloidea, Azhdarchidae) fromthe Upper Cretaceous of Valencia. – Geol. Mijnb., 78, 319-333.

COOMBS W.P. JR. & MARYANSKA T. (1990). – Ankylosauria. In: D.B. WEIS-

HAMPEL, P. DODSON & H. OSMÓLSKA, Eds., The Dinosauria. –Univ. California Press, Berkeley, 456-483.

COX C.B. (1980). – An outline of the biogeography of the Mesozoic world.– Mém. Soc. géol. Fr., n.s., 139, 75-79.

CSIKI Z. (1997). – Legaturi paleobiogeografice ale faunei de vertebratecontinentale. Maastrichtian superioare din Bazinul Hateg. –Nymphaea, 23-25, 45-68.

CSIKI Z. (2005). – Endemisme in fauna de vertebrate maastrichtiene dinBazinul Hateg: Sistematica si filogenia sauropodelor Titanosau-ride si a multituberculatelor Kogaionide. – Rev. Pol. StünteiScientom., Num. Spec. 2005, 1-14 (http://frf.cncsis.ro/docu-mente/523AT414.doc).

CSIKI Z. & GRIGORESCU D. (1998). – Small theropods of the Late Creta-ceous of the Hateg basin (western Romania) – an unexpected di-versity at the top of the food chain. – Oryctos, 1, 87-104.

CSIKI Z. & GRIGORESCU D. (2000). – Teeth of multituberculate mammalsfrom the Late Cretaceous of Romania. – Acta Palaeontol. Pol.,45, 85-90.

CSIKI Z. & GRIGORESCU D. (2002). – Paleobiogeographical implications ofthe fossil mammals from the Maastrichtian of the Hateg basin. –Acta Paleontol. Romaniae, 3, 87-95

CSIKI Z. & GRIGORESCU D. (2005). – A new theropod from Tustea: arethere oviraptorosaurs in the Upper Cretaceous of Europe? In: 3th

meeting Eur. Assoc. Vert. Palaeontol., Abstracts, Darmstadt. –Kaupia, 14, 78.

DAL SASSO C. (2003). – Dinosaurs of Italy. – C. R. Palevol, 2, 45-66.DALLA VECCHIA F. (2006). – Telmatosaurus and the other hadrosaurids of

the Cretaceous European archipelago. An overview. – NaturaNascosta, 32, 1-55.

DEBELJAK I., KOŠIR A., BUFFETAUT E. & OTONI�AR B. (2002). – The LateCretaceous dinosaurs and crocodiles of Kozina (SW Slovenia). –Mem. Soc. Geol. It., 57, 193-201.

DELFINO M., CODREA V., FOLIE A., DICA P., GODEFROIT P. & SMITH T.(2008). – A complete skull of Allodaposuchus precedens NOPC-

SA, 1928 (Eusuchia) and a reassessment of the morphology ofthe taxon based on the Romanian remains. – J. Vert. Paleontol.,28, 111-122.

DERCOURT J., GAETANI M., VRIELYNCK B., BARRIER E., BIJU-DUVAL B.,BRUNET M.-F., CADET J.-P., CRASQUIN S. & SANDULESCU M.,Eds. (2000). – Atlas Peri-Tethys. Palaeogeographical maps. –CCGM/CGMW, Paris, 24 maps, 269 p.

DUFFAUD S. (1997). – A Batrachosauroididae (Amphibia, Caudata) fromthe Late Cretaceous of Champ-Garimond (southern France). In:1st Eur. Workshop Vert. Palaeontol., Copenhagen. – Geol. Soc.Denmark, On line Series, 1 (http://home4.inet.tele.dk/dgfth/on-line/workshop.htm).

DUFFAUD S. (2000). – Les faunes d’amphibiens du Crétacé supérieur àl’Oligocène inférieur en Europe: paléobiodiversité, évolution,mise en place. – PhD dissertation, Mus. Natl. Hist. Nat. Paris, 2vol., 221 p. (unpublished).

DUFFAUD S. & RAGE J.-C. (1999). – Amphibians from the Upper Creta-ceous of Laño (Basque Country, Spain). – Est. Mus. Cien. Nat.Alava, 14, Num. Esp. 1, 111-120.

DYKE G.J., DORTANGS R.W., JAGT J.W.M., MULDER E.W.A., SCHULP A.S. &CHIAPPE L.M. (2002). – Europe’s last Mesozoic bird. – Natur-wissenchaften, 89, 408-411.

ESTES R. (1981). – Gymnophiona, Caudata. In: P. WELLNHOFER, Ed., Ency-clopedia of Paleoherpetology, Part 2. – Gustav Fischer Verlag,Stuttgart, 115 p.

ESTES R. (1983). – Sauria terrestria. Amphisbaenia. In: P. WELLNHOFER,Ed., Gustav Fisher Verlag, Stuttgart. – Handbuch Paläoherpe-tol., 10A, 1-249.

ESTES R., QUEIROZ K. DE & GAUTHIER J. (1988). – Phylogenetic relation-ships within Squamata. In: R. ESTES & G. PREGILL, Eds., Phylo-genetic relationships of the lizards families. – Stanford Univ.Press, 119-281.

EVANS S.E. (2003). – At the feet of the dinosaurs: the early history and ra-diation of lizards (Lepidosauria, Diapsida). – Biol. Rev., 78,513-551.

EVANS S.E. & HECHT M.K. (1993). – A history of an extinct reptilian clade,the Choristodera: longevity, Lazarus-taxa, and the fossil record.– Evol. Biol., 27, 323-338.

EVANS S.E., LALLY C., CHURE D.C., ELDER A. & MAISANO J.A. (2005). – ALate Jurassic salamander (Amphibia: Caudata) from the Morri-son Formation of North America. – Zool. J. Linnean Soc., 143,599-616.

FEDUCCIA A. (1999). – The origin and evolution of birds, 2nd ed. – YaleUniv. Press, New Haven, 466 p.

FOLIE A. & CODREA V. (2005). – New lissamphibians and squamates fromthe Maastrichtian of Hateg basin, Romania. – Acta Palaeontol.Pol., 50, 57-71.

FOLIE A., SIGÉ B. & SMITH T. (2005). – A new scincomorph lizard from thePalaeocene of Belgium and the origin of Scincoidea in Europe. –Naturwissenschaften, 92, 542-546.

FOX R.C. & NAYLOR B.G. (1982). – A reconsideration of the relationshipsof the fossil amphibian Albanerpeton. – Can. J. Earth Sci., 19,118-128.

GAFFNEY E.S. & MEYLAN P.A. (1992). – The Transylvanian turtle, Kalloki-botion, a primitive cryptodire of Cretaceous age. – Am. Mus. No-vit., 3040, 1-37.

GAFFNEY E.S., CAMPOS D.A. & HIRAYAMA R. (2001). – Cearachelys, a newside-necked turtle (Pelomedusoides: Bothremydidae) from theearly Cretaceous of Brazil. – Am. Mus. Novit., 3319, 1-12.

GAFFNEY E.S., TONG H. & MEYLAN P.A. (2006). – Evolution of theside-necked turtles: the families Bothremydidae, Euraxemy-didae, and Araripemydidae. – Bull. Am. Mus. Nat. Hist., 300,1-698.

GALTON P.M. (1983). – Armored dinosaurs (Ornithischia: Ankylosauria)from the Middle and Upper Jurassic of Europe. – Palaeontogra-phica, A, 182, 1-25.

GANS C. (1990). – Patterns in amphisbaenian biogeography: a preliminaryanalysis. In: G. PETERS & R. HUTTERER, Eds., Vertebrates in thetropics. – Alexander Koenig Zool. Res. Inst., Zool. Mus., Bonn,133-143.

GAO K.-Q. & FOX R.C. (1998). – New choristoderes (Reptilia: Diapsida)from the Upper Cretaceous and Palaeocene, Alberta and Saskat-chewan, Canada, and phylogenetic relationships of Choristode-ra. – Zool. J. Linnean Soc., 124, 303-353.

GARCIA G. & PEREDA-SUBERBIOLA X. (2003). – A new species of Struthio-saurus (Dinosauria: Ankylosauria) from the Upper Cretaceousof Villeveyrac (southern France). – J. Vert. Paleontol., 23,156-165.

GARDNER J.D., EVANS S.E. & SIGOGNEAU-RUSSELL D. (2003). – New alba-nerpetontid amphibians from the Early Cretaceous of Moroccoand Middle Jurassic of England. – Acta Palaeontol. Pol., 48,301-319.

GASPARINI Z.B. (1996). – Biogeographic evolution of the South Americancrocodilians. – München Geowiss. Abh., A, 30, 159-184.

GASPARINI Z., CHIAPPE L.M. & FERNÁNDEZ M. (1991). – A new Senonianpeirosaurid (Crocodylomorpha) from Argentina and a synopsisof the South American Cretaceous crocodilians. – J. Vert. Pa-leontol., 11, 316-333.

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 67

Page 12: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

GHEERBRANT E. & ASTIBIA H. (1994). – Un nouveau mammifère du Maas-trichtien de Laño (Pays Basque espagnol). – C. R. Acad. Sci.,Paris, II, 318, 1125-1131.

GHEERBRANT E. & ASTIBIA H. (1999). – The Upper Cretaceous mammalsfrom Laño (Spanish Basque Country). – Est. Mus. Cien. Nat.Alava, 14, Num. Esp. 1, 295-323.

GHEERBRANT E. & RAGE J.-C. (2006). – Paleobiogeography of Africa: Howdistinct from Gondwana and Laurasia? – Palaeogeogr. Palaeo-climatol. Palaeoecol., 241, 224-246.

GHEERBRANT E., CODREA V., HOSU A., SEN S., GUERNET C., LAPPARENT deBROIN F. de & RIVELINE J. (1999). – Découverte de vertébrésdans les Calcaires de Rona (Thanétien ou Sparnacien), Transyl-vanie, Roumanie: les plus anciens mammiferes cénozoïquesd’Europe Orientale. – Eclog. Geol. Helv., 92, 517-535.

GODEFROIT P. & LAMBERT O. (2007). – A re-appraisal of Craspedodon lon-zeensis DOLLO, 1883 from the Upper Cretaceous of Belgium: thefirst record of a neoceratopsian dinosaur in Europe? – Bull. Inst.Roy. Sci. Nat. Belg., Sc. Terre, 77, 83-93.

GRADSTEIN F., OGG J. & SMITH A., Eds. (2004). – A geological timescale2004. – Cambridge Univ. Press, Cambridge, 589 p.

HAYAKAWA H., MANABE M. & CARPENTER K. (2005). – Nodosaurid ankylo-saur from the Cenomanian of Japan. – J. Vert. Paleontol., 25,240-245.

HEMBREE D.I. (2006). – Amphisbaenian paleobiogeography: Evidence ofvicariance and geodispersal patterns. – Palaeogeogr. Palaeocli-matol. Palaeoecol., 235, 340-354.

HIRAYAMA R., BRINKMAN D.B. & DANILOV I.G. (2000). – Distribution andbiogeography of non-marine Cretaceous turtles. – Russian J.Herpetol., 7, 181-198.

HOPE S. (2002). – The Mesozoic radiation of Neornithes. In: L.M. CHIAPPE

& L.M. WITMER, Eds., Mesozoic birds: above the heads of dino-saurs. – Univ. California Press, Berkeley, 339-388.

HORNER J.R., WEISHAMPEL D.B. & FORSTER C.A. (2004). – Hadrosauridae.In: D.B. WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds., The Di-nosauria, 2nd ed. – Univ. California Press, Berkeley, 438-463.

HUENE F. VON (1932). – Die fossile Reptil-Ordnung Saurischia, ihreEntwicklung und Geschichte. – Monogr. Geol. Palaeontol., 1,1-361.

JIANU C.-M., WEISHAMPEL D.B. & STIUCA E. (1997). – Old and new ptero-saur material from the Hateg basin (Late Cretaceous) of westernRomania, and comments about pterosaur diversity in the LateCretaceous of Europe. In: Second Eur. Workshop Vert. Palaeon-tol. – Abstracts, Espéraza-Quillan (unpaginated).

JIMÉNEZ FUENTES E. (1992). – Quelonios fósiles de Castilla y León. In:Vertebrados fósiles de Castilla y León. – Junta de Castilla yLeón, Salamanca, 71-100.

JOYCE W.G. (2004). – Phylogeny, nomenclature, and ecology of Mesozoicturtles. – PhD dissertation, Yale Univ., 480 p. (unpublished).

JOYCE W.G., PARHAM J.F. & GAUTHIER J.A. (2004). – Developing a proto-col for the conversion of rank-based taxa named to phylogeneti-cally defined clade names, as exemplified by turtles. – J.Paleontol., 78, 989-1013.

KEARNEY M. (2003). – Systematics of the Amphisbaenia (Lepidosauria:Squamata) based on morphological evidence from recent andfossil forms. – Herpetol. Monogr., 17, 1-74.

KESSLER E., GRIGORESCU D. & CSIKI Z. (2005). – Elopteryx revisited – anew bird-like specimen from the Maastrichtian of the Hateg ba-sin. – Acta Palaeontol. Romaniae, 5, 249-258.

KIELAN-JAWOROWSKA Z. & HURUM J.H. (2001). – Phylogeny and systematicsof multituberculate mammals. – Palaeontology, 44, 389-429,

KIELAN-JAWOROWSKA Z., CIFELLI R.L. & LUO Z.-X. (2004). – Mammalsfrom the age of dinosaurs: origins, evolution, and structure. –Columbia Univ. Press, New York, 630 p.

KRAUSE D.V., SAMPSON S.D., CARRANO M.T. & O’CONNOR P.M. (2007). –Overview of the history of discovery, taxonomy, phylogeny, andbiogeography of Majungatholus crenatissimus (Theropoda:Abelisauridae) from the Late Cretaceous of Madagascar. – J.Vert. Paleontol., 27, suppl. to 2, 1-20 (Mem.2).

LAPPARENT DE BROIN F. de (2000). – African chelonians from the Jurassicto the present: phases of development and preliminary catalogueof the fossil record. – Palaeont. Afr., 36, 43-82.

LAPPARENT de BROIN F. de (2001). – The European turtle fauna from theTriassic to the Present. – Dumerilia, 4,155-217.

LAPPARENT DE BROIN F. de & MURELAGA X. (1996). – Une nouvelle faunede Chéloniens dans le Crétacé supérieur européen. – C. R. Acad.Sci., Paris, IIa, 323, 729-735.

LAPPARENT DE BROIN F. de & MURELAGA X. (1999). – Turtles from theUpper Cretaceous of Laño (Iberian Peninsula). – Est. Mus. Cien.Nat. Alava, 14, Num. Esp. 1, 135-211.

LAPPARENT DE BROIN F. de & WERNER C. (1998). – New Late Cretaceousturtles from Western Desert, Egypt. – Ann. Paléontol., 84,131-214.

LARSSON H.C.E. & SUES H.-D. (2007). – Cranial osteology and phylogene-tic relationships of Hamadasuchus rebouli (Crocodyliformes:Mesoeucrocodylia) from the Cretaceous of Morocco. – Zool. J.Linnean Soc., 149, 533-567.

LAURENT Y. (2003). – Les faunes de vertébrés continentaux du Maastrich-tien supérieur d’Europe: systématique et biodiversité. – Strata,sér. 2, 41, 1-80.

LAURENT Y., BILOTTE M. & LE LOEUFF J. (2002a). – Late Maastrichtiancontinental vertebrates from southwestern France: correlationwith marine fauna. – Palaeogeogr. Palaeoclimatol. Palaeoceol.,187, 121-135.

LAURENT Y., BUFFETAUT E. & LE LOEUFF J. (2000). – Un crâne de thoraco-sauriné (Crocodylia, Crocodylidae) dans le Maastrichtien supé-rieur du Sud de la France. – Oryctos, 3, 19-27.

LAURENT Y., TONG H. & CLAUDE J. (2002b). – New side-necked turtle(Pleurodira: Bothremydidae) from the Upper Maastrichtian ofthe Petites-Pyrénées (Haute-Garonne, France). – Cret. Res., 23,465-471.

LE LOEUFF J. (1991). – The Campano-Maastrichtian vertebrate faunas fromsouthern Europe and their relationships with other faunas in theworld: palaeobiogeographical implications. – Cret. Res., 12,93-114.

LE LOEUFF J. (1992). – Les vertébrés continentaux du Crétacé supérieurd’Europe: paléoécologie, biostratigraphie et paléobiogéo-graphie. – PhD dissertation, Mém. Sci. Terre Univ. P. et M.Curie, Paris, 273 p., 30 pl. (unpublished).

LE LOEUFF J.. (1993). – European titanosaurids. – Rev. Paléobiol., vol.spéc., 7, 105-117.

LE LOEUFF J. (1995). – Ampelosaurus atacis (nov. gen., nov. sp.), un nou-veau Titanosauridae (Dinosauria, Sauropoda) du Crétacé supé-rieur de la haute vallée de l’Aude (France). – C. R. Acad. Sci.,Paris, II, 321, 693-696.

LE LOEUFF J. (1997). – Biogeography. In: P.J. CURRIE & K. PADIAN, Eds.,Encyclopedia of dinosaurs. – Academic Press, New York, 51-56.

LE LOEUFF J. (1998). – Evolution paléobiogéographique des faunes de verté-brés continentaux du Jurassique supérieur à la fin du Crétacé. –H.D.R. dissertation, Univ. Paul Sabatier, Toulouse, 68 p. (unpu-blished).

LE LOEUFF J. (2005a). – Osteology of Ampelosaurus atacis (Titanosauria)from southern France. In: V. TIDWELL & K. CARPENTER, Eds.,Thunder-lizards: The sauropodomorph dinosaurs. – IndianaUniv. Press, Bloomington, 115-137.

LE LOEUFF J. (2005b). – Romanian Late Cretaceous dinosaurs: Big dwarfsor small giants? – Hist. Biol., 17, 15-17.

LE LOEUFF J. & BUFFETAUT E. (1991). – Tarascosaurus salluvicus nov.gen., nov. sp., dinosaure théropode du Crétacé supérieur du Sudde la France. – Géobios, 25, 585-594.

LE LOEUFF J. & BUFFETAUT E. (1998). – A new dromaeosaurid theropodfrom the Upper Cretaceous of southern France. – Oryctos, 1,105-112.

LE LOEUFF J., BUFFETAUT E., MECHIN P. & MECHIN-SALESSY A. (1992). –The first record of dromaeosaurid dinosaurs (Saurischia, Thero-poda) in the Maastrichtian of southern Europe. – Bull. Soc. géol.Fr., 163, 337-343.

LINDGREN J., CURRIE P.J., SIVERSON M., REES J., CEDERSTRÖM & LINDGREN

F. (2007). – The first neoceratopsian dinosaur remains from Eu-rope. – Palaeontology, 50, 929-937.

LOPEZ-MARTÍNEZ N., CANUDO J.I., ARDÈVOL L., PEREDA-SUBERBIOLA X.,ORUE-ETXEBARRIA X., CUENCA-BESCÓS G., RUIZ-OMEÑACA J.I.,MURELAGA X. & FEIST M. (2001). – New dinosaur sites correla-ted with Upper Maastrichtian pelagic deposits in the SpanishPyrenees: implications for the dinosaur extinction pattern in Eu-rope. – Cret. Res., 22, 41-61.

68 PEREDA-SUBERBIOLA X.

Bull. Soc. géol. Fr., 2009, no 1

Page 13: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

MAKÁDI L. (2006). – Lizards from the Upper Cretaceous (Santonian)Csehbánya Formation (Iharkút, Bakony Mts, western Hungary).In: P. PAZONYI, Ed., 4th meeting Eur. Assoc. Vert. Palaeontol.,Abstracts, Budapest. – Hantkeniana, 5, 94.

MAKOVICKY P.J. & NORELL M.A. (2004). – Troodontidae. In: D.B.WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds., The Dinosauria,2nd ed. – Univ. California Press, Berkeley, 184-195.

MAKOVICKY P.J., KOBAYASHI Y. & CURRIE P.J. (2004). – Ornithomimosau-ria. In: D.B. WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds.,The Dinosauria, 2nd ed. – Univ. California Press, Berkeley,137-150.

MAKOVICKY P.J., APESTEGUIA S. & AGNOLÍN F.L. (2005). – The earliest dro-maeosaurid theropod from South America. – Nature, 437,1007-1011.

MARTIN J.E. (2006). – A reassessment of Crocodylus affuvelensis from theLate Cretaceous of southern France. In: 54th Symp. Vert. Pa-laeontol. Comp. Anat., Abstracts, Paris, p. 21.

MARTIN J.E. (2007). – New material of the Late Cretaceous globidontanAcynodon iberooccitanus (Crocodylia) from southern France. –J. Vert. Paleontol., 27, 362-372.

MARTIN J.E., CASE J.A., JAGT J.W.M., SCHULP A.S. & MULDER E.W.A.(2005). – A new European marsupial indicates a Late Creta-ceous high-latitude transatlantic dispersal route. – J. Mammal.Evol., 12, 495-510.

MARTIN J.E., CSIKI Z., GRIGORESCU D. & BUFFETAUT E. (2006). – Late Cre-taceous crocodilian diversity in Hateg basin, Romania. In: P. PA-

ZONYI, Ed., 4th meeting Eur. Assoc. Vert. Palaeontol., Abstracts,Budapest. – Hantkeniana, 5, 31-37.

MATHERON P. (1869). – Notice sur les reptiles fossiles des dépots fluvio-la-custres crétacés du bassin à lignite de Fuveau. – Mém. Acad.Imp. Sci., Belle-Lettres et Arts Marseille, 1-39.

MCDOWELL S. B. (1987). – Systematics. In: R.A. SEIGEL, J.T. COLLINS &S.S. NOVAK, Eds., Snakes. Ecology and evolutionary biology. –McMillan, New York, 3-50.

MEZGA A., MEYER C.A., TESOVIC B.C., BAJRAKTAREVIC Z. & GUSIC I.(2006). – The first record of dinosaurs in the Dalmatian part(Croatia) of the Adriatic-Dinaric carbonate platform (ADCP). –Cret. Res., 27, 735-742

MILNER A.R. (2000). – Mesozoic and Tertiary Caudata and Albanerpeton-tidae. In: H. HEATWOLE & R.L. CARROLL, Eds., Amphibian bio-logy, vol 4: Palaeontology: The evolutionary history ofamphibians. – Surrey Beatty, Chipping Norton, 1412-1444.

MILNER A.C., MILNER A.R. & EVANS S.E. (2000). – Amphibians, reptilesand birds: a biogeographical review. In: S.J. CULVER & P.F. RAW-

SON, Eds., Biotic response to global change – The last million145 million years. – Cambridge University Press, Cambridge,316-332.

MULDER E.W.A. (1998). – Thoracosaurine vertebrae (Crocodylia: Croco-dylidae) from the Maastrichtian type area. – Proc. Konink. Ne-derl. Akad. Wetensch., 100, 161-170.

MURELAGA X. (1998). – Primeros restos de tortugas del Cretácico inferior(Barremiense superior) de Vallipón (Castellote, Teruel). – Masde las Matas, 17, 189-200.

NAISH D.W. & DYKE G.J. (2004). – Heptasteornis was no ornithominid,troodontid, dromaeosaurid or owl: the first alvarezsaurid (Dino-sauria: Theropoda) from Europe. – N. Jb. Geol. Paläont. Mon.,7, 385-401.

NAISH D. & MARTILL D.M. (2002). – A reappraisal of Thecocoelurus da-viesi (Dinosauria: Theropoda) from the Early Cretaceous of theisle of Wight. – Proc. Geol. Assoc., 113, 23–30.

NICOSIA U., PETTI F.M., PERUGINI G., PORCHETTI S.D., SACCHI E., CONTI

M.A., MARIOTTI N. & ZARATTINI A. (2007). – Dinosaur tracks aspaleogeographic constraints: new scenarios for the Cretaceousgeography of the Periadriatic region. – Ichnos, 14, 69-90.

NOONAN B.P. & CHIPPINDALE P.T. (2006). – Vicariant origin of Malagasyreptiles supports Late Cretaceous Antarctic land bridge. – Am.Nat., 168, 730-741.

NOPCSA F. (1923). – On the geological importance of the primitive reptilianfauna in the uppermost Cretaceous of Hungary, with a descrip-tion of a new tortoise (Kallokibotion). – Q. J. Geol. Soc. Lond.,72, 100-116.

NOPCSA F. (1934). – The influence of geological and climatological factorson the distribution of non-marine fossil reptiles and Stegocepha-lia. – Q. J. Geol. Soc. Lond., 90, 76-140.

NORELL M.A. & MAKOVICKY P.J. (2004). – Dromaeosauridae. In: D.B.WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds., The Dinosauria,2nd ed. – Univ. California Press, Berkeley, 196-209.

NORMAN D.B. (2004). – Basal Iguanodontia. In: D.B. WEISHAMPEL, P. DOD-

SON & H. OSMÓLSKA, Eds., The Dinosauria, 2nd ed. – Univ. Cali-fornia Press, Berkeley, 413-437.

NOVAS F.E. & POL D. (2002). – Alvarezsaurid relationships reconsidered.In: L.M. CHIAPPE & L.M. WITMER, Eds., Mesozoic birds. Abovethe head of dinosaurs. – Univ. California Press, Berkeley,121-125.

NOVAS F.E. & POL D. (2005). – New evidence on deinonychosaurian dino-saurs from the Late Cretaceous of Patagonia. – Nature, 433,858-861.

NYDAM R.L., EATON J.G. & SANKEY J. (2007). – New taxa of transverse-ly-toothed lizards (Squamata: Scincomorpha) and new informa-tion on the evolutionary history of “teiids”. – J. Paleontol., 81,538-549.

ORTEGA F., BUSCALIONI A.D. & GASPARINI Z. (1996). – Reinterpretationand new denomination of Atacisaurus crassiproratus (MiddleEocene; Issel, France) as cf. Iberosuchus (Crocodylomorpha,Metasuchia). – Geobios, 29, 353-364.

ORTEGA F., GASPARINI Z., BUSCALIONI A.D. & CALVO J. (2000). – A newspecies of Araripesuchus (Crocodylomorpha, Mesoeucrocody-lia) from the Lower Cretaceous of Patagonia (Argentina). – J.Paleontol., 20, 57-76.

ÖSI A. (2005). – Hungarosaurus tormai, a new ankylosaur (Dinosauria)from the Upper Cretaceous of Hungary. – J. Vert. Paleontol., 25,370-383.

ÖSI A. (2006). – Iharkút, the first Hungarian Late Cretaceous continentalvertebrate locality. – Field trip guide. Excursion 1 (Friday, 14thof July). Stop 1. In: P. PAZONYI, Ed., 4th meeting Eur. Assoc.Vert. Palaeontol., Abstracts, Budapest. – Hantkeniana, 5,116-120.

ÖSI A., JIANU C.-M. & WEISHAMPEL D.B. (2003). – Dinosaurs from theUpper Cretaceous of Hungary. In: A. PETCULESCU & E. STIUCA,Eds., Advances in vertebrate paleontology “Hen to Panta”. –Inst. Speleol. Emil Racovitza, Roman. Acad. Sci., Bucharest,117–120.

ÖSI A., WEISHAMPEL D.B. & JIANU C.M. (2005). – First evidence of azh-darchid pterosaurs from the Late Cretaceous of Hungary. – ActaPalaeontol. Pol., 50, 777-787.

ÖSI A., CLARK J.M. & WEISHAMPEL D.B. (2007). – First report of a new ba-sal eusuchian crocodyliform with multicusped teeth from theUpper Cretaceous (Santonian) of Hungary. – N. Jb. Geol. Pal-äont. Abh., 243, 169-177.

OSMÓLSKA H., CURRIE P.J. & BARSBOLD R. (2004). – Oviraptorosauria. In:

D.B. WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds., The Dino-sauria, 2nd ed. – Univ. California Press, Berkeley, 165-183.

PADIAN K. (2004). – Basal Avialae. In: D.B. WEISHAMPEL, P. DODSON & H.OSMÓLSKA, Eds., The Dinosauria, 2nd ed. – Univ. CaliforniaPress, Berkeley, 210-231.

PELÁEZ-CAMPOMANES., LÓPEZ-MARTÍNEZ N., ÁLVAREZ-SIERRA M.A. &DAAMS R. P. (2000). – The earliest mammal of the European Pa-leocene: the multituberculate Hainina. – J. Paleont., 74,701-711.

PEREDA SUBERBIOLA X. (1999). – Las faunas finicretácicas de dinosauriosibéricos. – Zubia, 17, 259-279.

PEREDA SUBERBIOLA X. & GALTON P.M. (2001). – Reappraisal of the nodo-saurid ankylosaur Struthiosaurus austriacus from the UpperCretaceous Gosau Beds of Austria. In: K. CARPENTER, Ed., Thearmored dinosaurs. – Indiana Univ. Press, Bloomington,173-210.

PÉREZ-MORENO B.P., SANZ J.L., BUSCALIONI A.D., MORATALLA J.J., ORTE-

GA F. & RASSKIN-GUTMAN D. (1994). – A unique multitoothedornithomimosaur dinosaur from the Lower Cretaceous of Spain.– Nature, 370, 363-367.

PERSSON P.O. (1959). – Reptiles from the Senonian (U. Cret.) of Scania (S.Sweden). – Arkiv Mineral. Geol., 2, 431-478.

POL D. (2003). – New remains of Sphagesaurus huenei (Crocodylomorpha:Mesoeucrocodylia) from the Late Cretaceous of Brazil. – J.Vert. Paleontol., 23, 817-831.

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 69

Page 14: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

POL C., BUSCALIONI A.D., CARBELLEIRA J., FRANCÉS V., LÔPEZ MARTÍNEZ

N., MARANDAT B., MORATALLA J.J., SANZ J.L., SIGE B. & VIL-

LATTE J. (1992). – Reptiles and mammals from the Late Creta-ceous new locality Quintanilla del Coco (Burgos Province,Spain). – N. Jb. Geol. Paläont. Abh., 184, 279-314.

PRASAD G.V.R. & RAGE J.-C. (1995). – Amphibians and squamates fromthe Maastrichtian of Naskal, India. – Cret. Res., 16, 95-107.

PRIETO-MÁRQUEZ A., GAETE R., RIVAS G., GALOBART A. & BOADA M.(2006). – Hadrosauroid dinosaurs from the Late Cretaceous ofSpain: Pararhabdodon isonensis revisited and Koutalisaurus ko-hlerorum, gen. et sp. nov. – J. Vert. Paleontol., 26, 929-943.

RABI M. (2006). – Do alligatoroids really derive from North America? In:P. PAZONYI, Ed., 4th meeting Eur. Assoc. Vert. Palaeontol.,Abstracts, Budapest. – Hantkeniana, 5, 102.

RABI M. & BOTFALVAI G. (2006). – A new bothremydid (Chelonia: Pleuro-dira) fossil assemblage from the Late Cretaceous (Santonian) ofHungary – additional studies in the historical paleobiogeogra-phy of Late Cretaceous bothremydids. In: P. PAZONYI, Ed., 4th

meeting Eur. Assoc. Vert. Palaeontol., Abstracts, Budapest. –Hantkeniana, 5, 61-65.

RADULESCU C. & SAMSON P.-M. (1996). – The first multituberculate skullfrom the Late Cretaceous (Maastrichtian) of Europe (Hateg ba-sin, Romania). – An. Inst. Geol. Rom., 69, 1, 177-178.

RAGE J.-C. (1981). – Les continents péri-atlantiques au Crétacé supérieur:migrations des faunes continentales et problèmes paléogéogra-phiques. – Cret. Res., 2, 65–84.

RAGE J.-C. (1987). – Fossil history. In: R.A. SEIGEL, J.T. COLLINS & S.S.NOVAK, Eds., Snakes. Ecology and evolutionary biology. –McMillan, New York, 51-76.

RAGE J.-C. (1996). – Les Madtsoiidae (Reptilia, Serpentes) du Crétacé su-périeur d’Europe: témoins gondwaniens d’une dispersion trans-téthysienne. – C. R. Acad. Sci., Paris, IIa, 322, 603-608.

RAGE J.-C. (1997). – Terrestrial trans-Tethyan dispersals: an overview. In:1st Eur. Workshop Vert. Palaeontol., Copenhagen. – Geol. Soc.Denmark, On line Series, 1 (http://home4.inet.tele.dk/dgfth/on-line/workshop.htm).

RAGE J.-C. (1999). – Squamates (Reptilia) from the Upper Cretaceous ofLaño (Basque Country, Spain). – Est. Mus. Cienc. Nat. Alava,14, Núm. Esp. 1, 121-133.

RAGE J.-C. (2002). – The continental Late Cretaceous of Europe: toward abetter understanding. – C. R. Palevol, 1, 257-258.

RAGE J.-C. (2003). – Relationships of the Malagasy fauna during the LateCretaceous: northern or southern routes? – Acta Palaeontol.Pol., 48, 661-662.

RAGE J.C. & WERNER C. (1999). – Mid-Cretaceous (Cenomanian) snakesfrom Wadi Abu Hashim, Sudan: the earliest snake assemblage. –Palaeontol. Afr., 35, 85-110.

RASMUSSON E.L. (2002). – Interrelationships of trematochampsids croco-dyliforms. – J. Vert. Paleontol., 22, suppl. to 3, 98A.

REES J. & LINDGREN J. (2005). – Aquatic birds from the Upper Cretaceous(lower Campanian) of Sweden and the biology and distributionof hesperornithiforms. – Palaeontology, 48, 1321-1329.

ROCEK Z. (2000). – Mesozoic anurans. In: H. HEATWOLE & R.L. CARROLL,Eds., Amphibian biology, vol. 4: Palaeontology: The evolutiona-ry history of Amphibians. – Surrey Beatty, Chipping Norton,1295-1331.

RUIZ-OMEÑACA J.I. (2006). – Restos directos de dinosaurios (Saurischia,Ornithischia) en el Barremiense (Cretácico Inferior) de la Cor-dillera Ibérica en Aragón (Teruel, España). – PhD dissertation,Univ. Zaragoza, 2 vols., 440 p. (unpublished).

RUSSELL D.A. (1993). – The role of Central Asia in dinosaurian biogeogra-phy. – Can. J. Earth Sci., 30, 2002-2012.

SALGADO L. (2003). – Should we abandon the name Titanosauridae? Somecomments on the taxonomy of titanosaurian sauropods (Dino-sauria). – Rev. Esp. Paleontol., 18, 15-21.

SANCHIZ B. (1998). – Salientia. In: P. WELLNHOFER, Ed. – Handbuch Paläo-herpetol., 4, 1-275. – Verlag Dr. Friedrich Pfeil, Munich.

SANMARTÍN I., ENGHOFF H. & RONQUIST F. (2001). – Patterns of animal dis-persal, vicariance and diversification in the Holarctic. – Biol. J.Linnean Soc., 73, 345-390.

SANZ J.L., POWELL J.E., LE LOEUFF J., MARTÍNEZ R. & PEREDA-SUBERBIOLA

X. (1999). – Sauropod remains from the Upper Cretaceous ofLaño (north-central Spain). Titanosaur phylogenetic relations-hips. – Est. Mus. Cien. Nat. Alava, 14, Num. Esp. 1, 235-255.

SERENO P.C, LARSSON H.C.E., SIDOR C.A. &. GADO B. (2001). – The giantcrocodyliform Sarcosuchus from the Cretaceous of Africa. –Science, 94, 1516-1519.

SERENO P.C., WILSON J.A. & CONRAD J.L. (2004). – New dinosaurs linksouthern landmasses in the Mid-Cretaceous. – Proc. R. Soc.Lond., Biol. Sci., B, 271, 1325-1330.

SIGÉ B., BUSCALIONI A.D., DUFFAUD S., GAYET M., ORTH B., RAGE J.-C. &SANZ J.L. (1997). – Etat des données sur le gisement crétacé su-périeur continental de Champ-Garimond (Gard, sud de laFrance). – Münchner Geowiss. Abh., A, 34, 111-130.

SIGOGNEAU-RUSSELL D. (1975). – Sur la distinction des genres Champso-saurus et Simoedosaurus (Reptilia, Choristodera) et leur pré-sence simultanée dans le Paléocène français. – C. R. Acad. Sci.,Paris, D, 281, 1219-1221.

SKELTON P., SPICER R.A., KELLEY S.P. & GILMOUR I. (2003). – The Creta-ceous world. In: P. SKELTON, Ed. – Cambridge Univ. Press, TheOpen University, Cambridge, Milton Keynes, 360 p.

SMITH T., CODREA V.A., SASRAN E., VAN ITTERBEECK J., BULTYNCK P., CSI-

KI Z., DICA P., FARCAS C., FOLIE A., GARCIA G. & GODEFROIT P.(2002). – A new exceptional vertebrate site from the Late Creta-ceous of the Hateg basin (Romania). – Stud. Univ. Babes-BolyaiGeol., Spec. Issue, 1, 321-330.

SMITH A.G., SMITH D.G. & FUNNELL B.M. (1994). – Atlas of Mesozoic andCenozoic coastlines. – Cambridge Univ. Press, Cambridge, 99 pp.

TABUCE R., VIANEY-LIAUD M. & GARCIA G. (2004). – A eutherian mammalin the latest Cretaceous of Vitrolles, southern France. – Acta Pa-laeontol. Pol., 49, 347–356.

TAQUET P. (2001). – Philippe Matheron et Paul Gervais: deux pionniers dela découverte et de l’étude des os et des oeufs de dinosaures deProvence. – Geodiversitas, 23, 611-623.

TONG H., GAFFNEY E.S. & BUFFETAUT E. (1998). – Foxemys, a newside-necked turtle (Bothremydidae: Pelomedusoides) from theLate Cretaceous of France. – Am. Mus. Novit., 3251, 1-19.

TORCIDA F., RUIZ-OMEÑACA J.I., IZQUIERDO L.A., MONTERO D., PÉREZ G.,HUERTA P. & URIÉN V. (2005). – Dientes de un enigmático dino-saurio ornitópodo en el Cretácico Inferior de Burgos (España). –Rev. Esp. Paleontol., Núm. extra., X, 73-81.

TURNER A.H. (2004). – Crocodyliform biogeography during the Creta-ceous: Evidence of Gondwana vicariance from biogeographicalanalysis. – Proc. R. Soc. Lond., Biol. Sci., 271, 2003-2009.

UNWIN D.M. (2003). – On the phylogeny and evolutionary history of ptero-saurs. In: E. BUFFETAUT & J.-M. MAZIN, Eds., Evolution and pa-laeobiology of Pterosaurs. – Geol. Soc. Lond., Spec. Publ., 217,139-190.

UNWIN D.M. (2005). – The pterosaurs from deep time. – Pi Press, NewYork, 347 p.

UPCHURCH P., HUNN C.A. & NORMAN D.B. (2002). – An analysis of dino-saurian biogeography: evidence for the existence of vicarianceand dispersal patterns caused by geological events. – Proc. R.Soc. Lond., B, 269, 613-621.

UPCHURCH P., BARRETT P.M. & DODSON P. (2004). – Sauropoda. In: D.B.WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds., The Dinosauria,2nd ed. – Univ. California Press, Berkeley, 259-322.

VASSE D. (1995). – Ischyrochampsa meridionalis n. g. n. sp., un crocodi-lien d’affinité gondwanienne dans le Crétacé supérieur du Sudde la France. – N. Jb. Geol. Palaönt. Mon., 8, 501-512.

VENCZEL M. & CSIKI Z. (2003). – New frogs from the latest Cretaceous ofHateg basin, Romania. – Acta Palaeontol. Pol., 48, 609-616.

VENCZEL M. & GARDNER J.D. (2005). – The geologically youngest albaner-petontid amphibian, from the Lower Pliocene of Hungary. – Pa-laeontology, 48, 1273-1300.

VICKARYOUS M.K., MARYANSKA T. & WEISHAMPEL D.B. (2004). – Ankylo-sauria. In: D.B. WEISHAMPEL, P. DODSON & H. OSMÓLSKA, Eds.,The Dinosauria, 2nd ed. – Univ. California Press, Berkeley,363-392.

VULLO R. (2007). – Les vertébrés du Crétacé supérieur des Charentes(Sud-Ouest de la France): biodiversité, taphonomie, paléoéco-logie et paléobiogéographie. – PhD dissertation, Mémoires deGéosciences Rennes, Univ. Rennes no 125, 302 p.(http://www.geosciences.univ-rennes1.fr/IMG/pdf/Vullo.pdf)

VULLO R., NERAUDEAU D., ALLAIN R. & CAPPETTA H. (2005). – Un nou-veau gisement à microrestes de vertébrés continentaux et litto-raux dans le Cénomanien inférieur de Fouras (Charente-Maritime, Sud-Ouest de la France). – C. R. Palevol, 4, 95-107.

70 PEREDA-SUBERBIOLA X.

Bull. Soc. géol. Fr., 2009, no 1

Page 15: Biogeographical affinities of Late Cretaceous continental tetrapods of Europe: a review

WEISHAMPEL D.B., BARRETT P.M., CORIA R.A., LE LOEUFF J., XING X., XI-

JIN Z., SAHNI A., GOMANI E.M.P. & NOTO C.R. (2004). – Dino-saur distribution. In: D.B. WEISHAMPEL, P. DODSON & H.OSMÓLSKA, Eds., The Dinosauria, 2nd ed. – Univ. CaliforniaPress, Berkeley, Los Angeles, 517-606.

WEISHAMPEL D.B., GRIGORESCU D. & NORMAN D.B. (1991). – The dino-saurs of Transylvania: island biogeography in the Late Creta-ceous. – Natl. Geogr. Res. Expl., 7, 68-87.

WEISHAMPEL D.B., JIANU C.M., CSIKI Z. & NORMAN D.B. (2003). – Osteo-logy and phylogeny of Zalmoxes (n. g.), an unusual euornitho-pod dinosaur from the latest Cretaceous of Romania. – J. Syst.Palaeontol., 1, 85-123.

WEISHAMPEL D.B., NORMAN D.B. & GRIGORESCU D. (1993). – Telmatosau-rus transsylvanicus from the Late Cretaceous of Romania: Themost basal hadrosaurid dinosaur. – Palaeontology, 36, 361-385.

WELLNHOFER P. (1980). – Flugsaurierreste aus der Gosau-Kreide vonMuthmannsdorf (Niederösterreich) – ein Beitrag zur Kieferme-chanik der Pterosaurier. – Mitt. Bayer. Staadtsslg. Paläontol.Hist. Geol., 20: 95-112.

WELLNHOFER P. (1991). – The illustrated encyclopedia of Pterosaurs. – Sa-lamander Books, London, 192 p.

WELLNHOFER P. (1994). – Ein Dinosaurier (Hadrosauridae) aus der Ober-kreide (Maastricht, Helvetikum-Zone) des bayerischen Alpen-vorlandes. – Mitt. Bayer. Staatsslg. Paläontol. Hist. Geol., 34,221-238.

WILSON J.A. (2006). – An overview of titanosaur evolution and phylogeny.In: Colectivo Arqueológico-Paleontológico Salense, Ed., III Jor-nadas Internationales sobre Paleontología de Dinosaurios y suEntorno. – Actas, Salas de los Infantes (Burgos, Spain),169-190.

WILSON J.A. & SERENO P.C. (1998). – Early evolution and higher level phy-logeny of sauropod dinosaurs. – J. Vert. Paleontol., 18, suppl. to2, 1-68.

WILSON J. A. & UPCHURCH P. (2003). – A revision of Titanosaurus LYDEK-

KER (Dinosauria – Sauropoda), the first dinosaur genus with a‘Gondwanan’ distribution. – J. Syst. Palaeontol., 1, 125-160.

WITTON M. (2007). – Fossil explained 53. Titans of the skies: azhdarchidpterosaurs. – Geol. Today, 23, 33-38.

YOU H.L. & DODSON P. (2004). – Basal Ceratopsia. In: D.B. WEISHAMPEL,P. DODSON & H. OSMÓLSKA, Eds., The Dinosauria, 2nd ed. –Univ. California Press, Berkeley, 478-493.

ZHOU Z. (2004). – The origin and early evolution of birds: discoveries, dis-putes, and perspectives from fossil evidence. – Naturwissens-chaften, 91, 455-471.

Bull. Soc. géol. Fr., 2009, no 1

BIOGEOGRAPHICAL AFFINITIES OF TETRAPODS OF EUROPE 71