15
1 Biocompatible Microemulsion Gels for the Delivery of Hydrophilic and Hydrophobic Active Ingredients Hydrophobic Active Ingredients Carol X. Xuan , O. Chung, E.J. Acosta, YL Cheng Department of Chemical Engineering and Applied Chemistry Department of Chemical Engineering and Applied Chemistry University of Toronto Society of Cosmetic Chemist Ontario Chapter Meeting Society of Cosmetic Chemist Ontario Chapter Meeting May 26, 2011

Biocompatible Microemulsion Gels for the Delivery …1 Biocompatible Microemulsion Gels for the Delivery of Hydrophilic and Hydrophobic Active Ingredients Carol X. Xuan, O. Chung,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1

Biocompatible Microemulsion Gels for the Delivery of Hydrophilic and Hydrophobic Active IngredientsHydrophobic Active Ingredients

Carol X. Xuan, O. Chung, E.J. Acosta, Y‐L ChengDepartment of Chemical Engineering and Applied ChemistryDepartment of Chemical Engineering and Applied Chemistry

University of Toronto

Society of Cosmetic Chemist Ontario Chapter MeetingSociety of Cosmetic Chemist Ontario Chapter MeetingMay 26, 2011

Microem lsions (Microem lsions ( Es)Es)

2

Microemulsions (Microemulsions (μμEs)Es)

Es for the Deli er of Acti esEs for the Deli er of Acti es

3

µEs for the Delivery of ActivesµEs for the Delivery of Actives

• Ability to co‐solubilizehydrophilic and hydrophobic y p y pactives

• Enhancing skin permeation of active ingredients

• Novel low toxicity lecithin Pictures of the crows feet arealinker µEs by Yuan et al. for 

transdermal delivery

Pictures of the crows feet area of a volunteer at day 0 & day 28 after applying a linker lecithin μE containing 0 5% DeepalineμE containing 0.5% DeepalinePVB (anti‐wrinkle active).

Microem lsion GelsMicroem lsion Gels

4

Microemulsion GelsMicroemulsion Gels

• Microemulsion gel = μE + gelling agent(s)

S i li i ( H )• Stimuli‐responsive (temperature, pH, etc.)

• Possible gelling agents: gelatin poloxamers• Possible gelling agents: gelatin, poloxamers, carbomer, gellan gum, etc.

5

Objecti eObjecti eObjectiveObjective

Modify the viscosity of low toxicity linker lecithin microemulsions usinglinker lecithin microemulsions using thermoresponsive viscosity modifying 

t ( l ti & l 407)agents (gelatin & poloxamer 407)

6

Microem lsion ComponentsMicroem lsion ComponentsMicroemulsion ComponentsMicroemulsion Components

Hydrophilic i k

LipophilicLinker

SurfactantLecithin

Linkers

Linker Lecithin

7

MethodologMethodologMethodologyMethodology

SurfactantsSurfactants

H2O OilGelling Agents

MicroemulsionGel

RT

8

Ternar Phase Diagram (25Ternar Phase Diagram (25ooC)C)Ternary Phase Diagram (25Ternary Phase Diagram (25ooC)C)

fSurfactants

Microemulsion Gels

Oil WaterOil Water

9

Gelatin as Viscosit Modif ing AgentGelatin as Viscosit Modif ing AgentGelatin as Viscosity Modifying AgentGelatin as Viscosity Modifying Agent

• Able to modify the viscosity of linker lecithin μE

• Produce thermoresponsive microemulsion gels• Produce thermoresponsive microemulsion gels at ~ 20% w/w gelatin

Can incorporate ≤ 40% oil in the microemulsion gelsgCan adjust gel hardness and opacity by varying oil, water oropacity by varying oil, water or gelatin content

10

P lP l 407 Vi it M dif i A t407 Vi it M dif i A tPoloxamerPoloxamer 407 as Viscosity Modifying Agent407 as Viscosity Modifying Agent

• Able to modify the viscosity of linker lecithin μE

P d th• Produces thermo‐responsive, transparent i l i l

T↑

microemulsion gels at ~ 20% w/w poloxamer 407

T ↑

Can incorporate 10% oilShear thinningShear thinning“Shelf life” > 1 year

11

Rheological ComparisonRheological ComparisonRheological ComparisonRheological Comparison

12

S mmarS mmarSummarySummary

• Viscosity of low toxicity lecithin‐based linker microemulsions can be modified with addition of gelling agents such as gelatin and poloxamer 407

Addi i f 20 % l i l 407• Addition of 20 wt% gelatin or poloxamer 407 can produce thermoresponsive microemulsion gels

• Hardness and opacity of microemulsion gels can b dj t d b i il t d llibe adjusted by varying oil, water and gelling agent content

13

Ackno ledgementAckno ledgementAcknowledgementAcknowledgement

• Mengyan Li (summer student)

• Laboratory of Colloid Formulation and Engineering (LCFE)Engineering (LCFE)

• Natural Sciences and Engineering Research• Natural Sciences and Engineering Research Council of Canada 20/20 Ophthalmic Network

14

ReferencesReferences

1 A t E Ch O X X Y L ithi li k i l i i t d l

ReferencesReferences

1. Acosta, E.; Chung, O.; Xuan, X.Y. Lecithin‐linker microemulsions in transdermaldelivery. Journal of Drug Delivery Science and Technology. 21‐1 (2011) 77‐87. 

2. Boonme, P. Applications of microemulsions in cosmetics. Journal of Cosmetic Dermatology. 6 (2007) 223‐228.

3. Yuan,J.S.; Ansari,M.; Samaan,M.; Acosta,E.J. Linker‐based lecithin microemulsionsfor transdermal delivery of lidocaine. International Journal of Pharmaceutics. 349for transdermal delivery of lidocaine. International Journal of Pharmaceutics. 349 (2008) 130‐143.

4. Yuan, J.S. Yuan; Acosta, E.J. Extended release of lidocaine from linker‐based lecithin microemulsion International Journal of Pharmaceutics 368 (2009) 63 71lecithin microemulsion. International Journal of Pharmaceutics. 368 (2009) 63‐71.

5. Sottmann, T.; Stubenrauch, C. Microemulsions: Background, New Concepts, Applications, Perspectives. Oxford, Wiley‐Blackwell, 2009.

6. Kogan, A.; Garti, N. Microemulsion as transdermal drug delivery vehicles. Advances in Colloid and Interface Science. 123‐126 (2006) 369‐385.

7 Petit C ; Zemb Th ; Pileni M P Structural study of microemulsion based gels at7. Petit, C.; Zemb, Th.; Pileni, M.P. Structural study of microemulsion‐based gels at the saturation point. Langmuir. 7 (1991) 223‐231.

15

Th k Y !Thank You!

Carol Xuan: [email protected]