38
Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas * Angelos Georghiou August 20, 2014 Abstract Decision rules provide a flexible toolbox for solving the computationally demanding, multistage adaptive optimization problems. There is a plethora of real-valued decision rules that are highly scalable and achieve good quality solutions. On the other hand, existing binary decision rule struc- tures tend to produce good quality solutions at the expense of limited scalability, and are typically confined to worst-case optimization problems. To address these issues, we first propose a linearly parameterised binary decision rule structure and derive the exact reformulation of the decision rule problem. In the cases where the resulting optimization problem grows exponentially with respect to the problem data, we provide a systematic methodology that trades-off scalability and optimal- ity, resulting to practical binary decision rules. We also apply the proposed binary decision rules to the class of problems with random-recourse and show that they share similar complexity as the fixed-recourse problems. Our numerical results demonstrate the effectiveness of the proposed binary decision rules and show that they are (i) highly scalable and (ii) provide high quality solutions. Keywords. Adaptive Optimization, Binary Decision Rules, Mixed-integer optimization. 1 Introduction In this paper, we use robust optimization techniques to develop efficient solution methods for the class of multistage adaptive mixed-integer optimization problems. The one-stage variant of the problem can be described as follows: Given matrices A R m×k ,B R m×q ,C R n×k ,D R q×k ,H R m×k and a probability measure P ξ supported on set Ξ for the uncertain vector ξ R k , we are interested in choosing * Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, USA, E-mail: [email protected]. Automatic Control Laboratory, ETH Zurich, Switzerland, E-mail: [email protected], [email protected] 1

Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Binary Decision Rules for Multistage Adaptive

Mixed-Integer Optimization

Dimitris Bertsimas∗ Angelos Georghiou†

August 20, 2014

Abstract

Decision rules provide a flexible toolbox for solving the computationally demanding, multistage

adaptive optimization problems. There is a plethora of real-valued decision rules that are highly

scalable and achieve good quality solutions. On the other hand, existing binary decision rule struc-

tures tend to produce good quality solutions at the expense of limited scalability, and are typically

confined to worst-case optimization problems. To address these issues, we first propose a linearly

parameterised binary decision rule structure and derive the exact reformulation of the decision rule

problem. In the cases where the resulting optimization problem grows exponentially with respect

to the problem data, we provide a systematic methodology that trades-off scalability and optimal-

ity, resulting to practical binary decision rules. We also apply the proposed binary decision rules

to the class of problems with random-recourse and show that they share similar complexity as the

fixed-recourse problems. Our numerical results demonstrate the effectiveness of the proposed binary

decision rules and show that they are (i) highly scalable and (ii) provide high quality solutions.

Keywords. Adaptive Optimization, Binary Decision Rules, Mixed-integer optimization.

1 Introduction

In this paper, we use robust optimization techniques to develop efficient solution methods for the class

of multistage adaptive mixed-integer optimization problems. The one-stage variant of the problem can

be described as follows: Given matrices A ∈ Rm×k, B ∈ Rm×q, C ∈ Rn×k, D ∈ Rq×k, H ∈ Rm×k and a

probability measure P ξ supported on set Ξ for the uncertain vector ξ ∈ Rk, we are interested in choosing

∗Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, USA, E-mail:[email protected].

†Automatic Control Laboratory, ETH Zurich, Switzerland, E-mail: [email protected],[email protected]

1

Page 2: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

n real-valued functions x(∙) ∈ Rk,n and q binary functions y(∙) ∈ Bk,q in order to solve:

minimize E ξ

((Cξ)>x(ξ) + (Dξ)>y(ξ)

)

subject to x(∙) ∈ Rk,n, y(∙) ∈ Bk,q,

Ax(ξ) + By(ξ) ≤ Hξ,

∀ξ ∈ Ξ.

(1)

Here, Rk,n denotes the space of all real-valued functions from Rk to Rn, and Bk,q the space of binary

functions from Rk to {0, 1}q. Problem (1) has a long history both from the theoretical and practical

point of view, with applications in many fields such as engineering [22, 31], operations management

[5, 29], and finance [13, 14]. From a theoretical point of view, Dyer and Stougie [18] have shown that

computing the optimal solution for the class of Problems (1) involving only real-valued decisions, is

#P-hard, while their multistage variants are believed to be “computationally intractable already when

medium-accuracy solutions are sought” [30]. In view of these complexity results, there is a need for

computationally efficient solution methods that possibly sacrifices optimality for tractability. To quote

Shapiro and Nemirovski [30], “. . . in actual applications it is better to pose a modest and achievable goal

rather than an ambitious goal which we do not know how to achieve.”

A drastic simplification that achieves this goal is to use decision rules. This functional approximation

restricts the infinite space of the adaptive decisions x(∙) and y(∙) to admit pre-specified structures,

allowing the use of numerical solution methods. Decisions rules for real-valued functions have been used

since 1974 [19]. Nevertheless, their potential was not fully exploited until recently, when new advances

in robust optimization provided the tools to reformulate the decision rule problem as tractable convex

optimization problems [4, 7]. Robust optimization techniques were first used by Ben-Tal et al. [6] to

reformulate the linear decision rule problem. In this work, real-valued functions are parameterised as

linear function of the random variables, i.e., x(ξ) = x>ξ for x ∈ Rk. The simple structure of linear

decision rules offers the scalability needed to tackle multistage adaptive problems. Even though linear

decision rules are known to be optimal in a number of problem instances [1, 11, 23], their simple structure

generically sacrifices a significant amount of optimality in return for scalability. To gain back some

degree of optimality, attention was focused on the construction of non-linear decision rules. Inspired

by the linear decision rule structure, the real-valued adaptive decisions are parameterised as x(ξ) =

x>L(ξ), x ∈ Rk′, where L : Rk → Rk′

, k′ ≥ k, is a non-linear operator defining the structure of the

decision rule. This approximation provides significant improvements in solution quality, while retaining

in large parts the favourable scalability properties of the linear decision rules. Table 1 summarizes

non-linear decision rules from the literature that are parameterized as x(ξ) = x>L(ξ), together with the

complexity of the induced convex optimization problems. A notable exception of real-valued decision rules

2

Page 3: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Real-Valued Decision Rule Structures

x(ξ) = x>L(ξ) Computational Burden ReferenceLinear LOP [6, 22, 26, 31]Piecewise linear LOP [17, 16, 20, 21]Multilinear LOP [20]Quadratic SOCOP [3, 20]Power, Monomial, Inverse monomial SOCOP [20]Polynomial SDOP [2, 12]

Table 1: The table summarizes the literature of real-valued decision rule structures for whichthe resulting semi-infinite optimization problem can be reformulated exactly using robust op-timization techniques. The computation burden refers to the structure of the resulting opti-mization problems for the case where the uncertainty set is described by a polyhedral set, withLinear Optimization Problems denoted by LOP, Second-Order Cone Optimization Problemsdenoted by SOCOP, and Semi-Definite Optimization Problems denoted by SDOP.

that are alternatively parameterized as x(ξ) = max{x>1 ξ, . . . , x>

P ξ}−max{x>1 ξ, . . . , x>

P ξ}, xp, xp ∈ Rk,

is proposed by Bertsimas and Georghiou [10] in the framework of worst-case adaptive optimization. This

structure offers near-optimal designs but requires the solution of mixed-integer optimization problems.

In contrast to the plethora of decision rule structures for real-valued decisions, the literature on

discrete decision rules is somewhat limited. There are, however, three notable exceptions that deal with

the case of worst-case adaptive optimization. The first one is the work of Bertsimas and Caramanis [8],

where integer decision rules are parameterized as y(ξ) = y>dξe, y ∈ Zk, where d∙e is the component-wise

ceiling function. In this work, the resulting semi-infinite optimization problem is further approximated

and solved using a randomized algorithm [15], providing only probabilistic guaranties on the feasibility of

the solution. The second binary decision rule structure was proposed by Bertsimas and Georghiou [10],

where the decision rule is parameterized as

y(ξ) =

1, max{y>1 ξ, . . . , y>

P ξ} − max{y>1

ξ, . . . , y>P

ξ} ≤ 0,

0, otherwise,(2)

with yp, yp∈ Rk, p = 1, . . . , P . This binary decision rule structure offers near-optimal designs at the

expense of scalability. Finally, in the recent work by Hanasusanto et al. [24], the binary decision rule is

restricted to the so called “K-adaptable structure”, resulting to binary adaptable policies with K contin-

gency plans. This approximation is an adaption of the work presented in Bertsimas and Caramanis [9],

and its use is limited to two-stage adaptive problems.

The goal of this paper is to develop binary decision rules structures that can be used together with

the real-valued decision rules listed in Table 1 for solving multistage adaptive mixed-integer optimization

problems. The proposed methodology is inspired by the work of Bertsimas and Caramanis [8], and uses

the tools developed in Georghiou et al. [20] to robustly reformulate the problem into a finite dimensional

3

Page 4: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

mixed-integer linear optimization problem. The main contributions of this paper can be summarized as

follows.

1. We propose a linear parameterized binary decision rule structure, and derive the exact reformulation

of the decision rule problem that achieves the best binary decision rule. We prove that for general

polyhedra uncertainty sets and arbitrary decision rule structures, the decision rule problem is

computationally intractable, resulting in mixed-integer linear optimization problems whose size

can grow exponentially with respect to the problem data. To remedy this exponential growth,

we use similar ideas as those discussed in Georghiou et al. [20], to provide a systematic trade-off

between scalability and optimality, resulting to practical binary decision rules.

2. We apply the proposed binary decision rules to the class of problems with random-recourse, i.e.,

to problem instances where the technology matrix B(ξ) is a given function of the uncertain vector

ξ. We provide the exact reformulation of the binary decision rule problem, and we show that

the resulting mixed-integer linear optimization problem shares similar complexity as in the fixed-

recourse case.

3. We demonstrate the effectiveness of the proposed methods in the context of a multistage inventory

control problem (fixed-recourse problem), and a multistage knapsack problem (random-recourse

problem). We show that for the inventory control problem, we are able to solve problem instances

with 50 time stages and 200 binary recourse decisions, while for the knapsack problem we are able

to solve problem instances with 25 time stages and 1300 binary recourse decisions.

The rest of this paper is organized as follows. In Section 2, we outline our approach for binary decision

rules in the context of one-stage adaptive optimization problems with fixed-recourse, and in Section 3

we discuss the extension to random-recourse problems. In Section 4, we extend the proposed approach

to multistage adaptive optimization problems and in Section 5, we present our computational results.

Throughout the paper, our work is focused on problem instances involving only binary decision rules for

ease of exposition. The extension to problem instances involving both real-valued and binary recourse

decisions can be easily extrapolated, and thus omitted.

Notation. We denote scalar quantities by lowercase, non-bold face symbols and vector quantities by

lowercase, boldface symbols, e.g., x ∈ R and x ∈ Rn, respectively. Similarly, scalar and vector valued

functions will be denoted by, x(∙) ∈ R and x(∙) ∈ Rn, respectively. Matrices are denoted by uppercase

symbols , e.g., A ∈ Rn×m. We model uncertainty by a probability space(Rk,B

(Rk),P ξ

)and denote the

elements of the sample space Rk by ξ. The Borel σ-algebra B(Rk)

is the set of events that are assigned

probabilities by the probability measure P ξ . The support Ξ of P ξ represents the smallest closed subset

4

Page 5: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

of Rk which has probability 1, and E ξ (∙) denotes the expectation operator with respect to P ξ . Tr (A)

denotes the trace of a square matrix A ∈ Rn×n and 1(∙) is the indicator function. Finally, ek the kth

canonical basis vector, while e denotes the vector whose components are all ones. In both cases, the

dimension will be clear from the context.

2 Binary Decision Rules for Fixed-Recourse Problems

In this section, we present our approach for one-stage adaptive optimization problems with fixed recourse,

involving only binary decisions. Given matrices B ∈ Rm×q, D ∈ Rq×k, H ∈ Rm×k and a probability

measure P ξ supported on set Ξ for the uncertain vector ξ ∈ Rk, we are interested in choosing binary

functions y(∙) ∈ Bk,q in order to solve:

minimize E ξ

((Dξ)>y(ξ)

)

subject to y(∙) ∈ Bk,q,

By(ξ) ≤ Hξ,

∀ξ ∈ Ξ.

(3)

Here, we assume that the uncertainty set Ξ is a non-empty, convex and compact polyhedron

Ξ ={

ξ ∈ Rk : ∃ζ ∈ Rv such that Wξ + Uζ ≥ h, ξ1 = 1}

, (4)

where W ∈ Rl×k, U ∈ Rl×v and h ∈ Rl. Moreover, we assume that the linear hull of Ξ spans Rk. The

parameter ξ1 is set equal to 1 without loss of generality as it allows us to represent affine functions of

the non-degenerate outcomes (ξ2, . . . , ξk) in a compact manner as linear functions of ξ = (ξ1, . . . , ξk).

If the distribution governing the uncertainty ξ is unknown or if the decision maker is very risk-averse,

then one might choose to alternatively minimize the worst-case costs with respect to all possible scenarios

ξ ∈ Ξ. This can be achieved, by replacing the objective function in Problem (3) with the worst-case ob-

jective max ξ ∈Ξ

((Dξ)>y(ξ)

). By introducing the auxiliary variable τ ∈ R and an epigraph formulation,

we can equivalently write the worst-case problem as the following adaptive robust optimization problem.

minimize τ

subject to τ ∈ R, y(∙) ∈ Bk,q,

(Dξ)>y(ξ) ≤ τ,

By(ξ) ≤ Hξ,

∀ξ ∈ Ξ.(5)

Notice that ξ appears in the left hand side of the constraint (Dξ)>y(ξ) ≤ τ , multiplying the binary

5

Page 6: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

decisions y(ξ). Therefore, Problem (5) is an instance of the class of problems with random-recourse,

which will be investigated in Section 3.

Problem (3) involves a continuum of decision variables and inequality constraints. Therefore, in

order to make the problem amenable to numerical solutions, there is a need for suitable functional

approximations for y(∙).

2.1 Structure of Binary Decision Rules

In this section, we present the structure of the binary decision rules. We restrict the feasible region of

the binary functions y(∙) ∈ Bk,q to admit the following piecewise constant structure:

y(ξ) = Y G(ξ), Y ∈ Zq×g,

0 ≤ Y G(ξ) ≤ e,

∀ξ ∈ Ξ, (6a)

where G : Rk → {0, 1}g is a piecewise constant function:

G1(ξ) := 1, Gi(ξ) := 1(α>

i ξ ≥ βi

), i = 2, . . . , g, (6b)

for given αi ∈ Rk and βi ∈ R, i = 2, . . . , g. Here, we assume that both the set {ξ ∈ Ξ : α>i ξ ≥ βi} and

{ξ ∈ Ξ : α>i ξ ≤ βi} have non-empty interior for all i = 2, . . . , g, and α>

i ξ−βi 6= α>j ξ−βj for all ξ ∈ Ξ

where i, j ∈ {1, . . . , g}, i 6= j. Since, G(∙) is a piecewise constant function, y(ξ) = Y G(ξ), Y ∈ Zq×g can

give rise to an arbitrary integer decision rule. By imposing the additional constraint 0 ≤ Y G(ξ) ≤ e, for

all ξ ∈ Ξ, y(∙) is restricted to the space of binary decision rules.

Applying decision rules (6) to Problem (3) yields the following semi-infinite problem, which involves

a finite number of decision variables Y ∈ Zq×g, and an infinite number of constraints:

minimize E ξ

((Dξ)>Y G(ξ)

)

subject to Y ∈ Zq×g,

B Y G(ξ) ≤ Hξ,

0 ≤ Y G(ξ) ≤ e,

∀ξ ∈ Ξ.

(7)

Notice that all decision variables appear linearly in Problem (7). Nevertheless, the objective and con-

straints are non-linear functions of ξ.

The following example illustrates the use of the binary decision rule (7) in a simple instance of

Problem (3), motivating the choice of vectors αi ∈ Rk and βi ∈ R, i = 2, . . . , g, and showing the

6

Page 7: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

relationship between Problems (3) and (7).

Example 1 Consider the following instance of Problem (3):

minimize E ξ

(y(ξ)

)

subject to y(∙) ∈ B2,1,

y(ξ) ≥ ξ2,

∀ξ ∈ Ξ,

(8)

where P ξ is a uniform distribution supported on Ξ ={(ξ1, ξ2) ∈ R2 : ξ1 = 1, ξ2 ∈ [−1, 1]

}. The

optimal solution of Problem (8) is y∗(ξ) = 1(ξ2 ≥ 0) achieving an optimal value of 12 . One can attain

the same solution by solving the following semi-infinite problem where G(∙) is defined to be G1(ξ) = 1,

G2(ξ) = 1(ξ2 ≥ 0), i.e., α2 = (0, 1)>, β2 = 0 and g = 2, see Figure 1.

minimize E ξ

(y>G(ξ)

)

subject to y ∈ Z2,

y>G(ξ) ≥ ξ2,

0 ≤ y>G(ξ) ≤ 1,

∀ξ ∈ Ξ.(9)

The optimal solution of Problem (9) is y∗ = (0, 1)> achieving an optimal value of 12 , and is equivalent

to the optimal binary decision rule in Problem (8).

0

1

-1 10

Ξ

ξ2

G2(ξ)

Figure 1: Plot of piecewise constant function G2( ξ ) = 1(ξ2 ≥ 0). This structure of G(∙) will give

rise of piecewise constant decision rules y( ξ ) = y>G( ξ ), for some y ∈ R2. If one imposes constraints

y ∈ Z2 and 0 ≤ y>G( ξ ) ≤ 1, y(∙) is restricted to the space of binary decision rules induced by G.

In the following section, we present robust reformulations of the semi-infinite Problem (7).

2.2 Computing the Best Binary Decision Rule

In this section, we present an exact reformulation of Problem (7). The solution of the reformulated

problem will achieve the best binary decision rule associated with structure (6). The main idea used in

7

Page 8: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

this section is to map Problem (7) to an equivalent lifted adaptive optimization problem on a higher-

dimensional probability space. This will allow to represent the non-convex constraints with respect to ξ

in Problem (7), as linear constraints in the lifted adaptive optimization problem. The relation between

the uncertain parameters in the original and the lifted problems is determined through the piecewise

constant operator G(∙). By taking advantage of the linear structure of the lifted problem, we will employ

linear duality arguments to reformulate the semi-infinite structure of the lifted problem into a finite

dimensional mixed-integer linear optimization problem. The work presented in this section uses the

tools developed by Georghiou et al. [20, Section 3].

We define the non-linear operator

L : Rk → Rk′

, L(ξ) =

ξ

G(ξ)

, (10)

where k′ = k + g, and define the projection matrices R ξ ∈ Rk×k′, RG ∈ Rg×k′

such that

R ξ L(ξ) = ξ, RGL(ξ) = G(ξ).

We will refer to L(∙) as the lifting operator. Using L(∙) and R ξ , RG, we can rewrite Problem (7) into the

following optimization problem:

minimize E ξ

((DR ξ L(ξ))>Y RGL(ξ)

)

subject to Y ∈ Zq×g,

B Y RGL(ξ) ≤ HR ξ L(ξ),

0 ≤ Y RGL(ξ) ≤ e,

∀ξ ∈ Ξ.

(11)

Notice that this simple reformulation still has infinite number of constraints. Nevertheless, due to the

structure of R ξ and RG, the constraints are now linear with respect to L(ξ). The objective function of

Problem (11) can be further reformulated to

E ξ

((DR ξ L(ξ))>Y RGL(ξ)

)= Tr

(MR>

ξ D>Y RG

),

where M ∈ Rk′×k′, M = E ξ (L(ξ)L(ξ)>) is the second order moment matrix of the uncertain vector

L(ξ). In some special cases where the P ξ has a simple structure, e.g., P ξ is a uniform distribution, and

G(∙) is not too complicated, M can be calculated analytically. If this is not the case, an arbitrarily

good approximation of M can be calculated using Monte Carlo simulations. This is not computationally

8

Page 9: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

demanding as it does not does not involve an optimization problem, and can be done offline.

We now define the uncertain vector ξ′ = (ξ′>1 , ξ′>

2 )> ∈ Rk′, such that ξ′ := L(ξ) = (ξ>, G(ξ)>)>. ξ′

has probability measure P ξ ′ which is defined on the space(Rk′

,B(Rk′))

and is completely determined

by the probability measure P ξ through the relation

P ξ ′ (B′) := P ξ

({ξ ∈ Rk : L(ξ) ∈ B′}

)∀B′ ∈ B(Rk′

). (12)

We also introduce the probability measure support

Ξ′ := L(Ξ) ={

ξ′ ∈ Rk′: ∃ξ ∈ Ξ such that L(ξ) = ξ′

},

={

ξ′ ∈ Rk′: R ξ ξ

′ ∈ Ξ, L(RGξ′) = ξ′}

,(13)

and the expectation operator E ξ ′(∙) with respect to the probability measure P ξ ′ . We will refer to P ξ ′ and

Ξ′ as the lifted probability measure and uncertainty set, respectively. Notice that although Ξ is a convex

polyhedron, Ξ′ can be highly non-convex due to the non-linear nature of L(∙). Using the definition of ξ′

we introduce the following lifted adaptive optimization problem :

minimize Tr(M ′R>

ξ D>Y RG

)

subject to Y ∈ Zq×g,

B Y RGξ′ ≤ HR ξ ξ′,

0 ≤ Y RGξ′ ≤ e,

∀ξ′ ∈ Ξ′,

(14)

where M ′ ∈ Rk′×k′, M ′ = E ξ ′(ξ′ξ′>) is the second order moment matrix associated with ξ′. Since there

is an one-to-one mapping between P ξ and P ξ ′ , M = M ′.

Proposition 1 Problems (11) and (14) are equivalent in the following sense: both problems have the

same optimal value, and there is a one-to-one mapping between feasible and optimal solutions in both

problems.

Proof See [20, Proposition 3.6 (i)].

The lifted uncertainty set Ξ′ is an open set due to the discontinuous nature of G(∙). This can be

problematic in an optimization framework. We now define Ξ′:= cl(Ξ′) to be the closure of set Ξ′, and

9

Page 10: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

introduce the following variant of Problem (14).

minimize Tr(M ′R>

ξ D>Y RG

)

subject to Y ∈ Zq×g,

B Y RGξ′ ≤ HR ξ ξ′,

0 ≤ Y RGξ′ ≤ e,

∀ξ′ ∈ Ξ′,

(15)

The following proposition demonstrates that Problems (14) and (15) are in fact equivalent.

Proposition 2 Problems (14) and (15) are equivalent in the following sense: both problems have the

same optimal value, and there is a one-to-one mapping between feasible and optimal solutions in both

problems.

Proof To prove the assertion, it is sufficient to show that Problems (14) and (15) have the same feasible

region. Notice, that since the constraints are linear in ξ′, the semi-infinite constraints in Problems (14)

can be equivalently written as

(HR ξ − B Y RG) ∈ (cone(Ξ′)∗)m,

(Y RG) ∈ (cone(Ξ′)∗)q,

(ee>1 − Y RG) ∈ (cone(Ξ′)∗)q,

where cone(Ξ′)∗ is the dual cone of cone(Ξ′). Similarly, the semi-infinite constraints in Problems (15)

can be equivalently written as

(HR ξ − B Y RG) ∈ (cone(Ξ′)∗)m,

(Y RG) ∈ (cone(Ξ′)∗)q,

(ee>1 − Y RG) ∈ (cone(Ξ

′)∗)q.

From [28, Corollary 6.21], we have that cone(Ξ′)∗ = cone(Ξ′)∗, and therefore, we can conclude that the

feasible region of Problems (14) and (15) is equivalent.

Problem (15) is linear to both the decision variables Y and the uncertain vector ξ′. Despite this

nice bilinear structure, in the following we demonstrate that Problems (11) and (15) are generically

intractable for decision rules of type (6).

Theorem 1 Problems (11) and (15) defined through L(∙) in (10) and G(∙) in (6b), are NP-hard even

when Y ∈ Zq×g is relaxed to Y ∈ Rq×g.

10

Page 11: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Proof See Appendix A.

Theorem 1 provides a rather disappointing result on the complexity of Problems (11) and (15).

Therefore, unless P = NP, there is no algorithm that solves generic problems of type (11) and (15) in

polynomial time. This difficulty stems from the generic structure of G(∙) in (6b), combined with a generic

polyhedral uncertainty set Ξ, resulting in highly non-convex sets Ξ′. Nevertheless, in the following we

derive the exact polyhedral representation of conv(Ξ′), allowing us to use linear duality arguments from

[4, 7], to reformulate Problem (15) into a mixed-integer linear optimization problem. We remark that

Theorem 1 also covers decision rule problems involving real-valued, piecewise constant decisions rules

constructed using (6b), and demonstrates that these problems are also computationally intractable.

We construct the convex hull of Ξ′by taking convex combinations of its extreme points, denoted by

ext(Ξ′). These points are either the extreme points of Ξ′, or the limit points Ξ

′\Ξ′. We construct these

points as follows: First, using the definition of G(∙) we partition Ξ into P polyhedra, Ξp. Then, for all

extreme points of Ξp, ξ ∈ ext(Ξp), we calculate the one-side limit point at L(ξ). The set of all one-side

limit points will coincides with the set of extreme points of Ξ′, see Figure 3. The partitions of Ξ can be

formulated as follows:

Ξp =

ξ ∈ Ξ : α>i ξ ≥ βi, i ∈ Gp ⊆ {2, . . . , g},

α>i ξ ≤ βi, i ∈ {2, . . . , g}\Gp

, p = 1, . . . , P. (16)

Here, Gp is constructed such that the number of partitions P is maximized, while ensuring that all Ξp

are (a) non-empty, (b) any partition pair Ξi and Ξj , i 6= j, can overlap only on one their facets, and (c),

Ξ =⋃P

p=1 Ξp, see Figure 2. Depending on the choices of αi and βi, the number of partitions can be up

Ξ

Ξ1

Ξ2Ξ3

Ξ4

α>1 ξ = β1

α>2 ξ = β2

Figure 2: The uncertainty set Ξ is partitioned into Ξp, p = 1, . . . , 4 polyhedra using α >1 ξ = β1 and

α >2 ξ = β2, such that Ξ = Ξ1 ∪ . . . ∪ Ξ4.

to P = 2g. We define V and V (p) such that

V :=P⋃

p=1

V (p), V (p) := ext(Ξp), p = 1, . . . , P. (17)

11

Page 12: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Due to the discontinuity of G(∙), the set of points {ξ′ ∈ Rk′: ξ′ = L(ξ), ξ ∈ V } does not contain the

points Ξ′\Ξ′. To construct these points, we now define the one-sided limit points Lp(ξ) = (ξ>, Gp(ξ)>)>

for all ξ ∈ V (p) and each partition p = 1, . . . , P . Here, Gp(ξ) : Rk → Rg is given by.

Gp(ξ) := limu∈Ξp, u→ ξ

G(u), ∀ξ ∈ V (p), p = 1, . . . , P. (18)

From definition (6b), for each partition p, G(ξ) is constant for all ξ in the interior of Ξp, which is denoted

by int(Ξp). Therefore, for each ξ ∈ V (p), the one-side limit Gp(ξ) is equal to G(ξ) for all ξ ∈ int(Ξp).

Furthermore, since each partition Ξp spans Rk, then there exists at least k + 1 vertices in Ξp, and

therefore, at least k + 1 one-sided limit points Gp(ξ). From the definition (18), we have that Lp(ξ) are

the extreme points of Ξ′for all ξ ∈ V (p) and p = 1, . . . , P , see Figure 3.

0

1

0 105

Ξ

Ξ1 Ξ2

ξ′1

ξ′2

Figure 3: Convex hull representation of Ξ′

induced by lifting ξ ′ = (ξ′1, ξ′2) = L(ξ) = (ξ, G(ξ))>,

where G(ξ) = 1(ξ ≥ 5) and ξ ∈ [0, 10]. Here, V = {ext(Ξ1), ext(Ξ2)} = {0, 5, 10}. The convex hull

is constructed by taking convex combinations of the points L(0), L(5), L(10) (black dots), and point

(5, G1(5))> (white dot), where G1(5) is the one-side limit point at ξ = 5 using partition Ξ1.

The following proposition gives the polyhedral representation of the convex hull of Ξ′.

Proposition 3 Let L(∙) be given by (10) and G(∙) being defined in (6b). Then, the tight, closed, outer

approximation for the convex hull of Ξ′is given by the following polyhedron:

conv (Ξ′) =

{ξ′ = (ξ′>

1 , ξ′>2 )> ∈ Rk′

: ∃ζp(v) ∈ R+, ∀v ∈ V (p), p = 1, . . . , P, such thatP∑

p=1

v∈V (p)

ζp(v) = 1,

ξ′1 =

P∑

p=1

v∈V (p)

ζp(v)v,

ξ′2 =

P∑

p=1

v∈V (p)

ζp(v)Gp(v)}

.

(19)

Proof The proof is split in two parts: First, we prove that L(Ξ) ⊆ conv (Ξ′) holds, and then we show

12

Page 13: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

that conv (cl(L(Ξ))) ⊇ conv (Ξ′) is true as well, concluding that conv (cl(L(Ξ))) = conv (Ξ

′).

To prove assertion L(Ξ) ⊆ conv (Ξ′), pick any ξ ∈ Ξ. By construction ξ belongs to some partition of

Ξ, say Ξp, for which L(ξ) is an element of Ξ′. There are two possibilities: (a) ξ lies on the boundary of

the partition and hence on one of its facets, or (b) ξ lies in the interior of Ξp. If ξ lies on a facet, and

since Ξp spans Rk, then Caratheodory’s Theorem implies that there are k extreme points of the facet,

v1, . . . , vk ∈ V (p), such that for some δ(v) ∈ Rk+ with

∑ki=1 δ(vi) = 1, we have ξ =

∑ki=1 δ(vi)vi. Since

G(∙) is constant on each facet, then the k one-side limit points Gp(vi), v1, . . . , vk ∈ V (p), attain the

same value as G(ξ). Therefore, we have

G

(k∑

i=1

δ(vi)vi

)

=k∑

i=1

δ(vi)Gp(vi).

Hence, setting ζp(vi) = δ(vi), i = 1, . . . , k, in the definition of the convex hull with the rest of the ζ(v)

equal to zero proves part (a) of the assertion. If ξ lies in the interior of Ξp, then again by Caratheodory’s

Theorem there are k + 1 extreme points of Ξp such that for some δ(v) ∈ Rk+1+ and v1, . . . , vk+1 ∈ V (p)

with∑k+1

i=1 δ(vi) = 1, we have ξ =∑k+1

i=1 δ(vi)vi. By construction, there also exists k +1 one-sided limit

in the collection {Gp(v) : v ∈ V (p)} that attain the same value as G(ξ) for all ξ ∈ int(Ξp). Thus, we

have that

G

(k+1∑

i=1

δ(vi)vi

)

=k+1∑

i=1

δ(vi)Gp(vi).

Setting ζp(vi) = δ(vi), i = 1, . . . , k + 1, with the rest of the ζ(v) equal to zero proves part (b) of the

assertion.

To prove the second part of assertion, conv (cl(L(Ξ))) ⊇ conv (Ξ′), fix ξ′ ∈ Ξ

′. By construction, there

exists ζp(v) ∈ R+, p = 1, . . . , P , v ∈ V , such that

P∑

p=1

v∈V (p)

ζp(v) = 1, ξ′1 =

P∑

p=1

v∈V (p)

ζp(v)v, ξ′2 =

P∑

p=1

v∈V (p)

ζp(v)Gp(v).

This implies that

ξ′1

ξ′2

=

P∑

p=1

v∈V (p)

ζp(v)

v

Gp(v)

,

that is, ξ′ is a convex combination of either corner points or limit points of L(Ξ). Therefore, conv (Ξ′)

is equal to conv (cl(L(Ξ))) almost surely. This concludes the proof.

The convex hull (19) is a closed and bounded polyhedral set described by a finite set of linear

13

Page 14: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

inequalities. Therefore, one can rewrite (19) as the following polyhedron

conv(Ξ′) =

{ξ′ ∈ Rk′

: ∃ζ′ ∈ Rv′

such that W ′ξ′ + U ′ζ′ ≥ h′}

, (20)

where W ′ ∈ Rl′×k′, U ′ ∈ Rl′×v′

and h′ ∈ Rl′ are completely determined through Propositions 3.

The following proposition captures the essence of robust optimization and provides the tools for

reformulating the infinite number of constraints in Problem (15), see [4, 7]. The proof is repeated here

to keep the paper self-contained.

Proposition 4 For any Z ∈ Rm×k′and conv(Ξ

′) given by (20), the following statements are equivalent.

(i) Zξ′ ≥ 0 for all ξ′ ∈ conv(Ξ′),

(ii) ∃Λ ∈ Rm×l′

+ with ΛW ′ = Z, ΛU ′ = 0, Λh′ ≥ 0.

Proof We denote by Z>μ the μth row of the matrix Z. Then, statement (i) is equivalent to

Zξ′ ≥ 0 for all ξ′ ∈ conv(Ξ′),

⇐⇒ 0 ≤ minξ ′

{Z>

μ ξ : ∃ζ′ ∈ Rv′

, W ′ξ′ + U ′ζ′ ≥ h′}

, ∀μ = 1, . . . , m

⇐⇒ 0 ≤ maxΛμ∈Rl′

{h′>Λμ : W ′>Λμ = Zμ, U ′>Λμ = 0, Λμ ≥ 0

}, ∀μ = 1, . . . , m

⇐⇒ ∃Λμ ∈ Rl′ with W ′>Λμ = Zμ, U ′>Λμ = 0, h′>Λμ ≥ 0, Λμ ≥ 0, ∀μ = 1, . . . , m

(21)

The equivalence in the third line follows from linear duality. Interpreting Λ>μ as the μth row of a new

matrix Λ ∈ Rm×l shows that the last line in (21) is equivalent to assertion (ii). Thus, the claim follows.

Using Proposition 4 together with the polyhedron (20), we can now reformulate Problem (15) into

the following mixed-integer linear optimization problem.

minimize Tr(M ′R>

ξ D>Y RG

)

subject to Y ∈ Zq×g, Λ ∈ Rm×l′

+ , Γ ∈ Rq×l′

+ , Θ ∈ Rq×l′

+

BY RG + ΛW ′ = HR ξ , ΛU ′ = 0, Λh′ ≥ 0,

Y RG = ΓW ′, ΓU ′ = 0, Γh′ ≥ 0,

ee>1 − Y RG = ΘW ′, ΘU ′ = 0, Θh′ ≥ 0.

(22)

Here, Λ ∈ Rm×l′

+ , Γ ∈ Rq×l′

+ and Θ ∈ Rq×l′

+ are the auxiliary variables associated with constraints

B Y RGξ′ ≤ HR ξ ξ′, 0 ≤ Y RGξ′ and Y RGξ′ ≤ e, respectively. We emphasize that Problem (22) is the

exact reformulation of Problem (15), since (19) is a tight outer approximation of the convex hull of Ξ′.

Therefore, the solution of Problem (22) achieves the best binary decision rule associated with G(∙) in

14

Page 15: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

(6b). Notice that the size of the Problem (22) grows quadratically with respect to the number of binary

decision q, and l′ the number of constraints of conv(Ξ′). However, l′ can be very large as it depends

on the cardinality of V , which is constructed using the extreme points of the P = 2g partitions Ξp.

Therefore, the size of Problem (22) can grow exponentially with respect to the description of Ξ and the

complexity of the binary decision rule, g, defined in (6).

In the following, we present instances of Ξ and G(∙), for which the proposed solution method will

result to mixed-integer optimization problems whose size grows only polynomially with respect to the

input parameters.

2.3 Scalable Binary Recision Rule Structures

In this section, we derive a scalable mixed-integer linear optimization reformulation of Problem (7) by

considering simplified instances of the uncertainty set Ξ and binary decision rules y(∙). We will show

that for the structure of Ξ and y(∙) considered in this section, the size of the resulting mixed-integer

linear optimization problem grows polynomially in the size of the original Problem (3) as well as the

description of the binary decision rules. We consider two cases: (i) uncertainty sets that can be described

as hyperrectangles and (ii) general polyhedral uncertainty sets.

We now consider case (i), and define the uncertainty set of Problem (3) to have the following hyper-

rectangular structure:

Ξ ={ξ ∈ Rk : l ≤ ξ ≤ u, ξ1 = 1

}, (23)

for given l, u ∈ Rk. We restrict the feasible region of the binary functions y(∙) ∈ Bk,q to admit the

piecewise constant structure (6a), but now G : Rk → {0, 1}g is written in the form

G(∙) = (G1(∙), G2,1(∙), . . . , G2,r(∙), . . . , Gk,r(∙))>,

with g = 1 + (k − 1)r. Here, G1 : Rk → {0, 1} and Gi,j : Rk → {0, 1}, for j = 1, . . . , r, i = 2, . . . , k, are

piecewise constant functions given by

G1(ξ) := 1, Gi,j(ξ) := 1 (ξi ≥ βi,j) , j = 1, . . . , r, i = 2, . . . , k, (24)

for fixed βi,j ∈ R, j = 1, . . . , r, i = 2, . . . , k. By construction, we assume that li < βi,1 < . . . , βi,r < ui,

for all i = 2, . . . , k. Structure (24) gives rise to binary decision rules that are discontinuous along the

axis of the uncertainty set, and have r discontinuities in each direction. Notice that (24) is a special

case of (6b), where vector α are replaced by ei. One can easily modify (24) such that the number of

discontinuities r is different for each direction ξi. We will refer to βi,1, . . . , βi,r as the breakpoints in

15

Page 16: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

direction ξi.

Problem (7) still retains the same semi-infinite structure using (23) and (24). In the following, we

use the same arguments as in Section 2.2, to (a) redefine Problem (7) into a higher dimensional space

and (b) construct the convex hull of the lifted uncertainty set and use it together with Proposition 4 to

reformulate the infinite number of constraints of the lifted problem.

We define the non-linear lifting operator L : Rk → Rk′to be L(∙) = (L1(∙)>, . . . , Lk(∙)>)> such that

L1 : Rk → R2, L1(ξ) = (ξ1, G1(ξ))>,

Li : Rk → Rr+1, Li(ξ) = (ξi, Gi(ξ)>)>, i = 2, . . . , k,(25)

with k′ = 2 + (k − 1)(r + 1). Here, with slight abuse of notation, Gi(∙) = (Gi,1(∙), . . . , Gi,r)> for

i = 2, . . . , k. Notice that L(∙) is separable in each component Li(∙), since Gi(∙) only involves ξi. We also

introduce matrices R ξ = (R ξ ,1, . . . , R ξ ,k) ∈ Rk×k′with R ξ ,1 ∈ Rk×2, R ξ ,i ∈ Rk×(r+1), i = 2, . . . , k, such

that

R ξ L(ξ) = ξ, R ξ ,iLi(ξ) = eiξi, i = 1, . . . , k, (26a)

and RG = (RG,1, . . . , RG,k) ∈ Rg×k′with RG,1 ∈ Rg×2, RG,i ∈ Rg×(r+1), i = 2, . . . , k, such that

RGL(ξ) = G(ξ), RG,iLi(ξ) = (0, . . . , Gi(ξ)>, . . . , 0)>, i = 1, . . . , k. (26b)

As in Section 2.2, using the definition of L(∙) and R ξ , RG in (25) and (26), respectively, we can rewrite

Problem (7) into Problem (11).

We now define the uncertain vector ξ′ = (ξ′>1 , . . . , ξ′>

k )> ∈ Rk′such that ξ′ = L(ξ) and ξ′

i = Li(ξ) for

i = 1, . . . , k. ξ′ has probability measure P ξ ′ defined using (12), and corresponding probability measure

support is give by

Ξ′ = L(Ξ) ={

ξ′ ∈ Rk′

: l ≤ R ξ ξ′ ≤ u, L(RGξ′) = ξ′

}. (27)

Notice that since both Ξ and L(∙) are separable in each component ξi, Ξ′ can be written in the following

equivalent form:

Ξ′ = L (Ξ) ={(ξ′>

1 , . . . , ξ′>k )> ∈ Rk′

: ξi ∈ Ξ′i, i = 1, . . . , k

},

where Ξ′i = Li(Ξ). Therefore, we can express conv(cl(Ξ′)) as

conv(cl(Ξ′)) ={(ξ′>

1 , . . . , ξ′>k )> ∈ Rk′

: ξ′i ∈ conv(cl(Ξ′

i)), i = 1, . . . , k},

={(ξ′>

1 , . . . , ξ′>k )> ∈ Rk′

: ξ′i ∈ conv(Ξ

′i), i = 1, . . . , k

}.

(28)

It is thus sufficient to derive a closed-form representation for the marginal convex hulls conv(Ξ′i).

16

Page 17: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

We now construct the polyhedral representation of conv(Ξ′i). As before, conv(Ξ

′i) will be con-

structed by taking convex combinations of its extreme points. Set conv(Ξ′1) has the trivial representation

conv(Ξ′1) = {ξ′

1 ∈ R2 : ξ′1 = e}. We define the sets Vi = {li, βi,1, . . . , βi,r, ui}, i = 2, . . . , k, and introduce

the following partitions for each dimension of Ξ.

Ξi,1 := {ξi ∈ R : li ≤ ξi ≤ βi,1},

Ξi,p := {ξi ∈ R : βi,p−1 ≤ ξi ≤ βi,p}, p = 2, . . . , r,

Ξi,r+1 := {ξi ∈ R : βi,r ≤ ξi ≤ ui},

i = 2, . . . , k. (29)

Therefore, Vi(1) = {li, βi,1}, Vi(p) = {βi,p−1, βi,p}, p = 2, . . . , r, Vi(r + 1) = {βi,r, ui}. It is easy to see

that points L(eiξi), ξi ∈ Vi, are extreme points of conv(Ξ′i), see Figure 4. Notice that Gi(eiξi) is constant

for all ξi ∈ int(Ξi,p), p = 1, . . . , r + 1, but can attain different values on the boundaries of the partitions.

To this end, for each partition and ξi ∈ Vi(p), we define the one-sided limit points Gi,p(eiξi) ∈ Rr+1

such that

Gi,p(eiξi) = limu∈Ξi,p, u→ξi

Gi(eiu), ∀ξi ∈ Vi(p), p = 1, . . . , r + 1, (30)

for all i = 2, . . . , k. Gi(eiξi) is constant for all ξi ∈ int(Ξi,p) and each partition p. Therefore, for each

ξi ∈ Vi(p), the one-side limit Gi,p(eiξ) is equal to G(eiξi) for all ξ ∈ int(Ξi,p).

0 1 2 30

10

1

Ξi

ξ′i,1

ξ′i,2

ξ′i,3

Figure 4: Convex hull representation of Ξ′i induced by lifting ξ ′

i = Li(ξ) = (ξi, Gi(ξ)>)>, where

Gi(ξ) = (1(ξi ≥ 1),1(ξi ≥ 2))> and ξi ∈ [0, 3]. Here, Vi = {0, 1, 2, 3}. The convex hull is con-

structed by taking convex combinations of the points L(0), L(1), L(2), L(3) (black dots), and points

(1, G1,1(1))>, (2, G1,2(2))> (white dot), where G1,1(1) and G1,2(2) are the one-side limit point at

points ξi = 1 and ξi = 2, respectively.

The following proposition gives the polyhedral representation of the each conv(Ξ′i), i = 2, . . . , k. A

visual representation of conv(Ξ′i) is depicted in Figure 4.

Proposition 5 For each i = 2 . . . , k, let Li(∙) be given by (25) and Gi(∙) being defined in (24). Then,

17

Page 18: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

the tight, closed, outer approximation for the convex hull of Ξ′i is given by the following polyhedron:

conv (Ξ′i) =

{ξ′

i = (ξ′>i,1, ξ′>i,2)

> ∈ Rr+1 : ∃ζi,p(v) ∈ R+, ∀v ∈ Vi(p), p = 1, . . . , r + 1, such thatr+1∑

p=1

v∈Vi(p)

ζi,p(v) = 1,

ξ′i,1 =r+1∑

p=1

v∈Vi(p)

ζi,p(v)v,

ξ′i,2 =

r+1∑

p=1

v∈Vi(p)

ζi,p(v)Gp(eiv)}

.

(31)

Proof Proposition 5 can be proven using similar arguments as in Proposition 3.

Set conv(Ξ′i) has 2r + 2 extreme points. Using the extreme point representation (31), conv(Ξ

′i) can

be represented through 4r+4 constraints. Therefore, conv(Ξ′) = ×k

i=1conv(Ξ′i) can be represented using

a total of 2 + k(4r + 4) constraints, i.e., its size grows quadratically in the dimension of Ξ, k, and the

complexity of the binary decision rule r. One can now use the polyhedral description (31) together

with Proposition 4, to reformulate Problem (15) into a mixed-integer linear optimization problem which

can be expressed in the form (22). The size of the mixed-integer linear optimization problem will be

polynomial in q, m, k and r. We emphasize that since the convex hull representation (31) is exact, the

solution of Problem (22) achieves the best binary decision rule associated with G(∙) defined in (24).

We now consider case (ii), and we assume that Ξ is a generic set of the type (4) and G(∙) is given

by (24). From Section 2, we know that the number of constraints needed to describe the polyhedral

representation of conv(Ξ′) grows exponentially with the description of Ξ and complexity of the decision

rule. In the following, we presented a systematic way to construct a tractable outer approximation

for conv(Ξ′). Using this outer approximation to reformulate the lifted problem (11), will not yield the

best binary decision rule structure associated with function G(∙) but rather a conservative approxima-

tion. Nevertheless, the size of the resulting mixed-integer linear optimization problem will only grow

polynomially with respect to the constrains of Ξ and complexity of the binary decision rule.

To this end, let {ξ ∈ Rk : l ≤ ξ ≤ u} be the smallest hyperrectangle containing Ξ. We have

Ξ ={ξ ∈ Rk : ∃ζ ∈ Rv such that Wξ + Uζ ≥ h, ξ1 = 1

},

={ξ ∈ Rk : ∃ζ ∈ Rv such that Wξ + Uζ ≥ h, ξ1 = 1, l ≤ ξ ≤ u

},

(32)

which implies that the lifted uncertainty set Ξ′ = L(Ξ) can be expressed as Ξ′ = Ξ′1 ∩ Ξ′

2, where

Ξ′1 :=

{ξ′ ∈ Rk′

: ∃ζ ∈ Rv such that WR ξ ξ′ + Uζ ≥ h, ξ′1 = 1

}

Ξ′2 :=

{ξ′ ∈ Rk′

: l ≤ R ξ ξ′ ≤ u, L(RGξ′) = ξ′

}.

18

Page 19: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Notice that Ξ′2 has exactly the same structure as (27). We thus conclude that

Ξ′ := {Ξ′1 ∩ conv(Ξ

′2)} ⊇ conv(Ξ

′), (33)

and therefore, Ξ′ can be used as an outer approximation of conv(Ξ′). Since conv(Ξ

′2) can be written

as the polyhedron induced by Proposition 5, set Ξ′ has a total of (l + 1) + (2 + k(4r + 4)) constraints.

As before, one can now use the polyhedral description of Ξ′ together with Proposition 4, to reformulate

Problem (15) into a mixed-integer linear optimization problem which can be expressed in the form (22).

The size of the mixed-integer linear optimization problem will be polynomial in q, m, k, l and r. Since

Ξ′ ⊇ conv(Ξ′), the solution of Problem (22) might not achieve the best binary decision rule induced by

(24), but rather a conservative approximation. Nevertheless, using this systematic decomposition of the

uncertainty set, we can efficiently apply binary decision rules to problems where the uncertainty set has

arbitrary convex polyhedral structure.

One can use G(∙) given by (24) together with this systematic decomposition of Ξ to achieve the same

binary decision rule structures as those offered by G(∙) defined in (6b). We will illustrate this through

the following example. Lets assume that the problem in hand requires a generic Ξ of type (4), and we

want to parameterize the binary decision rule to be a linear function of G(ξ) = 1(α>ξ ≥ β

)for some

α ∈ Rk and β ∈ R. We can introduce an additional random variable ξ in Ξ such that ξ = α>ξ. ξ is

completely determined by the random variables already presented in Ξ. The modified support can now

be written as follows,

Ξ ={

(ξ, ξ) ∈ Rk+1 : ∃ζ ∈ Rv, Wξ + Uζ ≥ h, ξ1 = 1, ξ = α>ξ}

,

={

(ξ, ξ) ∈ Rk+1 : ∃ζ ∈ Rv, Wξ + Uζ ≥ h, ξ1 = 1, ξ = α>ξ, l ≤ ξ ≤ u, l ≤ ξ ≤ u}

,

(34)

where {(ξ, ξ) ∈ Rk+1 : l ≤ ξ ≤ u, l ≤ ξ ≤ u} is the smallest hyperrectangle containing Ξ. We can now

use

G(ξ, ξ) = 1(ξ ≥ β

),

which is an instance of (24), to achieve the same structure as G(ξ) = 1(α>ξ ≥ β

). Defining appropriate

L(∙) and R ξ , RG, we can use the following decomposition of the lifted uncertainty set Ξ′ = Ξ′1 ∩ Ξ′

2 such

that

Ξ′1 :=

{(ξ′, ξ′) ∈ Rk′+1 : ∃ζ ∈ Rv such that WR ξ ξ

′ + Uζ ≥ h, ξ′1 = 1, ξ′ = α>R ξ ξ′}

,

Ξ′2 :=

{(ξ′, ξ′) ∈ Rk′+1 : l ≤ R ξ ξ

′ ≤ u, l ≤ ξ′ ≤ u, L(RG(ξ′, ξ′)) = (ξ′, ξ′)}

.

19

Page 20: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

By defining, Ξ′ := {Ξ′1 ∩ conv(Ξ′

2)} ⊇ conv(Ξ′) we can reformulate reformulate Problem (15) into a

mixed-integer linear optimization problem with polynomial number of decision variable and constraints

with respect to the the input data. Once more, we emphasize that this systematic decomposition might

not achieve the best binary decision rule induced by G(∙) but rather a conservative approximation.

Nevertheless, we can now achieve the same flexibility for the binary decision rules as those offered by

(6b) without the exponential growth in the size of the resulting problem.

3 Binary Decision Rules for Random-Recourse Problems

In this section, we present our approach for one-stage adaptive optimization problems with random

recourse. The solution method of this class of problems is an adaptation of the solution method presented

in Section 2.2. Given function B : Rk → Rm×q and matrices D ∈ Rq×k, H ∈ Rm×k and a probability

measure P ξ supported on set Ξ for the uncertain vector ξ ∈ Rk, we are interested in choosing binary

functions y(∙) ∈ Bk,q in order to solve:

minimize E ξ

((Dξ)>y(ξ)

)

subject to y(∙) ∈ Bk,q,

B(ξ)y(ξ) ≤ Hξ,

∀ξ ∈ Ξ,

(35)

where Ξ is a generic polyhedron of type (4). We assume that the recourse matric B(ξ) depends linearly

on the uncertain parameters. Therefore, the μth row of B(ξ) is representable as ξ>Bμ for matrices

Bμ ∈ Rk×q with μ = 1, . . . , m. Problem (35) can therefore be written as the following problem.

minimize E ξ

((Dξ)>y(ξ)

)

subject to y(∙) ∈ Bk,q,

ξ>Bμy(ξ) ≤ H>μ ξ, μ = 1, . . . , m

∀ξ ∈ Ξ,

(36)

where H>μ denotes the μth row of matrix H. Problem (36) involves a continuum of decision variables

and inequality constraints. Therefore, in order to make the problem amenable to numerical solutions,

we restrict y(∙) to admit structure (6). Applying the binary decision rules (6) to Problem (36) yields the

following semi-infinite problem, which involves a finite number of decision variables Y ∈ Zq×g, and an

20

Page 21: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

infinite number of constraints:

minimize E ξ

(ξ>D>Y G(ξ)

)

subject to Y ∈ Zq×g,

ξ>BμY G(ξ) ≤ H>μ ξ, μ = 1, . . . , m,

0 ≤ Y G(ξ) ≤ e,

∀ξ ∈ Ξ.

(37)

Notice that all decision variables appear linearly in Problem (7). Nevertheless, the objective and con-

straints are non-linear functions of ξ.

We now define the non-linear lifting operator L : Rk → Rk′such that

L : Rk → Rk′

, L(ξ) =

ξ

G(ξ)

G(ξ)ξ1

...

G(ξ)ξk

, (38)

k′ = k + g + gk. Note that including both components G(ξ) and G(ξ)ξ1 in L(ξ) is redundant as by

construction ξ1 = 1. Nevertheless, in the following we adopt formulation (38) for easy of exposition. We

also define matrices R ξ ∈ Rk×k′, and RG ∈ Rq×k′

such that

R ξ L(ξ) = ξ, RGL(ξ) = G(ξ). (39)

In addition, we define F : Rk×g → Rk′that expresses the quadratic polynomials ξ>BμY G(ξ), as linear

functions of L(ξ) through the following constraints:

y′μ = F (BμY ), y′>

μ L(ξ) = ξ>BμY G(ξ), y′μ ∈ Rk′

, μ = 1, . . . , m, ∀ξ ∈ Ξ. (40)

Constraints y′μ = F (BμY ), μ = 1, . . . , m, are linear, since F (∙) effectively reorders the entries of matrix

BμY into the vector y′μ. Using (38), (39) and (40), Problem (37) can now be rewritten into the following

21

Page 22: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

optimization problem.

minimize Tr(MR>

ξ D>Y RG

)

subject to Y ∈ Zq×g,

y′>μ L(ξ) ≤ H>

μ R ξ L(ξ), μ = 1, . . . , m,

y′μ = F (BμY ), y′

μ ∈ Rk′, μ = 1, . . . , m,

0 ≤ Y RGL(ξ) ≤ e,

∀ξ ∈ Ξ.

(41)

Problem (41) has similar structure as Problem (11), i.e., both Y and L(ξ) appear linearly in the con-

straints. Therefore, in the following we redefine Problem (41) in a higher dimensional space and apply

Proposition 4 to reformulate the problem into a mixed-integer optimization problem.

We define the uncertain vector ξ′ = (ξ′>1,1, ξ

′>1,2, ξ

′>2,1, . . . , ξ

′>2,k)> ∈ Rk′

such that ξ′ = L(ξ) and ξ′1,1 = ξ,

ξ′1,2 = G(ξ), and ξ′

2,i = G(ξ)ξi for i = 1, . . . , k. ξ′ has probability measure P ξ ′ defined as in (12) and

support Ξ′ = L(Ξ). Problem (41) can now be written as the equivalent semi-infinite problem defined on

the lifted space ξ′.

minimize Tr(M ′R>

ξ D>Y RG

)

subject to Y ∈ Zq×g,

y′>μ ξ′ ≤ H>

μ R ξ ξ′, μ = 1, . . . , m,

y′μ = F (BμY ), y′

μ ∈ Rk′, μ = 1, . . . , m,

0 ≤ Y RGξ′ ≤ e,

∀ξ′ ∈ Ξ′,

(42)

We will construct the convex hull of Ξ′in the same way as in Section 2.2. Notice that conv(Ξ

′) will have

the same number of extreme points as the convex hull defined through the lifting L(ξ) = (ξ>, G(ξ)>)>,

see Figure 5. By defining the partitions Ξp of Ξ as in (16), and Gp(ξ) as in (18), it is easy to see that

conv(Ξ′) can be described as a convex combination of the following points.

ξ

Gp(ξ)

Gp(ξ)ξ1

...

Gp(ξ)ξk

, ξ ∈ V (p), p = 1, . . . , P.

The following proposition gives the polyhedral representation of the convex hull of Ξ′.

22

Page 23: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

0

2

4

− 2

0

2− 2

0

2

0

2

4

− 2

0

2− 2

0

2

1

ξ1 ξ1

ξ2 ξ2

G(ξ)ξ2G(ξ)

Figure 5: Visualization of L( ξ ) = (ξ1, ξ2, G( ξ )) (left) and L( ξ ) = (ξ1, ξ2, G( ξ )ξ2)

(right) where G( ξ ) = 1(ξ1 ≥ 2), for ξ1 ∈ [0, 4] and ξ2 ∈ [−2, 2]. Here, V =

{(0,−2), (0, 2), (2,−2), (2, 2), (4,−2), (4, 2)}. The convex hull of L( ξ ) is constructed by taken convex

combinations of L( ξ ) for all ξ ∈ V and (2,−2, G(2,−2)))>, (2, 2, G((2, 2)))>, and the convex hull of

L( ξ ) is constructed by taken convex combinations of L( ξ ) for all ξ ∈ V and (2,−2, G(2,−2)(−2))>,

(2, 2, G(2, 2)2)>.

Proposition 6 Let L(∙) being defined in (38) and G(∙) being defined in (6b). Then, the tight, closed,

outer approximation for the convex hull of Ξ′is given by the following polyhedron:

conv (Ξ′) =

{ξ′ = (ξ′>

1,1, ξ′>1,2, ξ

′>2,1, . . . , ξ

′>2,k)> ∈ Rk′

: ∃ζp(v) ∈ R+, ∀v ∈ V (p), p = 1, . . . , P,P∑

p=1

v∈V (p)

ζp(v) = 1,

ξ′1,1 =

P∑

p=1

v∈V (p)

ζp(v)v,

ξ′1,2 =

P∑

p=1

v∈V (p)

ζp(v)Gp(v),

ξ′2,i =

P∑

p=1

v∈V (p)

ζp(v)Gp(v)vi, i = 1, . . . , k}

.

(43)

Proof Proposition 6 can be proven using similar arguments as in Proposition 3.

The description of polyhedron (43) inherits the same exponential complexity as (19). That is, the

number of constraints in (43) depends on the cardinality of V , which in the worst-case, is constructed

using the extreme points of P = 2g partitions of Ξ. Nevertheless, the description (43) provides a tight

outer approximation for conv (Ξ′).

Using Proposition 4 together with the polyhedron (43), we can now reformulate Problem (42) into

23

Page 24: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

the following mixed-integer linear optimization problem.

minimize Tr(M ′R>

ξ D>Y RG

)

subject to Y ∈ Zq×g, Γ ∈ Rq×l′

+ , Θ ∈ Rq×l′

+ ,

y′μ ∈ Rk′

, λμ ∈ Rm×l′

+ ,

y′μ + λμW ′ = R>

ξ Hμ, λμU ′ = 0, λμh′ ≥ 0

y′μ = F (BμY ), y′

μ ∈ Rk′,

μ = 1, . . . , m,

Y RG = ΓW ′, ΓU ′ = 0, Γh′ ≥ 0,

ee>1 − Y RG = ΘW ′, ΘU ′ = 0, Θh′ ≥ 0.

(44)

Here, the auxiliary variables λμ ∈ Rm×l′

+ are associated with constraints y′>μ ξ′ ≤ H>

μ R ξ ξ′, for μ =

1, . . . , m, and Γ ∈ Rq×l′

+ and Θ ∈ Rq×l′

+ with constraints 0 ≤ Y RGξ′ and Y RGξ′ ≤ e, respectively.

Problem (44) is the exact reformulation of Problem (42), since (43) is a tight outer approximation of the

convex hull of Ξ′, and thus the solution of Problem (44) achieves the best binary decision rule associated

with G(∙) in (6b). Nevertheless, the size of Problem (44) is affected by the exponential growth of the

constraints in conv (Ξ′). One can mitigate this exponential growth by considering simplified structures

of Ξ and G(∙), following similar guidelines as those those discussed in Section 2.3.

4 Binary Decision Rules for Multistage Problems

In this section, we extend the methodology presented in Section 2 to cover multistage adaptive optimiza-

tion problems with fixed-recourse. The mathematical formulations presented can easily be adapted to

random-recourse problems by following the guidelines of Section 3.

The dynamic decision process considered can be described as follows: A decision maker first observes

an uncertain parameter ξ1 ∈ Rk1 and then takes a binary decision y1(ξ1) ∈ {0, 1}q1 . Subsequently,

a second uncertain parameter ξ2 ∈ Rk2 is revealed, in response to which the decision maker takes a

second decision y2(ξ1, ξ2) ∈ {0, 1}q2 . This sequence of alternating observations and decisions extends

over T time stages. To enforce the non-anticipative structure of the decisions, a decision taken at

stage t can only depend on the observed parameters up to and including stage t, i.e., yt(ξt) where

ξt = (ξ>1 , . . . , ξ>

t )> ∈ Rkt

, with kt =∑t

s=1 ks. For consistency with the previous sections, and with

slight abuse of notation, we assume that k1 = 1 and ξ1 = 1. As before, setting ξ1 = 1 is a non-restrictive

assumption which allows to represent affine functions of the non-degenerate outcomes (ξ>2 , . . . , ξ>

t )> in a

compact manner as linear functions of (ξ>1 , . . . , ξ>

t )>. We denote by ξ = (ξ>1 , . . . , ξ>

T )> ∈ Rk the vector

of all uncertain parameters, where k = kT . Finally, we denote by Bkt,qtthe space of binary functions

24

Page 25: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

from Rkt

to {0, 1}qt .

Given matrices Bts ∈ Rmt×qs , Dt ∈ Rqt×kt

and Ht ∈ Rmt×kt

, and a probability measure P ξ supported

on set Ξ given by (4), for the uncertain vector ξ ∈ Rk, we are interested in choosing binary functions

yt(∙) ∈ Bkt,qtin order to solve:

minimize E ξ

(T∑

t=1

(Dtξt)>yt(ξ

t)

)

subject to yt(∙) ∈ Bkt,qt,

t∑

s=1

Btsys(ξs) ≤ Htξ

t,

t = 1, . . . , T, ∀ξ ∈ Ξ.

(45)

Problem (45) involves a continuum of decision variables and inequality constraints. Therefore, in order to

make the problem amenable to numerical solutions, we restrict the feasible region of the binary functions

yt(∙) ∈ Bkt,qtto admit the following piecewise constant structure:

yt(ξ) = YtGt(ξ), Y ∈ Zqt×gt

,

0 ≤ YtGt(ξ) ≤ e,

t = 1, . . . , T, ∀ξ ∈ Ξ, (46a)

where Gt : Rk → {0, 1}gt

can be expressed by Gt(∙) = (G1(∙)>, . . . , Gt(∙)>), and Gt : Rkt

→ {0, 1}gt are

the piecewise constant functions:

G1(ξ1) := 1, Gt,i(ξ) := 1(α>

t,i ξt ≥ βt,i

), i = 1, . . . , gt, t = 2, . . . , T, (46b)

for given αt,i ∈ Rkt

and βt,i ∈ R, i = 1, . . . , g, t = 2, . . . , T . Here, we assume that the sets {ξ ∈ Ξ :

α>t,i ξt ≥ βt,i} and {ξ ∈ Ξ : α>

t,i ξt ≤ βt,i} are non-empty for all i = 1, . . . , gt, t = 2, . . . , T , and

α>t,iξ

t − βt,i 6= α>t,jξ

t − βt,j for all ξ ∈ Ξ where i, j ∈ {1, . . . , gt}, i 6= j and t = 2, . . . , T . The dimension

of Gt(∙) is gt, with gt =∑t

s=1 gs. The non-anticipativity of yt(∙) is ensured by restricting Gt(∙) to depend

only on random parameters up to and including stage t. Applying decision rules (46) to Problem (45)

yields the following semi-infinite problem.

minimize E ξ

(T∑

t=1

(Dtξt)>YtG

t(ξ)

)

subject to Yt ∈ Zqt×gt

,

t∑

s=1

BtsYsGs(ξ) ≤ Htξ

t,

0 ≤ YtGt(ξ) ≤ e

t = 1, . . . , T, ∀ξ ∈ Ξ.

(47)

25

Page 26: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

We can now use the lifting techniques to first express Problem (47) in a higher dimensional space,

compute the convex hull associated with the non-convex uncertainty set of the lifted problem, and finally

reformulate the semi-infinite structure using Proposition 4. We define lifting Lt : Rk → Rk′t, such that

Lt(∙) = (L1(∙)>, . . . , Lt(∙)>)>, where

Lt : Rkt → Rk′t , Lt(ξ) = (ξ>

t , Gt(ξ)>)>, t = 1, . . . , T, (48a)

Here, k′t = kt + gt. By convention L(∙) = (L1(∙)>, . . . , LT (∙)>)> and k′t =

∑ts=1 k′

s with k′ = k′T . In

addition, we define matrices, R ξ ,t ∈ Rkt×k′and RG,t ∈ Rgt×k′

such that

R ξ ,tL(ξ) = ξt, RG,tL(ξ) = G(ξ)t, t = 1, . . . , T. (48b)

Using (48), Problem (47) can now be rewritten in the following form:

minimize E ξ

(T∑

t=1

(DtR ξ ,tL(ξ))>YtRG,tL(ξ)

)

subject to Yt ∈ Zqt×gt

,

t∑

s=1

BtsYsRG,sL(ξ) ≤ HtR ξ ,tL(ξ),

0 ≤ YtRG,tL(ξ) ≤ e

t = 1, . . . , T, ∀ξ ∈ Ξ,

(49)

Problem (49) has similar structure as Problem (11), i.e., both Yt and L(ξ) appear linearly in the con-

straints. Therefore, in the following we redefine Problem (49) in a higher dimensional space and apply

Proposition 4 to reformulate the problem into a mixed-integer optimization problem.

We now define the uncertain vector ξ′ = (ξ′>1 , . . . , ξ′>

T )> ∈ Rk′such that ξ′ = L(ξ) and ξ′

t = Lt(ξ)

for t = 1, . . . , T . ξ′ has probability measure P ξ ′ defined using (12), and probability measure support

Ξ′ = L(Ξ). Using the definition of ξ′, the lifted semi-infinite problem is given as follows:

minimize E ξ ′

(T∑

t=1

(DtR ξ ,tξ′)>YtRG,tξ

)

subject to Yt ∈ Zqt×gt

,

t∑

s=1

BtsYsRG,sξ′ ≤ HtR ξ ,tξ

′,

0 ≤ YtRG,tξ′ ≤ e

t = 1, . . . , T, ∀ξ′ ∈ Ξ′.

(50)

The definition of L(∙) in (48a) share almost identical structure as L(∙) in (10). Therefore, the convex

hull of Ξ′

can be expressed as a slight variant of the polyhedron given in (19), and will constitute a

26

Page 27: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

tight outer approximation of conv(Ξ′). Using Proposition 4 together with the polyhedral representation

of conv(Ξ′), we can now reformulate Problem (42) into the following mixed-integer linear optimization

problem.

minimizeT∑

t=1

Tr(M ′R>

ξ ,tD>t YtRG,t

)

subject to Yt ∈ Zqt×gt

, Λ ∈ Rmt×l′

+ , Γ ∈ Rqt×l′

+ , Θ ∈ Rqt×l′

+

t∑

s=1

BtsY RG,s + ΛtW′ = HtR ξ ,t, ΛtU

′ = 0, Λth′ ≥ 0,

YtRG,t = ΓtW′, ΓtU

′ = 0, Γth′ ≥ 0,

ee>1 − YtRG,t = ΘtW

′, ΘtU′ = 0, Θth

′ ≥ 0.

t = 1, . . . , T,

(51)

where M ′ ∈ Rk′×k′, M ′ = E ξ ′(ξ′ξ′>). Once more, we emphasize that Problem (51) is the exact re-

formulation of Problem (50). Therefore, the solution of Problem (51) achieves the best binary decision

rule associated with G(∙) in (6b) at the cost of the exponential growth of its size with respect to the

description of Ξ and the complexity of the binary decision rules (46). One can mitigate this exponential

growth by considering simplified structures of Ξ and G(∙), following similar guidelines as those those

discussed in Section 2.3.

5 Computational Results

In this section, we apply the proposed binary decision rules to a multistage inventory control problem

and to a multistage knapsack problem. In both problems, the structure of the binary decision rules

is constructed using G(∙) defined in (24), where the breakpoints βi,1, . . . , βi,r are placed equidistantly

within the marginal support of each random parameter ξi. To improve the scalability of the solution

method, we further restrict the structure of the binary decisions rules to be

y(ξ) = Y G(ξ), Y ∈ {−1, 0, 1}q×g,

0 ≤ Y G(ξ) ≤ e,

∀ξ ∈ Ξ. (52)

All of our numerical results are carried out using the IBM ILOG CPLEX 12.5 optimization package on

a Intel Core i5 − 3570 CPU at 3.40GHz machine with 8GB RAM [25].

5.1 Multistage Inventory Control

In this case study, we consider a single item inventory control problem where the ordering decisions

are discrete. This problem can be formulated as an instance of the multistage adaptive optimization

27

Page 28: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

problem with fixed-recourse, and can be described as follows. At the beginning of each time period

t ∈ T := {2, . . . , T}, the decision maker observes the product demand ξt that needs to be satisfied

robustly. This demand can be served in two ways: (i) by pre-ordering at stage 1 a maximum of N lots,

each delivering a fixed quantity qz at the beginning of period t, for a unit cost of cz; (ii) or by placing an

order for a maximum of N lots, each delivering immediately a fixed quantity qy, for a unit cost of cy, with

cz < cy. For each lot n = 1, . . . , N , the pre-ordering binary decisions delivered at stage t are denoted by

zn,t ∈ {0, 1}, and the recourse binary ordering decisions are denoted by yn,t(∙) ∈ Bkt,1. If the ordered

quantity is greater than the demand, the excess units are stored in a warehouse, incurring a unit holding

cost ch, and can be used to serve future demand. The level of available inventory at each period is given

by It(∙) ∈ Rkt,1. In addition, the cumulative volume of pre-orders∑t

s=1

∑Nn=1 zn,s must not exceed the

ordering budget Btot,t. The decision maker wishes to determine the orders zn,t and yn,t(∙) that minimize

the total ordering and holding costs associated with the worst-case demand realization over the planning

horizon T . The problem can be formulated as the following multistage adaptive optimization problem.

minimize maxξ ∈Ξ

(∑

t∈T

N∑

n=1

cz qzzn,t + cy qyyn,t(ξt) + ch It(ξ

t)

)

subject to It(∙) ∈ Rkt,1,

zn,t ∈ {0, 1}, yn,t(∙) ∈ Bkt,1, ∀n = 1, . . . , N,

It(ξt) = It−1(ξ

t−1) +N∑

i=1

qzzn,t + qyyn,t(ξt) − ξt,

It(ξt) ≥ 0,

t∑

s=1

N∑

n=1

zn,s ≤ Btot,t,

∀t ∈ T , ∀ξ ∈ Ξ.

(53)

The uncertainty set Ξ is given by,

Ξ :={ξ ∈ RT : ξ1 = 1, l ≤ ξ ≤ u

}.

We emphasize that since we are interested in minimizing the total costs associated with the worst-case

demand realization, the model does not require to specify a distribution for our uncertainty demand.

Moreover, notice that the real-valued inventory decision It(ξt) can be eliminated from formulation (53)

by substituting It(ξt) = I1+∑t

s=1

(∑Ni=1 qzzn,s + qyyn,s(ξs) − ξs

)in both the objective and constraints,

thus eliminating the need to further approximate It(∙) using decision rules.

For our computational experiments we randomly generated 30 instances of Problem (53). The param-

eters are randomly chosen using a uniform distribution from the following sets: Advanced and instant

28

Page 29: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

ordering costs are chosen from cz ∈ [0, 5] and cy ∈ [0, 10], respectively, such that cz < cy, and holding

costs are elements of ch ∈ [0, 5]. The bounds for each random parameter are chosen from li ∈ [0, 5] and

ui ∈ [10, 15] for i = 2, . . . , T . The cumulative ordering budget equals to Btot,t = 10(t−1), for t = 2, . . . , T .

We also assume that qz = qy = 15/N , and the initial inventory level equals to zero, i.e., I1 = 0.

Average Objective Value Improvements, N = 2

Global optimality 1% optimality 5% optimality

T r = 1 r = 5 r = 9 r = 1 r = 5 r = 9 r = 1 r = 5 r = 910 15% 17% 17% 14% 17% 17% 14% 16% 16%15 16% 18% 18% 16% 18% 18% 16% 17% 17%20 18% 19% 20% 18% 19% 20% 17% 18% 19%

Average Solution Time, N = 2

Global optimality 1% optimality 5% optimality

T r = 1 r = 5 r = 9 r = 1 r = 5 r = 9 r = 1 r = 5 r = 910 <1sec 4sec 42sec <1sec 4sec 15sec <1sec 1sec 8sec15 <1sec 166sec 983sec <1sec 16sec 83sec <1sec 3sec 10sec20 1sec 688sec 5580sec <1sec 46sec 710sec <1sec 9sec 92sec

Table 2: Comparison of average improvement of adaptive versus static binary decision rulesusing the performance measure (Non-Adapt.−Adapt.)

Non-Adapt., (top), and average solution time of binary

decision rules (bottom).

In the first test series, we compared the performance of the binary decision rules versus the non-

adaptive binary decisions for the randomly generated instances. We consider binary decision rules for

yn,t(∙) that have r ∈ {1, 5, 9} breakpoints in each direction ξi, and planning horizons T ∈ {10, 15, 20}.

Moreover, we consider three different termination criteria for the mixed-integer linear optimization prob-

lems: (i) global optimality, (ii) 1% optimality and (iii) 5% optimality. All non-adaptive problems were

solved to global optimality. Table 2 presents the results from the case where N = 2, in terms of the

average improvement of the binary decision rules versus the static binary decisions. The improvement is

defined as quantity (Non-Adapt.−Adapt.)Non-Adapt. , where Non-Adapt. and Adapt. are the objective values of the non-

adaptive and adaptive binary decision rule problems, respectively. The first observation is the significant

improvement over the not-adaptive decisions, and the improvement in solution quality as the complexity

of the binary decision rules increase. As expected, solving the problems to global optimality achieves

a slightly better objective value compared to the relaxed termination criteria cases. Nevertheless, the

computational burden is substantially larger, rendering the decision rules impractical for T > 20 and

r > 9. Using the problem instances of this test series, we also compared the binary decision rule structure

given in (6a) and (52), i.e., the decision variable in the mixed-integer linear optimization problems were

Y ∈ Zq×g and Y ∈ {−1, 0, 1}q×g, respectively. In both cases, the optimal solution was identical, but the

29

Page 30: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

solution time for the case Y ∈ Zq×g was substantially longer, rendering the decision rules impractical for

T > 15 and r > 5.

Binary Decision Rule Structure (2) v.s. (6), N = 2

Average Performance Solution Time

T r = 0 r = 1 r = 5 r = 9 Design r = 0 r = 1 r = 5 r = 92 19% 3% 2% 1% <1sec <1sec <1sec <1sec <1sec4 29% 16% 12% 10% 3sec <1sec <1sec <1sec <1sec6 52% 34% 27% 26% 607sec <1sec <1sec <1sec <1sec8 60% 40% 29% 28% 1628sec <1sec <1sec 1sec 1sec10 47% 38% 31% 30% 16613sec <1sec <1sec 1sec 5sec

Table 3: Comparison between the binary decision rules discussed in Bertsimas andGeorghiou [10] (Design), given by (2) with P = 1, and the proposed decision rules (Adaptive).

The performance is defined as quantity (Adapt.−Design)Design

. The proposed decision rule problemshave great scalability properties but do not perform as well compared to binary decision rulesof type (2).

In our second test series, we investigate the relative performance between the proposed decision rules

and the binary decision rules discussed in Bertsimas and Georghiou [10]. In particular, we used decision

rules of type (2) with P = 1, and the corresponding decision rule problem was solved using Algorithm 2

with parameters δ = 0.01, β = 10−4, ε = 0.01 and β = 10−4, see [10, Section 2.3] for more details. The

termination criteria for all mixed-integer linear optimization problems was fixed to 5%. The results are

presented Table 3, and constructed using the randomly generated instances for the cases where N = 2,

T ∈ {2, . . . , 10} and r ∈ {0, 1, 5, 9}. The performance is defined as quantity (Adapt.−Design)Design , where Adapt.

and Design are the objective values of the proposed binary decision rule structure and the decision rule

structure given by (2), respectively. As expected, structure (2) is much more flexible compared to the

proposed structure, producing high quality designs. This is the case as the discontinuity of the binary

decision rule is decided endogenously by the optimization problem. However, this flexibility comes at a

high computational costs, rendering decision rules (2) impractical for problem instances with T > 10.

On the other hand, the proposed decision rules are highly scalable, providing good quality solutions to

particularly challenging problem instances within a few seconds.

In our third test series, we investigate the scalability properties of the proposed binary decision

rules and their relative performance. In this test series, the termination criterion of the mixed-integer

linear optimization problems was fixed to 5%. The results are presented in Figure 6 and Table 4, and

constructed using the randomly generated instances for the cases where N ∈ {2, 3, 4}, T ∈ {10, . . . , 50}

and r ∈ {1, 3, 5}. As expected, solution quality increases as the decision rules become more flexible.

It is interesting to see that these improvements saturate for r > 3, getting diminishing returns for the

computational effort required.

30

Page 31: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Ave

rage

Impr

ovem

ent (

%)

Ave

rage

Impr

ovem

ent (

%)

Ave

rage

Impr

ovem

ent (

%)

60

50

40

30

20

10

60

50

40

30

20

10

60

50

40

30

20

1010 20 30 40 50

Time Stages10 20 30 40 50

Time Stages10 20 30 40 50

Time Stages

r = 1r = 1r = 1r = 3r = 3r = 3r = 5r = 5r = 5

N = 2 N = 3 N = 4

Figure 6: Comparison of average performance of adaptive versus static binary decision rulesfor N ∈ {2, 3, 4} and r ∈ {1, 3, 5} using the performance measure (Non-Adapt.−Adapt.)

Non-Adapt..

Average Solution Time

N = 2 N = 3 N = 4

T r = 1 r = 3 r = 5 r = 1 r = 3 r = 5 r = 1 r = 3 r = 510 <1sec <1sec 1sec <1sec <1sec 2sec <1sec <1sec 4sec20 <1sec 1sec 9sec <1sec 2sec 48sec <1sec 5sec 57sec30 <1sec 5sec 63sec <1sec 7sec 224sec <1sec 31sec 380sec40 <1sec 9sec 114sec 1sec 12sec 453sec 1sec 95sec 4615sec50 1sec 12sec 225sec 1sec 36sec 1951sec 1sec 357sec 19298sec

Table 4: Average solution time for N ∈ {2, 3, 4} and r ∈ {1, 3, 5}.

5.2 Multistage Knapsack Problem

In this case study, we consider a multistage knapsack problem, which can be formulated as an instance of

the multistage adaptive optimization problem with random recourse and binary recourse decisions. In the

classic one-stage knapsack problem, the decision maker is given N items, each weighing wn, n = 1, . . . , N ,

and a knapsack that can carry a maximum weight w. The decision maker wants to maximize the number

of items that fit into the knapsack, by choosing binary decisions yn ∈ {0, 1} for each item n, while keeping

the total weight of the items in the knapsack∑N

n=1 wnyn less than w. In the multistage variant of the

problem, at the beginning of each time period t ∈ T := {1, . . . , T}, the decision maker is given N items,

each weighing wn,t(ξt), n = 1, . . . , N , and an empty knapsack with capacity w. The weighs wn,t(ξt)

are assume to be linear functions of the random parameter ξt that realizes at stage t. Upon observing

the weight of each item, the decision maker then decides the subset of the N items that can fit in the

knapsack. The items left behind can be taken at later stages. We denote by yn,t,s(∙) ∈ Bks,1 the binary

decision corresponding to item with weight wn,t(ξt), taking value 1 if the item is fitted into the knapsack

at stage s, s ≥ t, and zero otherwise. The decision maker wishes to maximize the expected number of

items that can fit into the knapsacks over the planning horizon T by determining the collection of items

yn,t,s(∙). The problem can be formulated as the following multistage optimization problem with random

31

Page 32: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

recourse.

maximize E ξ

(N∑

n=1

t∈T

T∑

s=t

yn,t,s(ξs)

)

subject to yn,t,s(∙) ∈ Bks,1, s = 1 . . . , t, n = 1 . . . , N,

t∑

s=1

N∑

n=1

wn,s(ξs) yn,s,t(ξt) ≤ w,

T∑

s=t

yn,t,s(ξs) ≤ 1, n = 1 . . . , N,

∀t ∈ T , ∀ξ ∈ Ξ.

(54)

Here, the second set of constraints ensure that at each stage t, the total weight of the knapsack is below

its capacity w, while the last set of constraints ensure that an item can only be carried in the knapsack

only once over the time horizon. The random vector ξ follows a beta distribution, Beta(α, β), and the

uncertainty set Ξ is given by,

Ξ :={ξ ∈ RT : ξ1 = 1, 0 ≤ ξ ≤ e

}.

For our computational experiments we randomly generated 30 instances of Problem (54). The pa-

rameters are randomly chosen using a uniform distribution from the following sets: The weight of item n

at stage t is given by wn,t(ξt) = wn,tξt where wn,t ∈ [0.5, 1], and the parameters of the beta distribution

are chosen from α ∈ (0, 5] and β ∈ (0, 5]. The capacity of the knapsack is set to w = N/2.

In the first test series, we compared the performance of the binary decision rules versus the non-

adaptive binary decisions for the randomly generated instances. We consider binary decision rule that

have r = {1, 2, 3} breakpoints in each direction ξi, for problem instances with N ∈ {2, 3, 4} and planning

horizons T ∈ {3, . . . , 15}. The termination criterion of the mixed-integer linear optimization problems

was fixed to 5%. Figure 7 depicts the average improvement in objective value of the binary decisions

rules versus the static binary decisions. As before, the improvement in objective value is defined as

quantity (Non-Adapt.−Adapt.)Non-Adapt. . The results show a substantial improvement in solution quality for all

problem instances N ∈ {2, 3, 4}, with the most flexible decision rule structure achieving the best results.

For the time horizon and complexity of the binary decision rules considered, all problem instances were

solved within 20 minutes. The solution time for instances with T > 15 and r > 3 was substantially

longer.

In the second test series, we improve the scalability of the solution method by restricting the infor-

mation available to the binary decision rules. To this end, we define ηs,t = (ξs, ξt)>, and we restrict

the recourse decisions yn,t,s(ξs) to have structure yn,t,s(ηs,t) for all n = 1, . . . , N, s = t, . . . , T and

t = 1 . . . , T . The number of integer decision variables needed to approximate yn,t,s(ξs) using the binary

decision rule structure (52) and (24) is s(r + 1), while for yn,t,s(ηs,t) the number of integer decision

32

Page 33: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

Time Stages Time Stages Time Stages4 6 8 10 12 14

Ave

rage

Impr

ovem

ent (

%)

80

70

60

50

40

30

20 4 6 8 10 12 14

Ave

rage

Impr

ovem

ent (

%)

80

70

60

50

40

30

20 4 6 8 10 12 14

Ave

rage

Impr

ovem

ent (

%)

80

70

60

50

40

30

20

r = 1r = 1r = 1r = 2r = 2r = 2r = 3r = 3r = 3

N = 2 N = 3 N = 4

Figure 7: Comparison of average performance of adaptive versus static binary decisionrules for N ∈ {2, 3, 4} and r ∈ {1, 2, 3}, using the performance measure (Non-Adapt.−Adapt.)

Non-Adapt..

All problems were solved within 20 minutes.

variables required is 2(r + 1). We will refer to ηs,t = (ξs, ξt)> as the partial information available to

the decision rule at stage s. Table 5 compares the solution quality and computation time, of the full

information and partial information structures for problem instances with N = 4, r ∈ {1, 2, 3} and

T ∈ {5, . . . , 25}. The solution quality of the full information structure is slightly better, but the solution

method suffers with respect to scalability. On the other hand, using the partial information structure

we can solve much bigger problem instances within very reasonable amount of time. We note that the

problem instance with N = 4 and T = 25 involves a total of 1300 binary decision rules.

Average Objective Value Improvements, N = 4

Full Information Partial Information

T r = 1 r = 2 r = 3 r = 1 r = 2 r = 35 32.5% 34.8% 35.7% 30.5% 32.5% 34.2%10 28.3% 32.0% 32.1% 27.9% 30.3% 31.5%15 28.9% 31.5% 32.6% 26.9% 30.1% 31.2%20 28.3% n/a n/a 27.6% 30.9% 31.7%25 26.8% n/a n/a 26.0% 31.0% 31.9%

Average Solution Time, N = 4

Full Information Partial Information

5 <1sec 1sec 1sec <1sec <1sec 1sec10 4sec 7sec 25sec 2sec 4sec 6sec15 27sec 52sec 364sec 13sec 42sec 28sec20 76sec n/a n/a 34sec 169sec 431sec25 396sec n/a n/a 162sec 449sec 11349sec

Table 5: Comparison of average performance and average computational times for binarydecision rules with full and partial information structure, using the performance measure(Non-Adapt.−Adapt.)

Non-Adapt..

33

Page 34: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

6 Conclusions

In this paper, we present linearly parameterised binary decision rule structures that can be used in

conjunction with real-valued decision rules appearing in the literature, for solving multistage adaptive

mixed-integer optimization problems. We provide a systematic way to reformulate the binary decision

rule problem into a finite dimensional mixed-integer linear optimization problem, and we identify in-

stances where the size of this problem grows polynomially with respect to the input data. The theory

presented covers both fixed-recourse and random-recourse problems. Our numerical results demonstrate

the effectiveness of the proposed binary decision rules and show that they are (i) highly scalable and (ii)

provide significant improvements in solution quality.

Appendix A Technical Proofs

In this section, we will provide the proof for Theorem 1. To do this, we need the following auxiliary

results given in Lemmas 1, 2 and 3. Lemma 1 gives the complexity of the integer feasibility problem,

which will be used in Lemmas 2 and 3 to prove that checking feasibility of a semi-infinite constraint

involving indicator functions is NP-hard.

Lemma 1 (Integer feasibility problem) The following decision problem is NP-hard:

Instance. W ∈ Rl×k, h ∈ Rl and N ∈ Z+ with N < k.

Question. Is there ξ ∈ {0, 1}k such that Wξ ≥ h,∑k

i=1 ξi = N?(55)

Proof See [27].

Lemma 2 (Equivalent integer feasibility problem) The following decision problem is NP-hard:

Instance. W ∈ Rl×k, h ∈ Rl and N ∈ Z+ with N < k.

Question. Is there ξ ∈ [0, 2]k such that Wξ ≥ h,∑k

i=1 ξi = N,∑k

i=1 1(ξi ≥ 1) = N?(56)

Proof In the following, we will show that if there exists ξ that satisfies the assertion, then ξ must be

in ξ ∈ {0, 1}k. If that is the case, then decision problem (56) reduces to the decision problem (55),

which from Lemma 1 we know to be NP-hard. We will prove this by contradiction. Assume, with loss

of generality, that there exists ξ with ξ1 > 1 that satisfy Wξ ≥ h,∑k

i=1 ξi = N,∑k

i=1 1(ξi ≥ 1) = N .

Since ξ1 > 1, then∑k

i=2 ξi < N − 1 and as a result∑k

i=2 1(ξi ≥ 1) < N − 1, which contradicts the

assumption that∑k

i=1 1(ξi ≥ 1) = N . Now, assume that there exists ξ with 0 < ξ1 < 1 that satisfy

Wξ ≥ h,∑k

i=1 ξi = N,∑k

i=1 1(ξi ≥ 1) = N . Since 0 < ξ1 < 1, then∑k

i=2 1(ξi ≥ 1) < N − 1, which

34

Page 35: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

again contradicts the assumption that∑k

i=1 1(ξi ≥ 1) = N . Therefore, we conclude that ξ ∈ {0, 1}k,

and thus the decision problem (56) is NP-hard.

The following lemma provides the key ingredient for proving Theorem 1.

Lemma 3 The following decision problem is NP-hard:

Instance. A convex polytope Ξ ⊂ Rk and τ ∈ R.

Question. Do all ξ ∈ Ξ satisfy∑k

i=1 1(ξi ≥ 1) ≤ τ?(57)

Proof We will show that an instance of decision problem (57) can be reduced to an equivalent integer

feasibility problem (56). Consider the instance τ = N − 1, with N < k, and Ξ be given by

Ξ :=

{

ξ ∈ [0, 2]k : Wξ ≥ h,

k∑

i=1

ξi = N

}

. (58)

Therefore, the decision problem (57) evaluates to true if there is no ξ such that

ξ ∈ [0, 2]k such that Wξ ≥,

k∑

i=1

ξi = N,

k∑

i=1

1(ξi ≥ 1) = N. (59)

Checking the latter assertion is equivalent to checking if the decision problem (56) holds. Notice that

by construction, there is no ξ such that∑k

i=1 1(ξi ≥ 1) > N . Using Lemma 2, we can thus deduce that

(57) is an NP-hard problem.

We know have all the ingredients to prove Theorem 1.

Proof of Theorem 1 Let Ξ be a convex polytope given by

Ξ ={

ξ ∈ [0, 2]k : Wξ ≥ h,

k∑

i=1

ξi = N}

,

and denote by P ξ the uniform distribution on Ξ. We define the following instance of (3).

minimize 0

subject to y(∙) ∈ Bk,k,

ξi − 1 ≤ yi(ξ) ≤ ξi ∀i = 1, . . . , k,k∑

i=1

yi (ξ) ≤ N − 1,

∀ξ ∈ Ξ.(60)

35

Page 36: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

The optimal solution of Problem (60) is given by y∗i (ξ) := 1(ξi ≥ 1), i = 1, . . . , k. We thus have

k∑

i=1

1(ξi ≥ 1) ≤ N − 1 ∀ξ ∈ Ξ ⇐⇒ Problem (60) is feasible.

Hence, Lemma 3 implies that checking the feasibility of Problem (60) is NP-hard. We now set αi = ei

and βi = 1, for i = 2, . . . , k, in the description of G(∙) in (6b). By construction, there exists Y ∈ {0, 1}k×g

such that y∗ (ξ) = Y G (ξ), that achieves the same objective value in all Problems (11), (15) and (60).

The above arguments allow us to conclude that

k∑

i=1

1(ξi ≥ 1) ≤ N−1 ∀ξ ∈ Ξ ⇐⇒ Problem (11) is feasible ⇐⇒Propositions 1 & 2

Problem (15) is feasible.

Lemma 3 implies that Problems (11) and (15) are NP-hard, even when Y ∈ Zk×g is relaxed to Y ∈

Rk×g.

References

[1] B.D.O. Anderson and J.B. Moore. Optimal Control: Linear Quadratic Methods. Prentice Hall, 1990.

[2] D. Bampou and D. Kuhn. Scenario-free stochastic programming with polynomial decision rules.

50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL,

USA, pages 7806–7812, December 2011.

[3] A. Ben-Tal and D. den Hertog. Immunizing conic quadratic optimization problems against imple-

mentation errors, volume 2011-060. Tilburg University, 2011.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press,

2009.

[5] A. Ben-Tal, B. Golany, and S. Shtern. Robust multi-echelon multi-period inventory control. Euro-

pean Journal of Operational Research, 199(3):922–935, 2009.

[6] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of uncertain

linear programs. Mathematical Programming, 99(2):351–376, 2004.

[7] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations Research,

23(4):769–805, 1998.

[8] D. Bertsimas and C. Caramanis. Adaptability via sampling. In 46th IEEE Conference on Decision

and Control, New Orleans, LA, USA, pages 4717–4722, December 2007.

36

Page 37: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

[9] D. Bertsimas and C. Caramanis. Finite adaptability in multistage linear optimization. IEEE Trans-

actions on Automatic Control, 55(12):2751–2766, 2010.

[10] D. Bertsimas and A. Georghiou. Design of near optimal decision rules in multistage adaptive mixed-

integer optimization. Submitted for publication, available via Optimization-Online, 2013.

[11] D. Bertsimas, D.A. Iancu, and P.A. Parrilo. Optimality of affine policies in multi-stage robust

optimization. Mathematics of Operations Research, 35(2):363–394, 2010.

[12] D. Bertsimas, D.A. Iancu, and P.A. Parrilo. A hierarchy of near-optimal policies for multistage

adaptive optimization. IEEE Transactions on Automatic Control, 56(12):2809–2824, December

2011.

[13] G. C. Calafiore. Multi-period portfolio optimization with linear control policies. Automatica,

44(10):2463–2473, 2008.

[14] G. C. Calafiore. An affine control method for optimal dynamic asset allocation with transaction

costs. SIAM Journal on Control and Optimization, 48(4):2254–2274, 2009.

[15] C. Caramanis. Adaptable optimization: Theory and algorithms. PhD thesis, Massachusetts Institute

of Technology, 2006.

[16] X. Chen, M. Sim, P. Sun, and J. Zhang. A linear decision-based approximation approach to stochas-

tic programming. Operations Research, 56(2):344–357, 2008.

[17] X. Chen and Y. Zhang. Uncertain linear programs: Extended affinely adjustable robust counterparts.

Operations Research, 57(6):1469–1482, 2009.

[18] M. Dyer and L. Stougie. Computational complexity of stochastic programming problems. Mathe-

matical Programming, 106(3):423–432, 2006.

[19] Stanley J. Garstka and Roger J.-B. Wets. On decision rules in stochastic programming. Mathematical

Programming, 7(1):117–143, 1974.

[20] A. Georghiou, W. Wiesemann, and D. Kuhn. Generalized decision rule approximations for stochastic

programming via liftings. Mathematical Programming, to appear, 2014.

[21] J. Goh and M. Sim. Distributionally robust optimization and its tractable approximations. Opera-

tions Research, 58(4):902–917, 2010.

[22] P. J Goulart, E. C Kerrigan, and J. M Maciejowski. Optimization over state feedback policies for

robust control with constraints. Automatica, 42(4):523–533, 2006.

37

Page 38: Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization · 2014-08-20 · Binary Decision Rules for Multistage Adaptive Mixed-Integer Optimization Dimitris Bertsimas∗

[23] C. E. Gounaris, W. Wiesemann, and C. A. Floudas. The robust capacitated vehicle routing problem

under demand uncertainty. Operations Research, 61(3):677–693, 2013.

[24] G. A. Hanasusanto, D. Kuhn, and W. Wiesemann. Two-stage robust integer programming. Sub-

mitted for publication, available via Optimization-Online, 2014.

[25] IBM ILOG CPLEX. http://www.ibm.com/software/integration/optimization/ cplex-optimizer.

[26] D. Kuhn, W. Wiesemann, and A. Georghiou. Primal and dual linear decision rules in stochastic

and robust optimization. Mathematical Programming, 130(1):177–209, 2011.

[27] C. H. Papadimitriou. On the complexity of integer programming. Journal of the Association for

Computing Machinery, 28(4):765–768, 1981.

[28] R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer, 1997.

[29] C.-T. See and M. Sim. Robust approximation to multiperiod inventory management. Operations

Research, 58(3):583–594, 2010.

[30] A. Shapiro and A. Nemirovski. On complexity of stochastic programming problems. Applied Opti-

mization, 99(1):111–146, 2005.

[31] J. Skaf and S. P. Boyd. Design of affine controllers via convex optimization. IEEE Transactions on

Automatic Control, 55(11):2476–2487, 2010.

38