37
Bibliography Walrand, J., Varaiya P., High-Performance Communication Net- works. Morgan Kaufmann Publishers, 2000. Rappaport, T. S, Wireless Communications. Prentice Hall, 1996. Gitlin, R.D., Hayes J.F., Weinstein S.B. Data Communications Principles. New York: Plenum, 1992. Doelz, M.L., Heald E.T., Martin D.L. Binary Data Transmission Techniques for Linear Systems. Proc. I.R.E.; May 1957; 45: 656- 661. Franco, G.A., Lachs G. An Orthogonal Coding Technique for Communications. I. R. E. Int. Conv. Rec.; 1961; 8: 126-133. Chang, R.W. Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission. Bell Sys. Tech. J.; Dec 1966; 45: 1775-1796. Shnidman, D.A. A Generalized Nyquist Criterion and an Opti- mum Linear Receiver for a Pulse Modulation System. Bell Sys. Tech. J.; Nov 1966; 45: 2163-2177. [1] [2] [3] [4] [5] [6] [7]

Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

Bibliography

Walrand, J., Varaiya P., High-Performance Communication Net-works. Morgan Kaufmann Publishers, 2000.

Rappaport, T. S, Wireless Communications. Prentice Hall, 1996.

Gitlin, R.D., Hayes J.F., Weinstein S.B. Data CommunicationsPrinciples. New York: Plenum, 1992.

Doelz, M.L., Heald E.T., Martin D.L. Binary Data TransmissionTechniques for Linear Systems. Proc. I.R.E.; May 1957; 45: 656-661.

Franco, G.A., Lachs G. An Orthogonal Coding Technique forCommunications. I. R. E. Int. Conv. Rec.; 1961; 8: 126-133.

Chang, R.W. Synthesis of Band-Limited Orthogonal Signals forMultichannel Data Transmission. Bell Sys. Tech. J.; Dec 1966;45: 1775-1796.

Shnidman, D.A. A Generalized Nyquist Criterion and an Opti-mum Linear Receiver for a Pulse Modulation System. Bell Sys.Tech. J.; Nov 1966; 45: 2163-2177.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Page 2: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

374 BIBLIOGRAPHY

Saltzberg, B.R. Performance of an Efficient Parallel Data Trans-mission System. IEEE Trans. Commun.; Dec 1967; COM-15;805-811.

Weinstein, S.B., Ebert P.M. Data Transmission By Frequency Di-vision Multiplexing Using the Discrete Fourier Transform. IEEETrans. Commun., Oct 1971; COM-19; 5: 628-634.

[10] Hirosaki, B. An Orthogonally Multiplexed QAM System Usingthe Discrete Fourier Transform. IEEE Trans. Commun.; Jul 1981;COM-29; 7: 982-989.

[11] Rabiner,L.R., Gold B., Theory and Application of Digital SignalProcessing. Englewood Cliffs, NJ: Prentice Hall, 1975.

[12] Alard, M., Lassalle R., Principles of Modulation and ChannelCoding for Digital Broadcasting for Mobile Receivers. EBU Re-view; Aug 1987; 224: 47-68

[13] Bello, P.A., Characterization of Randomly Time-Variant LinearChannels. IEEE Trans Comm; Dec 1963; COM-11; 360-393.

[14] Kennedy, R.S., Fading Dispersive Communication Channels.New York: Wiley Interscience 1969.

[15] Klein, A., Mohr, W., Measurement-Based Parameter Adaptationof Wideband Spatial Mobile Radio Channel Models. IEEE 4thInternational Symp. on Spread Spectrum Techniques and App;ISSSTA’95; 91-97

[16] Cover, T. M., Thomas J. A., Elements of Information Theory.John Wiley & Sons, Inc.; 1991.

[17] Heiskala, J., Terry J., OFDM Wireless LANs: A Theoretical andPractical Guide. Sams Publishing; 2002.

[18] Haykin, S., Communication Systems. John Wiley & Sons, Inc.;1994.

[8]

[9]

Page 3: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

[19] Willink, T.J., Wittke P.H., Optimization and Performance Eval-uation of Multi-Carrier Transmission. IEEE Trans. Info. Theory;Mar 1997; 43: 426-440.

[20] Gallagher, R.G., Information Theory and Reliable Communica-tion. New York: Wiley; 1968.

[21] Kalet, I., The Multitone Channel. IEEE Trans. Commun.; Feb1989; 37:119-124.

[22] Feig, E., Practical Aspects of DFT-Based Frequency DivisionMultiplexing for Data Transmission. IEEE Trans. Commun.; Jul1990; 38: 929-932.

[23] Sistanizadeh, K., Chow P.S., Cioffi J.M., Multi-Tone Transmis-sion for ADSL. IEEE Int. Conf. Commun.; 1993; 756-760.

[24] Chow, P.S., Cioffi J.M., Bingham J.A.C., A Practical DiscreteMultitone Transceiver Loading Algorithm for Data TransmissionOver Spectrally Shaped Channels. IEEE Trans. Commun.; Feb-Apr 1995; 43: 773-775.

[25] Zervos, N.A., Kalet I., Optimized DFE Versus OptimizedOFDM for High-Speed Data Transmission Over the Local CableNetwork. IEEE Int. Conf. Commun.; 1993; 35.2.

[26] Cioffi, J.M., Dudevoir GP, Eyuboglu M.V., Forney G.D. MMSEDecision Feedback Equalizers and Coding - Part I: EqualizationResults. IEEE Trans. Commun.; Oct 1995; 43: 2582-2594.

[27] Hughes-Hartog, D. U.S. Patent 4,731,816; U.S. Patent4,833,706.

[28] Mestdagh, D.J.G., Spruyt P.M.P., A Method to Reduce the Prob-ability of Clipping in DMT-Based Transceivers. IEEE Trans.Commun.; Oct 1996; 44: 1234-1238.

BIBLIOGRAPHY 375

Page 4: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

376 BIBLIOGRAPHY

[29] Shepard, S., Orriss J., Barton S., Asymptotic Limits in Peak En-velope Reduction by Redundancy Coding in OFDM Modulation.IEEE Trans. Commun.; Jan 1998; 46: 5-10.

[30] Feig, E., Nadas A., The Performance of Fourier Transform Di-vision Multiplexing Schemes on Peak Limited Channels. IEEEGlobecom; 1988; 35.4.

[31] Rinne, J., Renfors M., The Behavior of OFDM Signals in anAmplitude Limiting Channel. IEEE Int. Conf. Commun.; 1994:381-385.

[32] Mestdagh, D. J. G., Spruyt P.M.P., Biran B., Analysis of Clip-ping Effect in DMT-Based ADSL Systems. IEEE Int. Conf. Com-mun.; 1994; 293-300.

[33] Gross, R., Veeneman D., SNR and Spectral Properties for aClipped DMT ADSL Signal. IEEE Int. Conf. Commun.; 1994;843-847.

[34] VanVleck, J.H., Middletown D., The Spectrum of ClippedNoise. Proc. IEEE; Jan 1966; 54: 2-19.

[35] Mazo, J.E., Asymptotic Distortion Spectrum of Clipped, DC-Biased, Gaussian Noise. IEEE Trans. Commun.; Aug 1992;COM-40; 8; 1339-1344.

[36] Minkoff, J.,The Role of AM-to-PM Conversion in MemorylessNonlinear Systems. IEEE Trans. Commun.; Feb 1985; COM-33;2: 139-144.

[37] Rice, S.O., Distribution of the Duration of Fades in Radio Trans-mission. Bell Syst. Tech. J.; May 1958; 37: 581-635.

[38] Kac, M., Slepian D., Large Excursions of Gaussian Processes.Ann. Math. Stat.; Dec 1959; 30: 1215-1228.

Page 5: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 377

[39] Cramer, H., Leadbetter M.R., Stationary and Related StochasticProcesses. New York: Wiley, 1967.

[40] Leadbetter, M.R., Lindgren G., Rootzen H., Extremes and Re-lated Properties of Random Sequences and Processes. New York:Springer-Verlag; 1983.

[41] Bussgang, J.J., Crosscorrelation Functions of Amplitude Dis-torted Gaussian Signals. Res. Lab. Of Electronics M.I.T., (Cam-bridge, Mass.) Tech. Rep; Mar 26, 1952; 216:3.

[42] Blachman, N.M., Detectors, Bandpass Non-Linearities, andTheir Optimization: Inversion of the Chebyshev Transform. IEEETrans. Inform. Theory, Jul 1971; IT-17: 398-404.

[43] Craig, J. W., A new, simple and exact result for calculatingthe probability of error for two-dimensional signal constellations.Proc.MILCOM’91; 571-575.

[44] Bahai, A. R. S., Singh M., Goldsmith A. J., Saltzberg B. R., ANew Approach for Evaluating Clipping Distortion in Multi Car-rier Systems. IEEE J. in Sel. Areas in Communication, June 2002;20: 1037-1046.

[45] Pollet, T., Moeneclay M., Synchronizability of OFDM Signals.IEEE Proc. of Global Telecom Conf. (GLOBECOM ’95); Nov1995; 3: 2054-2058.

[46] Lindsay, W.C., Chie C.M., A Survey of Digital Phase-LockedLoops. Proc. IEEE; Apr 1981; 9; 4: 410-431.

[47] Pollet, T., VanBladel M., Moeneclay M., BER Sensitivity ofOFDM Systems to Carrier Frequency Offset and Wiener PhaseNoise. IEEE Trans. Commun.; Feb/Mar/Apr 1995; 43; 2/3/4: 191-193.

[48] Robertson, P., Kaiser S., Analysis of the Effects of Phase Noisein OFDM Systems. IEEE Int. Conf. Commun.; 1995:1652-1657.

Page 6: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

378 BIBLIOGRAPHY

[49] Armada, G., Calvo M., Phase Noise and Sub-Carrier SpacingEffects on the Performance of an OFDM Communication System.IEEE Commun. Letters; Jan 1998; 2; 1: 11-13.

[50] Steendam, H., Moeneclay M., Sari H., The Effects of CarrierPhase Jitter on the Performance of Orthogonal Frequency Divi-sion Multiple Access Systems. IEEE Trans. Commun.; Apr 1998;46; 4: 456-459.

[51] Zogakis, T.N., Cioffi J.M., The Effect of Timing Jitter on thePerformance of a Discrete Multitone System. IEEE Trans. Com-mun.; Jul 1996; 44; 7: 799-808.

[52] Coleri, S., Ergen M., Puri A., Bahai A., Channel EstimationTechniques Based on Pilot Arrangement in OFDM Systems.IEEE Trans on Broadcasting; Sept 2002; 48; 3; 223 -229.

[53] Beek, J.J.,Edfors O.,Sandell M.,Wilson S.K., Borjesson P.O., Onchannel estimation in OFDM systems. IEEE 45th Vehicular Tech-nology Conf.; Jul. 1995; 815-819.

[54] Edfors, O., Sandell M., Beek J.J., Wilson S.K., Brjesson P.O.,OFDM channel estimation by singular value decomposition.IEEE Trans. on Communications, July 1998; 46; 7; 931-939.

[55] Hsieh, M., Wei C., Channel estimation for OFDM systems basedon comb-type pilot arrangement in frequency selective fadingchannels. IEEE Trans. on Consumer Electronics, Feb. 1998; 44;1.

[56] Steele, R., Mobile Radio Communications. London, England:Pentech Press Limited, 1992.

[57] Reimers,U., Digital video broadcasting. IEEE Comm. Maga-zine, June 1998; 36; 6; 104-110.

[58] Cimini,L. J., Analysis and simulation of a digital mobile channelusing orthogonal frequency division multiplexing. IEEE Trans.Commun., July 1985; 33; 7; 665-675.

Page 7: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 379

[59] Zhao, Y., Huang A., A novel channel estimation method forOFDM Mobile Communications Systems based on pilot signalsand transform domain processing. IEEE 47th Vehicular Technol-ogy Conf., May 1997; 2089-2093.

[60] Oppenheim, A. V., Schafer R. W., Discrete-Time Signal Pro-cessing. New Jersey: Prentice-Hall Inc., 1999.

[61] Digital video broadcasting (DVB): Framing, channel coding andmodulation for digital terrestrial television. Draft ETSI EN300;744; 1.3.1 (2000-08).

[62] Matloub, S., Comparison of different channel estimation tech-niques for MIMO-OFDM systems. www.stanford.edu.

[63] Li,Y., Pilot-Symbol-Aided Channel Estimation for OFDM inWireless Systems. IEEE Trans on Vehicular Technology, July2000; 49; 4.

[64] Bingham, J.A.C. Multicarrier Modulation for Data Transmis-sion: an Idea whose Time has Come. IEEE Commun. Mag.: May1990; 28: 5-14.

[65] Rohling, H., May T., OFDM systems with differential modula-tion schemes and turbo decoding techniques. 2000 InternationalZurich Seminar, February 2000; 251-255.

[66] Nee, R., Prasad R., OFDM for Wireless Multimedia Communi-cations. Artech House, January 2000.

[67] Kominakis, C., Fragouli C., Sayed A. H., Channel estimationand equalization in frequency selective fading. Asilomar Conf.on Signals, Systems, and Computers, Oct 1999; 427-431.

[68] Bang, C. I., Lee M. H., An analysis of pilot symbol assisted16 QAM in the Rayleigh fading channel. IEEE Trans. ConsumerElectronics, Nov. 1995; 41; 1138-1141.

Page 8: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

380 BIBLIOGRAPHY

[69] Moon, J. K., Choi S. I., Performance of channel estimation meth-ods for OFDM systems in a multipath fading channels. IEEETrans on Consumer Electr, Feb. 2000; 46; 161-170.

[70] Agrawal, D., Tarokh V., Naguip A., Seshadri N., Space-timecoded OFDM for high data-rate wireless communication overwideband channels. Proc. IEEE VTC, May 1998; 2232-2246.

[71] Bolcskei, H., Paulraj A., Space-frequency coded broadbandOFDM systems. Proc. WCNC, May 2000; 1; 1-6.

[72] Yi, G., Letaief K., Space-frequency-time coded OFDM forbroadband wireless communications. Proc. GLOBECOM, 2001;1; 519-523.

[73] Li, Y., Seshadri N., Ariyavisitakul S., Channel estimation forOFDM systems with transmitter diversity in mobile wirelesschannels. IEEE J. Select. Areas Commun., May 1999; 17; 461-471.

[74] Li, Y. Simplified channel estimation for OFDM systems withmultiple transmit antennas. IEEE Trans. Wireless Commun., Jan.2002.; 1; 67-75.

[75] Du, J., Li Y., MIMO-OFDM channel estimation based on sub-space tracking. IEEE VTC, April 2003; 2; 1084-1088.

[76] Chow, J., Cioffi J., Bingham J. Equalizer Training Algorithmsfor Multicarrier Modulation Systems. IEEE Int. Conf. Commun;1993: 761-765.

[77] Falconer, D., Magee F. Adaptive Channel Memory Trunca-tion for Maximum Likelihood Sequence Estimation. Bell SystemTech. Journal; Nov 1973; 52: 1541-1562.

[78] Lee, E.A., Messerschmitt D.G., Digital Communication.Boston: Kluwer Academic Publisher, 1994.

Page 9: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 381

[79] Al-Dhahir, N., Cioffi J., Optimum Finite Length Equalization forMulticarrier Transceiver. IEEE Globecom; 1994: 1884-1888.

[80] Cioffi, J.M., Bingham J.A.C., A Data Driven Multitone EchoCanceller. IEEE Trans. Commun.; Oct 1994; 42; 10: 2853-2867.

[81] Yang, J., Roy S., Lewis N.H. Data-Driven Echo Cancellationfor a Multitone Modulation System. IEEE Trans. Commun.; May1996;44; 5: 2134-2144.

[82] Melsa, P.J.W., Younce R.C., Rohrs C.E., Impulse ResponseShortening for Discrete Multitone Transceivers. IEEE Trans.Commun.; Dec 1996; 44; 12: 1662-1672.

[83] Ho, M., Cioffi J.M., Bingham J.A.C., High-Speed Full-DuplexEcho Cancellation for Multitone Modulation. IEEE Int. Conf.Commun.; 1993: 772-76.

[84] Ho, M., Cioffi J.M., Bingham J.A.C., Discrete Multitone EchoCancellation. IEEE Trans. Commun.; Jul 1996; 44; 7: 817-825.

[85] Lee, D. L., Friedlander B., Morf M., Recursive Ladder Algo-rithms for ARMA Modeling. IEEE Trans. Automatic Control,Aug 1982; AC-27: 4.

[86] Kay, S.M., Modern Spectral Estimation. Upper Saddle River,NJ: Prentice Hall, 1988.

[87] Brodersen, R., EE225 Lecture 16- OFDM Introduction.http://bwrc.eecs.berkeley.edu/Classes/EE225C/lectures.htm.

[88] Wu, Z., Liu Y., Jing x., Channel Estimation in OFDM Systems.http://www.winlab.rutgers. courses/projects/

[89] Costello, D.J., Costello Lin., Error Control Coding. EnglewoodCliffs, NJ: Prentice-Hall, 1983.

[90] Wicker, B., Bhargava V.K., Reed-Solomon Codes and Their Ap-plications. New York: IEEE Press, 1994.

Page 10: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

382 BIBLIOGRAPHY

[91] Pommier D., Wu Y., Interleaving or Spectrum Spreading in Dig-ital Radio Intended for Vehicles. EBU Review; Jun 1986; 217:31-44.

[92] Ungerboeck, G., Trellis Coded Modulation with Redundant Sig-nal Sets. IEEE Commun. Mag.; Feb 1987; 25; 2: 5-21.

[93] Biglieri, D., Divsalar D., McLane P.J., Simon M.K., Introduc-tion to Trellis-Coded Modulation with Applications. New York:Macmillan, 1991.

[94] Hagenauer, J., Offer E., Papke L., Iterative Decoding of BinaryBlock and Convolutional Codes. IEEE Trans. Information The-ory; Feb 1987; 25; 2: 5-21.

[95] Jung, P., Comparison of Turbo-Code Decoders Applied to ShortFrame Transmission Systems. IEEE J. on Sel. Areas in Commu-nications; Apr 1996; 14; 3.

[96] Hoeher, P., New Iterative Turbo Decoding Algorithms. Proceed-ing of The International Symposium on Turbo Codes; Brest,France; 1997.

[97] Starr, T., Cioffi J.M., Silverman P., Understanding Digital Sub-scriber Line Technology. Englewood Cliffs, NJ: Prentice Hall,1999.

[98] Kyees, P.J., McConnell R.C., Sistanizadeh K., ADSL: A NewTwisted Pair Access to the Information Highway. IEEE Commun.Mag.; Apr 1995; 33: 52-59.

[99] Ahamed, S.V., Bohn P.P., Gottfried N.L., A Tutoriai on TwoWire Digital Transmission in the Loop Plant. IEEE Trans. Com-mun.; Nov 1981; 29: 1554-1564.

[100] Adams, P.P., Cook J.W., A Review of Copper Pair Local LoopTransmission Systems. Brit. Telecom. Tech. J.; 1989; 7: 17-29.

Page 11: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 383

[101] Werner, J.J., The HDSL Environment. IEEE J. on Sel. Areas inCommun.; Aug 1991; SAC-9: 785-800.

[102] Gibbs, J., Addie R., The Covariance of Near End Crosstalk andits Application to PCM System Engineering in Multipair Cable.IEEE Trans. Commun.; Feb 1979; 27: 469-477.

[103] Lin, S.H., Statistical Behavior of Multipair Crosstalk. Bell Sys.Tech. J.; Jul-Aug 1980; 59: 955-974.

[104] Chow, P.S., Tu J.C., Cioffi J.M., A Discrete MultitoneTransceiver for HDSL Applications. IEEE J. on Sel. Areas inCommun.; Aug 1991; SAC-9: 895-908.

[105] Barton, M., Chang L., Hsing T.R., Performance Study of HighSpeed Asymmetric Digital Subscriber Line Technology. IEEETrans. Commun.; Feb 1996; 44: 156-157.

[106] Bingham, J. A. C., ADSL, VDSL, and Multicarrier Modula-tion. New York: Wiley, 2000.

[107] Gupta, P., Kumar P. R., The Capacity of Wireless Networks.IEEE Trans. on Information Theory, March 2000; IT-46; 2; 388-404.

[108] O’Hara, B., Petrick A., The IEEE 802.11 Handbook: A De-signer’s Companion. IEEE Product No. SP1118-TBR.

[109] Stallings, W., Data and Computer Communications. New York:Maxwell MacMillan, 1991.

[110] Helstrom, C. W., Statistical Theory of Signal Detection. Lon-don: Pergamon, 1966.

[111] Bahai, A.R.S., Estimation in Randomly Time-Varying Systemswith Applications to Digital Communications. Ph.D. Dissertation,Univ. of California at Berkeley, 1993.

Page 12: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

384 BIBLIOGRAPHY

[112] Viterbi, A.J., CDMA, Principles of Spread Spectrum Commu-nication. Reading, MA: Addison Wesley, 1995.

[113] Takanashi, H., Proposal of PHY Specification for 5 GHz Band.Proposal to IEEE 802.11 Committee, Jan 1998.

[114] Bogenfeld, E, et al., Influence of Nonlinear HPA on Trellis-Coded OFDM for Terrestrial Broadcasting of Digital. IEEE Proc.of Global Telecom Conf. (GLOBECOM ’93); 1433-1438.

[115] Bianchi, G., Performance Analysis of the IEEE 802.11 Dis-tributed Coordination Function. IEEE J. on Sel. Areas in Comm.,2000; 18.

[116] Qiao, D., Choi S., Shin K. G., Goodput Analysis and LinkAdaptation for IEEE 802.1 la Wireless LANs. IEEE Trans. onMobile Computing, 2002; 1; 4.

[117] IEEE 802.11, Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications. Standard, IEEE, Aug.1999.

[118] IEEE 802.11 a, Part 11: Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications: High-SpeedPhysical Layer Extension in the 2.4GHz Band. supplement toIEEE 802.11 Standard, Sept. 1999.

[119] Part 11: Wireless LAN, Medium Access Control (MAC) andPhysical Layer (PHY) Specifications: High-Speed Physical LayerExtension in the 2.4GHz Band. supplement to IEEE 802.11 Stan-dard, Sept. 1999.

[120] IEEE 802.11e, Medium Access Control (MAC) Enhancementsfor Quality of Service (QoS). IEEE Std 802.11e/D4.4, June 2003.

[121] Xiao Y., A Simple and Effective Priority Scheme for IEEE802.11. IEEE Communication Letters, Feb. 2003; 7; 2.

Page 13: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 385

[122] Ergen, M., IEEE 802.11 Tutorial. http://www.eecs.berkeley.edu/~ergen/docs/ieee.pdf, UC Berkeley, June 2002.

[123] Ergen, M., Lee D., Sengupta R., Varaiya P., Wireless TokenRing Protocol- Performance comparison with IEEE 802.11. IEEEISCC, July 2003.

[124] Yeh, H. J., Chen J. C., Lee, C. C., WLAN standards. IEEE Po-tentials, Oct/Nov 2003, 17-22.

[125] Feng, C.C., IEEE 802.11a WLAN System. NTU 2003.

[ 126] Bisdounis, L., HiPERLAN/2 vs IEEE 802.11 a: Physical Layer.Intracom.

[127] Geier, J., 802.11 Alphabet Soup. www.wi-fiplanet.com, Au-gust, 2002.

[128] Ergen, M., Varaiya P., Admission Control and ThroughputAnalysis in IEEE 802.11. ACM-Kluwer MONET Special Issueon WLAN Optimization.

[129] Tesi, R., Codreanu M., Oppermann I., Interference Effects ofUWB Transmission in OFDM Communication Systems. Centrefor Wireless Communications, University of Oulu, Finland.

[130] Bellorado, J., Ghassemzadeh S.S., Greenstein L. J., SveinssonT., Tarokh V., Coexistence of UltraWideband Systems with IEEE-802.11a Wireless LANs. IEEE Globecom 2003.

[131] Tubbax, J., Come B., Perre L. V., Deneire L., Donnay S., En-gels M., Compensation of IQ imbalance in OFDM systems. VTC,Fall 2002.

[132] Come, B., Ness R., Perre L. V., Eberle W., Wambacq P., En-gels M., Bolsens I., Impact of front-end non-idealities on Bit Er-ror Rate performances of WLAN-OFDM transceivers. Interuni-versity MicroElectronics Center.

Page 14: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

386 BIBLIOGRAPHY

[133] OFDM (Orthogonal Frequency Division Multiplexing). NovaEngineering.

[134] Interuniversity MicroElectronics Center. http://www.imec.be

[135] Taura, K., Tsujishita M., Takeda M., Kato H., Ishida M., IshidaY., A Digital Audio Broadcasting (DAB) Receiver. IEEE Trans.Consumer Elect.; Aug 1996; 42; 3: 322-327.

[ 136] Kuchen, F., Becker T.C., Wiesbeck W., Analytic Bit Error RateDetermination for Digital Audio Broadcasting. IEE Int. Broad-casting Conv.; Sep 1996: 261-266.

[137] Leclerc, M., Scalart P., Fautier P., Huynh H.T., PerformanceAnalysis of an In-Band COFDM/FM Digital Audio BroadcastingSystem. IEEE Trans. Broadcasting; Jun 1997; 43; 2: 191-198.

[138] Kroeger, B.W., Peyla P.J., Compatibility of FM Hybrid In-Band On-Channel (IBOC) System for Digital Audio Broadcast-ing. IEEE Trans. Broadcasting; Dec 1997; 43; 4: 421-430.

[139] Mignone, V., Morello A., Visintin M., An Advanced Algorithmfor Improving DVB-T Coverage in SFN. IEEE Int. BroadcastingConv.; Sep 1997: 534-540.

[140] Sari, H., Karam G., Jeanclaude I., Transmission Techniques forDigital Terrestrial TV Broadcasting. IEEE Commun. Mag.; Feb1995; 33; 2:100-109.

[141] IEEE Std. 802.16-2001 IEEE Standard for Local andMetropolitan area networks Part 16: Air Interface. IEEE Std.802.16-2001; 2002; 0_1-322.

[142] Koffman, I., Roman V., Broadband Wireless Access SolutionsBased on OFDM Access in IEEE 802.16. IEEE CommunicationsMagazine, April 2002.

Page 15: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 387

[143] Ergen, M., Puri A., MEWLANA-Mobile IP Enriched WirelessLocal Area Network Architecture. IEEE 56th Vehicular Technol-ogy Conf., 2002; 4; 2449-2453.

[144] Wong, C. Y., Cheng R. S., Letaief K. B., Murch R. D., Mul-tiuser OFDM with Adaptive Subcarrier, Bit, and Power Alloca-tion. IEEE J. of Selec. Areas in Commun., 1999; 10; 17; 1747-1758.

[145] Kivanc, D., Liu H., Subcarrier Allocation and Power Controlfor OFDMA. Thirty-Fourth Asilomar Conf. on Signals, Systemsand Computers, 2000; 1; 147 -151.

[146] Pietrzyk, S., Janssen G. J. M., Multiuser Subcarrier Allocationfor QoS Provision in the OFDMA Systems. IEEE 56th VehicularTechnology Conference, 2002; 2; 1077 -1081.

[147] Zhang, Y., Letaief K. B., Multiuser Subcarrier and Bit Alloca-tion along with Adaptive Cell Selection for OFDM Transmission.IEEE Int. Conf. on Comm., 2002; 2; 861 -865.

[148] Kim, I., Lee H. L., Kim B., Lee Y. H., On the Use of Linear Pro-gramming for Dynamic Subchannel and Bit Allocation in Mul-tiuser OFDM. IEEE Global Telecommunications Conf., 2001; 6;3648 -3652.

[149] Rhee, W., Cioffi J. M., Increase in Capacity of MultiuserOFDM System Using Dynamic Subchannel Allocation. IEEE51st Vehicular Technology Conf., 2000; 2; 1085 -1089.

[150] Wong, C. Y., Tsui C. Y., Cheng R. S., Letaief K. B., A Real-time Sub-carrier Allocation Scheme for Multiple Access Down-link OFDM Transmission. IEEE 50th Vehicular Technology Con-ference, 1999; 2; 1124-1128.

[151] Koutsopoulos, I., Tassiulas L., Channel state-Adaptive tech-niques for Throughput Enhancement in Wireless Broadband Net-

Page 16: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

388 BIBLIOGRAPHY

works. IEEE 20th Annual Joint Conf. of the IEEE Computer andCommunications Societies; 2; 757 -766.

[152] Nogueroles, R., Bossert M., Donder A., Zyablov V., Perfor-mance of a Random OFDMA System for Mobile Communi-cations. Int. Zurich Seminar on Transmission and Networking,1998; 37 -43.

[153] Ibars, C., Bar-Ness Y., Comparing the Performance of CodedMultiuser OFDM and Coded MC-CDMA over Fading Channels.IEEE Global Telecommunications Conf., 2001.; 2; 881 -885.

[154] Digital video broadcasting (DVB): Framing, channel cod-ing and modulation for digital terrestrial television. Draft ETSIEN300 744 V1.3.1 (2000-08).

[155] Barbarossa, S., Pompili M., Giannakis G. B., Time and Fre-quency Synchronization of Orthogonal Frequency Division Mul-tiple Access Systems. IEEE Int. Conf. on Communications; 6;1674 -1678.

[156] Bohdanowicz,A., Janssen G. J. M., Pietrzyk S., Wideband In-door and Outdoor Multipath Channel Measurements at 17 GHz.IEEE 50th Vehicular Technology Conf., 1999; 4; 1998 -2003.

[157] Corson, M. S., Laroia R., O‘Neill A., Park V., Tsirtsis G.,A New Paradigm for IP-Based Cellular Networks. 20th AnnualJoint Conf. of the IEEE Computer and Communications Soci-eties, Nov. -Dec. 2001; 2; 757 -766.

[158] Knopp, R., Humblet P., Information capacity and power con-trol in single cell multiuser communications. IEEE Int. Conf. onComm., 1995; 1; 331 -335.

[159] Khun, H. W., The Hungarian Method for the Assignment Prob-lem. Naval Research Logistics Quarterly, 1955; 2; 83-97.

Page 17: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 389

[160] Ergen, M., Coleri S., Varaiya P., QoS Aware Resource Allo-cation Techniques for Fair Scheduling in OFDMA Based Broad-band Wireless Access Systems. IEEE Trans. on Broadcasting, De-cember 2003; 49; 362-370.

[161] Guo, Z., Zhu W., Performance Study of OFDMA vs.OFDM/SDMA. IEEE 55th Vehicular Technology Conf., May2002; 2.

[162] Bana, S. V., Varaiya P., Space division multiple access (SDMA)for robust ad hoc vehicle communication networks. IEEE Intelli-gent Transportation Systems, 2001; 962-967.

[163] Yin, H., Liu H., Performance of Space-Divison Multiple-Access (SDMA) With Scheduling. IEEE Trans. on Wireless Com-munications, October 2002; 1; 4; 611-618.

[164] Vook, F. W., Baum K. L., Adaptive Antennas for OFDM. IEEE48th Vehicular Technology Conf., 1998; 1; 606-610.

[165] Kim, C. K., Lee K., Cho Y. S., Adaptive Beamforming Algo-rithm for OFDM Systems with Antenna Arrays. IEEE Trans. onConsumer Electronics, 2000; 46; 1052-1058.

[166] Thoen, S., Perre L. V. , Gyselinckx B., Engels M., AdaptiveLoading for OFDMA/SDMA-based Wireless Local Networks.IEEE Global Telecommunications Conf., 2000; 2; 767-771.

[167] Royer, E. M., Toh C. K. , A Review of Current Routing Pro-tocols for Ad Hoc Mobile Wireless Networks. IEEE PersonalComm., April 1999; 46-55.

[168] Johnsson, M., HiperLAN/2-The Broadband Radio Transmis-sion Technology Operating in the 5 GHz Frequency Band. Hiper-LAN/2 Global Forum, 1999.

[169] Bahai, A., Fettwies G., Results on MC-CDMA Receiver De-sign. IEEE Int. Conf. on Comm., June 1995; 915-918.

Page 18: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

390 BIBLIOGRAPHY

[170] Guo, Z., Zhu W., Performance Study of OFDMA vs.OFDMA/SDMA. Microsoft Research.

[171] Viswanath, P., Tse D. N. C., Laroia R., Opportunistic Beam-forming Using Dumb Antennas. IEEE Trans. on Information The-ory, June 2002; 48; 1277-1294.

[172] Aiello, R., Larsson T., Meacham D., Kim Y., Okado H., Multi-Band Performance Tradeoffs. IEEE P802.15-03/209r0, May,2003.

[173] Batra, A., Balakrishman J., Dabak A., Time-Frequency In-terleaved Orthogonal Frequency Division Multiplexing (TFI-OFDM). Physical Layer Submission to 802.15 Task Group 3a:IEEE P802.15-03/142r2, May, 2003.

[174] Rangan, S., Flash-OFDM: A New Wireless Technology forMobile Internet Access. http://www.flarion.com/.

[175] IEEE 802.16 and WiMAX-Broadband Wireless Access to Ev-eryone. Intel White Paper.

[176] Jonhston, D., Yaghoobi H., Peering Into the WiMAX Spec: Part1. http://www.commsdesign.com.

[177] Jonhston, D., Yaghoobi H., Peering Into the WiMAX Spec: Part2. http://www.commsdesign.com

[178] Saltzberg, B.R., Comparison of Single Carrier and Multi-tone Digital Modulation for ADSL Applications. IEEE Commun.Magazine; Nov 1998; 36; 11: 114-121.

[179] Wulich, D., Goldfeld L., Reduction of Peak Factor in Orthogo-nal Multicarrier Modulation by Amplitude Limiting and Coding.IEEE Trans. Commun.; Jan 1999; 47: 18-21.

[180] Kim, D., Stuber S.L., Clipping Noise Mitigation for OFDM byDecision-Aided Reconstruction. IEEE Commun. Let.; Jan 1999;3; 1:4-6.

Page 19: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

BIBLIOGRAPHY 391

[181] Baum, R. W., Fischer R. F. H., Huber J. B., Reducing the Peak-to-Average Ratio of Multicarrier Modulation by Selective Map-ping. Electronic Letters; Oct 1996; 32: 2056-2057.

[182] Sandberg, S.D., Tzannes M.A., Overlapped Discrete MultitoneModulation for High Speed Copper Wire Communication. IEEEJ. on Sel. Areas in Commun.; Dec 1995; SAC-13; 9: 1571-1585.

[183] Hara, S., Prasad R., Overview of Multicarrier CDMA. IEEECommun. Magazine; Dec 1997; 35; 12: 126-133.

Page 20: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

2.1

A basic PAM system

A basic QAM system

A QAM constellation

General form of QAM generation

The Collins Kineplex receiver

An early version of OFDM

OFDM modulation concept: Real and Imaginary com-ponents of an OFDM symbol is the superposition ofseveral harmonics modulated by data symbols

Spectrum overlap in OFDM

Spectrum of OFDM signal

Very basic OFDM system

A typical wireless OFDM architecture

Wireless propagation

2

4

5

6

8

9

10

11

12

13

14

16

Page 21: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

394 LIST OF FIGURES

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

3.1

4.1

Received signal versus distance © [1]

Doppler effect

Fading illustration © [2]

A flat fading channel where is sampling frequency

Components of a multi-carrier system

A communication channel in information theoretic view

Constellation diagram

An FFT implementation (decimation in time)

System with complex transmission

System with real transmission

Two different techniques for FFT butterfly

Partial FFT (DIT)

Prefix and postfix cyclic extension

Pilot positioning in time and frequency

Typical impulse response of a wireless channel

Relationship between system functions

Relationship between correlation functions

OFDM time and frequency span

Time-varying channel

Optimum transmit power distribution by the water pour-ing theorem

Power amplifier 1 dB compression point

18

20

24

25

28

29

31

37

38

40

41

42

43

45

46

46

49

50

50

62

72

Page 22: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

LIST OF FIGURES 395

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

5.1

Relationship between instantaneous and envelope clip-ping

Excursions of a Gaussian random process above

Normalized instantaneous distortion spectrum

Memoryless nonlinear mapping

Conditional probability of symbol error

Symbol error probabilities due to clipping

Symbol error probabilities using the additive Gaus-sian noise approach

Simulated and analytical symbol error probability floordue to clipping

Symbol error probability floor in a Rayleigh fadingchannel

Baseband equivalent system model for clipping at OFDMreceiver

BER in a Rayleigh fading channel, clip

BER in a Rayleigh fading channel, clip

BER for uncoded 16-QAM in a multipath fading chan-nel

BER for uncoded 64-QAM in a multipath fading chan-nel

Comparison of simulated and analytical symbol errorprobability floor for 64-tone OFDM signal in Rayleighfading

Wireless LAN adjacent channels

ACI caused by frequency offset

73

74

76

76

81

84

84

85

89

89

91

91

92

92

93

97

104

Page 23: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

396 LIST OF FIGURES

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Synchronization sequence in OFDM

Frame synchronization

Timing offset estimate

Frequency offset estimation

A digital implementation of coarse frequency offsetestimation using maximum likelihood criteria

A typical oscillator phase noise power spectrum

Classical phase-locked loop

A second order digital phase-locked loop

Typical spectrum of a phase-locked oscillator

Inter-carrier interference noise

Observation of the distortion by channel [87]

Pilot positioning in time and frequency

Baseband OFDM system

Pilot arrangement

Time domain interpolation

LMS scheme

16QAM modulation with Rayleigh fading (DopplerFreq. 70Hz)

16QAM modulation with Rayleigh fading (SNR 40dB)

MIMO-OFDM architecture

General decision feedback equalizer

Equalizer configuration in training mode

105

106

106

108

109

110

111

112

113

116

118

119

120

123

129

132

133

134

135

139

143

Page 24: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

LIST OF FIGURES 397

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Equalization using order update

An OFDM system with frequency domain equaliza-tion

LMS adaptation of a frequency domain equalizer mul-tiplier

Time and frequency domain equalization

An example system illustrating echo cancellation re-quirement

A basic echo canceller

Frequency domain echo cancellation

Combination echo cancellation for symmetric trans-mission

Echo cancellation where the transmit rate is lower thanreceive rate

Echo cancellation where the receive rate is lower thantransmit rate

Geometric interpretation of linear predictors

Lattice filter representation of predictors

Two-dimensional coding for OFDM

Construction of a canonical block code

Performance with block coding over a Gaussian channel

Implementation of periodic interleaving

CRC implementation

Generation of a convolutional code

State diagram of a convolutional code

148

149

152

153

154

155

156

157

158

159

162

163

168

169

170

172

173

174

175

Page 25: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

398 LIST OF FIGURES

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

8.1

8.2

8.3

8.4

8.5

8.6

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Viterbi algorithm applied to a simple convolutional code

Performance of a convolutional code over a Rayleighfading channel

Concatenated coding with interleaving

An expanded constellation partitioned for Trellis coding

Implementation of a Trellis code

State diagram of the Trellis code

Metrics used for Viterbi decoding

A typical turbo encoder

A turbo decoder structure

Attenuation constant of 24-gauge (0.5 mm) wire-pair

A bridged tap and its echoes

Crosstalk mechanism

Capacitive crosstalk mechanism

Inductive crosstalk mechanism

Near-end crosstalk generation

Comparison of WLAN standards [124]

IEEE 802.11 networks

Relationship between IEEE 802.11 services © [108]

IEEE 802.11 architecture © IEEE

The hidden node problem

RTS and CTS solution

Exposed terminal

176

179

180

182

182

183

184

186

188

193

193

194

195

196

198

205

207

213

214

215

216

217

Page 26: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

LIST OF FIGURES 399

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

9.16

9.17

9.18

9.19

9.20

9.21

9.22

9.23

9.24

9.25

9.26

9.27

9.28

MAC frame

NAV Sub-module finite state machine

DCF finite state machine

Idle sub-module finite state machine

Backoff sub-module finite state machine

Frame sequence and retry sub-module finite state ma-chine

Timing of the 802.11 DCF: Note that station 6 cannothear station 2 but station 1

Time realization of DCF

Markov Chain model for the IEEE 802.11 DCF Modelin normal operating condition

and values versus

Throughput versus number of active nodes

Throughput versus number of active nodes for fixedusers and fixed total load

Macro states in PCF

Timing diagram for PCF

Contention free period determination

Access point CFP finite state machine

Station CFP finite state machine

Frequency hopping

Transmit and Receive FHSS © IEEE

Transmit and Receive DSSS © IEEE

Wireless LAN system architecture

218

221

222

223

224

225

225

227

228

231

233

234

235

236

237

238

239

246

247

251

256

Page 27: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

400 LIST OF FIGURES

9.29

9.30

9.31

9.32

9.33

9.34

9.35

9.36

9.37

9.38

9.39

9.40

9.41

9.42

9.43

9.44

9.45

9.46

9.47

9.48

Logical block diagram of OFDM architecture

Scrambler/Descrambler

Convolutional encoder (k=7) © IEEE

Transmitter spectrum mask

OFDM subcarrier allocation

Nonlinear HPA model

Format of an OFDM frame © IEEE

Logical representation of an OFDM frame © IEEE

Format of an OFDM frame © IEEE

IEEE 802.11a PLCP/PMD transmitter state machine

Channel impulse response for typical wireless LANmedium

IEEE 802.11a PLCP/PMD receiver state machine

Frame synchronization and AGC

Channel estimation block

Simplified schematic of the IEEE 802.11a simulationmodel for the transmitter [132]

An example of power spectrum

An example of FIR filter where the required SIR atthe receiver is 30dB

Bit error rate of IEEE 802.11a in Rayleigh Channel

Bit error rate comparison of modulation schemes inAWGN

Phase noise (65dB of 10KHz)

256

257

258

261

261

262

264

265

265

267

268

270

272

273

275

276

277

277

278

279

Page 28: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

LIST OF FIGURES 401

9.49

9.50

9.51

9.52

9.53

9.54

9.55

9.56

9.57

9.58

9.59

9.60

9.61

9.62

9.63

9.64

9.65

9.66

9.67

Channel estimation compared to Perfect Channel Knowl-edge (PCK)

An example of constellation diagram with IQ imbalance

IQ imbalance when there is no coding and no perfectchannel knowledge

IQ imbalance when there is coding and perfect chan-nel knowledge

Impact of clipping threshold on performance

Quantization performance in AWGN

Quantization effect in QPSK (AWGN)

Quantization effect in 16QAM (AWGN)

Nonlinear distortion in IEEE 802.11a

Hard or Soft decision coding

Co-channel interference

UWB interference

Impairments in 64QAM when there is no coding, andperfect channel knowledge

Impairments in 64QAM when there is coding and per-fect channel knowledge

Impairments in 64QAM when there is no coding andsoft decision decoding

MAC frame format © IEEE

MAC architecture © IEEE

EDCA mechanism

Reference implementation model © IEEE

280

281

282

282

283

284

284

285

286

287

287

288

290

290

291

295

296

297

298

Page 29: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

402 LIST OF FIGURES

9.68

9.69

9.70

9.71

10.1

10.2

10.3

10.4

10.5

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10A SDMA system

12.1

12.2

CAP/CFP/CP periods © IEEE

Direct Link handshake © IEEE

HIPERLAN/2 MAC protocol stack © ETSI-BRAN

Mapping between logical channels and transport chan-nels © ETSI-BRAN

Received signal in an SFN

Block diagram of a DAB transmitter

DAB frame structure

DVB transmitter structure

DVB receiver architecture

FDMA, TDMA and CDMA schemes

OFDM-CDMA system with frequency spreading

OFDM-CDMA system with time spreading

Discrete time MC-SS RAKE in frequency domain

Simplified RAKE receiver

Orthogonal Frequency Division Multiple Access System338

An example of channel gain

Flash-OFDM tone allocation

Flash-OFDM session control

UWB spectrum

UWB performance

300

302

304

307

318

320

322

326

326

328

333

334

335

335

339

344

345

346

349

350

Page 30: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

LIST OF FIGURES 403

12.3

12.4

12.5

13.1

13.2

14.1

14.2

14.3

Impulse radio receiver

An example of time-frequency interleaving for the multiband OFDM in three band. © IEEE

Example transmitter architecture for the proposed UWBPHY © IEEE

Global wireless standards

WirelessMAN OFDM transmitter © IEEE

DWMT transmitter

DWMT receiver

IF sampling and digital radio down conversion

351

353

354

358

359

368

369

370

Page 31: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

List of Tables

6.1

9.1

9.2

9.3

9.4

9.5

9.6

9.7

11.1

13.1

13.2

Simulation parameters for channel estimation

Comparison of LANs

FCC rules for IEEE 802.11 FHSS

FCC rules for IEEE 802.11 DSSS

IEEE 802.11a OFDM PHY characteristics

Eight PHY Modes of the IEEE 802.11a

Key parameters of the IEEE 802.11a

Priority access category mappings for IEEE 802.11e

Flash-OFDM parameters

OFDM symbol parameters for WirelessMAN OFDM

Data rates achieved in 802.16 with a 1/32 guard time(Mbps)

131

206

248

250

255

259

263

294

344

360

360

Page 32: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

406 LIST OF TABLES

14.1 Relative advantages of single carrier and multi-carriermodulation. An denotes the system with betterperformance or lower cost. 364

Page 33: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

Index

A

B

C

ACK, 215, 223, 226Adaptive, 2, 138, 186, 201, 245,

254, 291, 329ADSL(Asymmetric Digital Sub-

scriber Line), 13, 79, 148,189, 191, 200–202, 363,365

Aliasing, 39, 44, 94Alphabet, 2, 28, 171AODV, 208ARF (AutoRate Fallback), 291ARMA model, 142, 145, 146,

151, 160, 163, 164Association, 212ATIM, 242Authentication, 243Auto-correlation, 55, 141, 145,

332

Bandwidth regrowth, 94, 262Bit Allocation, 37, 201Bluetooth, 219, 253Bridged tap, 192

BSS, 209, 212IBSS, 206, 207, 240–242, 293Infrastructure BSS, 217, 241

Bussgang’s theorem, 77

CDMA (Code Division Multi-ple Access), 328, 331,334

CDMA2000, 331cdmaOne, 331

Channel estimation, 33, 117–120,122, 124–127, 130, 132–135, 273

Clipping, xvi, 69, 70, 72, 75,77, 78, 80, 82, 86, 88,90, 93, 94, 96, 262, 275,276, 289, 365

Codingblock, 168, 172, 179concatenated, 29, 168, 179,

324convolutional, 29, 168, 173,174, 178–181, 183, 185, 258,313

Page 34: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

408 INDEX

Reed-Solomon, 171, 179, 180,201, 202, 370turbo, 29, 168, 185, 187

Coherence bandwidth, 19, 49Coherence distance, 21Coherence time, 21, 49Conjugate appending, 201CRC (Cyclic Redundancy Check),

172, 173, 201, 202, 250Crosstalk, 167, 194, 197, 199CSMA/CA, 204, 242, 248Cyclic extension, 44, 45, 103,

156

DDAB (Digital Audio Broadcast),

33, 317, 320, 323, 324DCF, 217, 220, 227, 299DFE (Decision Feedback Equal-

ization), 64, 65, 138, 143DIF (Decimation in frequency),

42Distribution system, 303DIT (Decimation in time), 42DMT (Discrete Multi-Tone), 12,

13, 143, 151, 190, 367Doppler, 19, 21, 23, 119, 121,

133, 134, 280, 323DSDV, 207DSR, 208DSSS, 245, 250, 251, 253

HR/DSSS, 252

EEAP, 243, 244

Echo, 138, 153–155, 325Echo cancellation, 153, 156, 201Entropy, 28Equalization, xvi, 7, 48, 117, 137,

138, 142, 149, 151, 154,273, 324, 365, 369

Error probability, 58, 60, 61, 63,66, 78, 87, 90, 97, 167,170, 181, 184, 365

ESSID, 208

FFDMA (Frequency Division Mul-

tiple Access), 329, 330FFT (Fast Fourier Transform),

12, 37, 41, 44, 104, 152,255, 337, 338, 348, 352,353, 365

butterfly, 255, 274, 370partial, 41, 42, 44

FHSS, 245, 248, 249, 251Flash-OFDM, 343Fragmentation, 219Frame synchronization, 272Frequency offset, 44, 99, 102–

104, 108, 269, 280Frequency selective fading, 22,

120, 249, 331

GGap, 64Gating, 7, 52Gram-Schmidt, 161Gray coding, 57, 86GSM, 330

Page 35: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

INDEX 409

Guard interval, 44, 262, 304, 318,319, 354

HHard or Soft Decision Decod-

ing, 279, 286HIPERLAN

HIPERLAN/1, 204, 302HIPERLAN/2, 204, 303, 309,311

IICI (Inter Carrier Interference),

102, 121, 134, 278IEEE, 203, 328

802.11, 203, 204, 206, 208,211, 212, 215, 241, 244, 328

DIFS, 220, 222, 229EIFS, 220, 223PIFS, 220, 235SIFS, 219, 224, 226, 235,299

802.11a, 253, 254, 258, 260,272, 276, 286, 303, 310, 311802.11b, 204, 245, 252, 253,312, 313802.11c, 312802.11d, 313802.11e, 204, 293, 294, 301,316

AIFS, 295, 297EDCA, 293, 295, 296TXOP, 295, 296, 299

802.11f, 313802.11g, 313

802.11h, 314802.11i, 244, 315802.16, 336, 357, 359802.1x, 243, 244, 315, 316

IFFT, 154, 260, 274, 275Interference, 7, 18, 44, 288, 289,

312, 314, 319, 323, 325,367

inter-carrier, 100inter-channel, 102, 104, 137,367, 368inter-symbol, 2, 3, 7, 44, 99,102, 121, 137, 139, 142, 155,254, 319, 336, 367, 368Narrow-band, 275, 288, 354,367, 369RF, 253

Interleaving, 13, 172, 178, 185,187, 259, 321, 354

IPv4, 210IPv6, 211IR, 252ISI (Inter Symbol Interference),

22, 88, 122, 137, 138,262, 329, 337

JJitter, 99, 102, 115, 255

KKineplex, 7

MMarkov Model, 227Matched filter, 47, 108, 142, 254Mesh network, 357

Page 36: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

410 INDEX

MIMO, 134MMAC, 204, 312Mobile IP, 210, 211Multiband OFDM, 354

NNAV, 221, 226, 237Noise, 70, 85, 99, 109, 112, 121,

139Phase, 108, 111, 114, 115, 275

Nyquist criterion, 2, 9, 27, 82

OOFDM, xv, xvii, 7, 10, 11, 13,

14, 30, 33, 35, 44, 51,59, 60, 69, 86, 94, 100,115, 117, 328, 332, 352

MIMO-OFDM, 119, 134, 135OFDM-CDMA, 332OFDM-FDMA, 329OFDM-SDMA, 346, 348OFDM-TDMA, 330OFDMA, 336, 337, 348TFI-OFDM, 353, 354

Open system authentication, 212

PPAM, 1, 3, 4, 56PCF, 217, 237Peak-to-average ratio, 71, 94, 262,

365, 366, 370Phase-locked loop, 110, 112Pilot arrangement, block-type,

122, 124, 133Pilot arrangement, comb-type,

126

Point-to-multipoint (PMP), 342,357

Point-to-point (P2P), 359Power amplifiers, 71, 371Power management, 241, 242Puncturing, 174, 259, 304, 311,

321

QQAM, 4, 9, 32, 56, 59, 69, 181

16QAM, 133, 285QoS, 293, 299, 303QSTA, 295, 299

RRAKE, 332, 334, 351, 352Rate Adaptation, 291Rayleigh fading, 23, 35, 80, 96,

133, 318Ricean fading, 25Roll-off, 3, 101, 103RTS/CTS, 215, 216, 233

SScattering function, 16, 49Security, 206, 244, 315SFN (Single Frequency Network),

13, 318, 325Shadowing, 17, 269, 318Shaping gain, 59Shared key authentication, 212SSID, 240SSR, 208Synchronization, xvii, 90, 99,

104, 107, 186, 239, 269,321, 325, 331

Page 37: Bibliography978-0-387-22576...BIBLIOGRAPHY 379 [59] Zhao, Y., Huang A., A novel channel estimation method for OFDM Mobile Communications Systems based on pilot signals and transform

INDEX 411

TTDMA, 328, 330Throughput, 209, 231, 249, 330Time-varying channels, 35, 48,

49, 51TORA, 208

UUWB, 288, 289, 349, 350

Impulse radio, 289, 350, 351

VViterbi algorithm, 175, 176, 178,

183, 258, 370

WWater pouring, 61Weiner, 112WEP, 243, 315WiMAX, 358, 362Windowing, 44, 103, 367Wire-Pair channel, xvii, 60, 152,

190–192, 199, 200WLAN (Wireless Local Area Net-

work), 203, 210, 253,293

WPAN, 355WRP, 207WTRP (Wireless Token Ring Pro-

tocol), 328

ZZIF (Zero IF technology), 292