41
Bianchi I model in terms of loop geometry: Classical dynamics Piotr Dzier˙ zak Theoretical Physics Department Institute for Nuclear Studies Warsaw, Poland Piotr Dzier˙ zak (INS) Bianchi I model in terms of loop geometry: Classical dynamics Kraków, 24 April 2010 1 / 18

Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Bianchi I model in terms of loop geometry:Classical dynamics

Piotr Dzierzak

Theoretical Physics DepartmentInstitute for Nuclear Studies

Warsaw, Poland

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 1 / 18

Page 2: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Based on:

[1] P. Dz., P. Małkiewicz and W. Piechocki,‘Turning Big Bang into Big Bounce: I. Classical dynamics’,Phys. Rev. D80, 104001 (2009) [arXiv:gr-qc/0907.3436].

[2] P. Dz., W. Piechocki,‘The Bianchi I model in terms of nonstandard loop quantumcosmology: Classical dynamics’,Phys. Rev. D80, 124033 (2009) [arXiv:gr-qc/0909.4211].

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 2 / 18

Page 3: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

OUTLINE

1 Introduction

2 Classical levelBianchi I modelModified HamiltonianEquations of motionAlgebra of observablesFunctions on the physical space

3 Conclusions

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 3 / 18

Page 4: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Introduction

Two LQC methods:standard LQC: ‘first quantize, then impose constraints’non-standard LQC: ‘first solve constraints, then quantize’

Bianchi I with massless scalar field:standard LQC: classical Big Bang is replaced by quantum BigBounce due to strong quantum effects at the Planck scalesnon-standard LQC: modification of GR by loop geometry isresponsible for the resolution of the singularity

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 4 / 18

Page 5: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Introduction

Two LQC methods:standard LQC: ‘first quantize, then impose constraints’non-standard LQC: ‘first solve constraints, then quantize’

Bianchi I with massless scalar field:standard LQC: classical Big Bang is replaced by quantum BigBounce due to strong quantum effects at the Planck scalesnon-standard LQC: modification of GR by loop geometry isresponsible for the resolution of the singularity

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 4 / 18

Page 6: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Introduction

Two LQC methods:standard LQC: ‘first quantize, then impose constraints’non-standard LQC: ‘first solve constraints, then quantize’

Bianchi I with massless scalar field:standard LQC: classical Big Bang is replaced by quantum BigBounce due to strong quantum effects at the Planck scalesnon-standard LQC: modification of GR by loop geometry isresponsible for the resolution of the singularity

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 4 / 18

Page 7: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Bianchi I model

Bianchi I model describes homogeneous and anisotropic universe.The metric reads:

ds2 = −N2 dt2 +3∑

i=1

a2i (t) dx2

i ,

3∑i=1

ki = 1,3∑

i=1

k2i + k2

φ = 1 (1)

where ai(t) = ai(0)

(ττ0

)ki

, dτ = N dt , kφ describes matter density.

For kφ = 0 (vacuum) we have Kasner model.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 5 / 18

Page 8: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

We consider Bianchi I cosmology with massless scalar field in spacewith R3-topology.

Hamiltonian reads:

Hg :=

∫Σ

d3x(N iCi + NaCa + NC), (2)

where: Σ is the space-like part of spacetime R× Σ; (N i ,Na,N)Lagrange multipliers; (Ci ,Ca,C) are Gauss, diffeomorphism and scalarconstraints; (a,b = 1,2,3), spatial indices; (i , j , k = 1,2,3) internalSU(2) indices. The constrains must satisfy specific algebra.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 6 / 18

Page 9: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

We consider Bianchi I cosmology with massless scalar field in spacewith R3-topology.

Hamiltonian reads:

Hg :=

∫Σ

d3x(N iCi + NaCa + NC), (2)

where: Σ is the space-like part of spacetime R× Σ; (N i ,Na,N)Lagrange multipliers; (Ci ,Ca,C) are Gauss, diffeomorphism and scalarconstraints; (a,b = 1,2,3), spatial indices; (i , j , k = 1,2,3) internalSU(2) indices. The constrains must satisfy specific algebra.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 6 / 18

Page 10: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

Having fixed local gauge and diffeomorphism freedom we can rewritethe gravitational part of the classical Hamiltonian in the form:

Hg = −γ−2∫V

d3x Ne−1εijkEajEbkF iab , (3)

where: γ is the Barbero-Immirzi parameter; V ⊂ Σ elementary cell; Nlapse function; εijk alternating tensor; Ea

i density weighted triad;F k

ab = ∂aAkb − ∂bAk

a + εkij AiaAj

b curvature of SU(2) connection Aia;

e :=√|det E |;

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 7 / 18

Page 11: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified HamiltonianRewriting the curvature in terms of holonomies:

F kab = −2 lim

Ar �ij→ 0Tr(h(µ)

�ij− 1

Ar �ij

)τ k oωi

aoωj

a, (4)

where:h�ij = h(µi )

i h(µj )

j (h(µi )i )−1(h(µj )

j )−1 (5)

is the holonomy of the gravitational connection around the square loop�ij , considered over a face of the elementary cell, each of whose sideshas length µjLj (and Vo := L1L2L3) with respect to the flat fiducialmetric oqab := δij

oωia

oωja.

In the fundamental, j = 1/2, representation of SU(2), reads

h(µi )i = cos(µici/2) I + 2 sin(µici/2) τi (6)

where τi = −iσi/2 (σi are the Pauli spin matrices)

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 8 / 18

Page 12: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified HamiltonianRewriting the curvature in terms of holonomies:

F kab = −2 lim

Ar �ij→ 0Tr(h(µ)

�ij− 1

Ar �ij

)τ k oωi

aoωj

a, (4)

where:h�ij = h(µi )

i h(µj )

j (h(µi )i )−1(h(µj )

j )−1 (5)

is the holonomy of the gravitational connection around the square loop�ij , considered over a face of the elementary cell, each of whose sideshas length µjLj (and Vo := L1L2L3) with respect to the flat fiducialmetric oqab := δij

oωia

oωja.

In the fundamental, j = 1/2, representation of SU(2), reads

h(µi )i = cos(µici/2) I + 2 sin(µici/2) τi (6)

where τi = −iσi/2 (σi are the Pauli spin matrices)

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 8 / 18

Page 13: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

Making use of (3), (4) and the so-called Thiemann identity leads to Hgin the form:

Hg = limµ1,µ2,µ3→ 0

H(µ1 µ2 µ3)g , (7)

where:

H(µ1 µ2 µ3)g = − sgn(p1p2p3)

2πGγ3µ1µ2µ3

∑ijk

N εijk Tr(

h(µi )i h(µj )

j ×

× (h(µi )i )−1(h(µj )

j )−1h(µk )k {(h(µk )

k )−1,V})

(8)

and is the V = a1 a2 a3V0 volume of the elementary cell.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 9 / 18

Page 14: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

In considered model the hamiltonian reads:

H = Hg + Hφ ≈ 0, (9)

where Hg is defined by (7) and Hφ = N p2φ|p|

− 32 /2. The relation H ≈ 0

defines the physical phase space of considered gravitational systemwith constraints.Making use of (6) we calculate (8) and get the modified totalHamiltonian. The Hamiltonian modified by loop geometry (in the gaugeN =

√|p1 p2 p3|) reads:

H(λ) = − 18πGγ2µ1µ2

[|p1p2| sin(c1µ1) sin(c2µ2) + cyclic

]+

p2φ

2(10)

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 10 / 18

Page 15: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

We use so called µ scheme:µi :=

√1|pi | λ and λ is a free parameter.

Now we introduce following canonical variables:βi := ci√

|pi |, vi := |pi |3/2 sgn(pi),

and the Poisson bracket:

{·, ·} := 12πGγ∑3

k=1

[∂·∂βk

∂·∂vk− ∂·

∂vk

∂·∂βk

]+ ∂·

∂φ∂·∂pφ− ∂·

∂pφ

∂·∂φ

The Hamiltonian in new variables reads:

H(λ) =p2φ

2− 1

8πGγ2

(sin(λβ1) sin(λβ2)

λ2 v1v2+ (11)

+sin(λβ1) sin(λβ3)

λ2 v1v3 +sin(λβ2) sin(λβ3)

λ2 v2v3

)It is classical modified Hamiltonian.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 11 / 18

Page 16: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

We use so called µ scheme:µi :=

√1|pi | λ and λ is a free parameter.

Now we introduce following canonical variables:βi := ci√

|pi |, vi := |pi |3/2 sgn(pi),

and the Poisson bracket:

{·, ·} := 12πGγ∑3

k=1

[∂·∂βk

∂·∂vk− ∂·

∂vk

∂·∂βk

]+ ∂·

∂φ∂·∂pφ− ∂·

∂pφ

∂·∂φ

The Hamiltonian in new variables reads:

H(λ) =p2φ

2− 1

8πGγ2

(sin(λβ1) sin(λβ2)

λ2 v1v2+ (11)

+sin(λβ1) sin(λβ3)

λ2 v1v3 +sin(λβ2) sin(λβ3)

λ2 v2v3

)It is classical modified Hamiltonian.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 11 / 18

Page 17: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

We use so called µ scheme:µi :=

√1|pi | λ and λ is a free parameter.

Now we introduce following canonical variables:βi := ci√

|pi |, vi := |pi |3/2 sgn(pi),

and the Poisson bracket:

{·, ·} := 12πGγ∑3

k=1

[∂·∂βk

∂·∂vk− ∂·

∂vk

∂·∂βk

]+ ∂·

∂φ∂·∂pφ− ∂·

∂pφ

∂·∂φ

The Hamiltonian in new variables reads:

H(λ) =p2φ

2− 1

8πGγ2

(sin(λβ1) sin(λβ2)

λ2 v1v2+ (11)

+sin(λβ1) sin(λβ3)

λ2 v1v3 +sin(λβ2) sin(λβ3)

λ2 v2v3

)It is classical modified Hamiltonian.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 11 / 18

Page 18: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Modified Hamiltonian

We use so called µ scheme:µi :=

√1|pi | λ and λ is a free parameter.

Now we introduce following canonical variables:βi := ci√

|pi |, vi := |pi |3/2 sgn(pi),

and the Poisson bracket:

{·, ·} := 12πGγ∑3

k=1

[∂·∂βk

∂·∂vk− ∂·

∂vk

∂·∂βk

]+ ∂·

∂φ∂·∂pφ− ∂·

∂pφ

∂·∂φ

The Hamiltonian in new variables reads:

H(λ) =p2φ

2− 1

8πGγ2

(sin(λβ1) sin(λβ2)

λ2 v1v2+ (11)

+sin(λβ1) sin(λβ3)

λ2 v1v3 +sin(λβ2) sin(λβ3)

λ2 v2v3

)It is classical modified Hamiltonian.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 11 / 18

Page 19: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Equations of motion

Equations of motion plus the constraint reads:

βi = −18πGsin(λβi)

λ(Oj + Ok ) (12)

vi = 18πG vi cos(λβi) (Oj + Ok ) (13)pφ = 0 (14)φ = pφ (15)

H(λ) ≈ 0, (16)

where Oi := vi sin(λβi )12πGγλ , Oi are constants of motion.

Worth of noting: φ plays the role of time.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 12 / 18

Page 20: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Equations of motion

Equations of motion plus the constraint reads:

βi = −18πGsin(λβi)

λ(Oj + Ok ) (12)

vi = 18πG vi cos(λβi) (Oj + Ok ) (13)pφ = 0 (14)φ = pφ (15)

H(λ) ≈ 0, (16)

where Oi := vi sin(λβi )12πGγλ , Oi are constants of motion.

Worth of noting: φ plays the role of time.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 12 / 18

Page 21: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Equations of motion

Solution of equation, for example (13):

2 vi(φ) = exp(

18πGpφ

(Oj + Ok ) (φ− φ0i )

)+

+ (12πGγλ Oi)2 · exp

(− 18πG

pφ(Oj + Ok ) (φ− φ0

i )

)(17)

We can write this in a different form:

vi = 12πGγλOi cosh(

18πGpφ

(Oj +Ok ) (φ−φ0i )− ln

∣∣12πGγλOi∣∣) (18)

Because V = (v1v2v3)1/3 it is clear that for nonzero λ there is nosingularity for any value of φ.Big Bounce already at classical level!

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 13 / 18

Page 22: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Equations of motion

Solution of equation, for example (13):

2 vi(φ) = exp(

18πGpφ

(Oj + Ok ) (φ− φ0i )

)+

+ (12πGγλ Oi)2 · exp

(− 18πG

pφ(Oj + Ok ) (φ− φ0

i )

)(17)

We can write this in a different form:

vi = 12πGγλOi cosh(

18πGpφ

(Oj +Ok ) (φ−φ0i )− ln

∣∣12πGγλOi∣∣) (18)

Because V = (v1v2v3)1/3 it is clear that for nonzero λ there is nosingularity for any value of φ.Big Bounce already at classical level!

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 13 / 18

Page 23: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Equations of motion

Solution of equation, for example (13):

2 vi(φ) = exp(

18πGpφ

(Oj + Ok ) (φ− φ0i )

)+

+ (12πGγλ Oi)2 · exp

(− 18πG

pφ(Oj + Ok ) (φ− φ0

i )

)(17)

We can write this in a different form:

vi = 12πGγλOi cosh(

18πGpφ

(Oj +Ok ) (φ−φ0i )− ln

∣∣12πGγλOi∣∣) (18)

Because V = (v1v2v3)1/3 it is clear that for nonzero λ there is nosingularity for any value of φ.Big Bounce already at classical level!

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 13 / 18

Page 24: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Equations of motion

Solution of equation, for example (13):

2 vi(φ) = exp(

18πGpφ

(Oj + Ok ) (φ− φ0i )

)+

+ (12πGγλ Oi)2 · exp

(− 18πG

pφ(Oj + Ok ) (φ− φ0

i )

)(17)

We can write this in a different form:

vi = 12πGγλOi cosh(

18πGpφ

(Oj +Ok ) (φ−φ0i )− ln

∣∣12πGγλOi∣∣) (18)

Because V = (v1v2v3)1/3 it is clear that for nonzero λ there is nosingularity for any value of φ.Big Bounce already at classical level!

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 13 / 18

Page 25: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Algebra of observables

Our aim : Singularity aspects of the model in terms of observables.

A function F defined on phase space is a Dirac observable if it is thesolution to the equation {

F ,H(λ)}

= 0 (19)

We found that:

Adyni = ln

∣∣∣∣ tan(λβi

2

)∣∣∣∣+3√πG sgn(pφ)

(Oj + Ok

√O1O2 + O1O3 + O2O3

(20)

Oi =vi sin(λβi)

12πGγλ(21)

These are dynamical (satisfy the constraint) observables.We can express by them any interesting physical function.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 14 / 18

Page 26: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Algebra of observables

Our aim : Singularity aspects of the model in terms of observables.

A function F defined on phase space is a Dirac observable if it is thesolution to the equation {

F ,H(λ)}

= 0 (19)

We found that:

Adyni = ln

∣∣∣∣ tan(λβi

2

)∣∣∣∣+3√πG sgn(pφ)

(Oj + Ok

√O1O2 + O1O3 + O2O3

(20)

Oi =vi sin(λβi)

12πGγλ(21)

These are dynamical (satisfy the constraint) observables.We can express by them any interesting physical function.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 14 / 18

Page 27: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Algebra of observables

Our aim : Singularity aspects of the model in terms of observables.

A function F defined on phase space is a Dirac observable if it is thesolution to the equation {

F ,H(λ)}

= 0 (19)

We found that:

Adyni = ln

∣∣∣∣ tan(λβi

2

)∣∣∣∣+3√πG sgn(pφ)

(Oj + Ok

√O1O2 + O1O3 + O2O3

(20)

Oi =vi sin(λβi)

12πGγλ(21)

These are dynamical (satisfy the constraint) observables.We can express by them any interesting physical function.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 14 / 18

Page 28: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Algebra of observables

Our aim : Singularity aspects of the model in terms of observables.

A function F defined on phase space is a Dirac observable if it is thesolution to the equation {

F ,H(λ)}

= 0 (19)

We found that:

Adyni = ln

∣∣∣∣ tan(λβi

2

)∣∣∣∣+3√πG sgn(pφ)

(Oj + Ok

√O1O2 + O1O3 + O2O3

(20)

Oi =vi sin(λβi)

12πGγλ(21)

These are dynamical (satisfy the constraint) observables.We can express by them any interesting physical function.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 14 / 18

Page 29: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Algebra of observables

These observables satisfy the Lie algebra:

{Oi ,Oj}dyn = 0, {Adyni ,Oi}dyn = 1,

{Adyni ,Oj}dyn = 0, {Adyn

i ,Adynj }dyn = 0. (22)

where:

{·, ·}dyn :=3∑

i=1

(∂·

∂Adyni

∂·∂Oi− ∂·∂Oi

∂·∂Adyn

i

)(23)

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 15 / 18

Page 30: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Directional energy density:

ρi(λ, φ) :=p2φ

2 v2i

(24)

The bounce in i-th direction occurs when ρi approaches its maximumvalue1.

We would like to express above function in terms of observables andan evolution parameter φ:

ρi(λ, φ) =O1O2 + O1O3 + O2O3

8πGγ2 O2i cosh2

(3√πG sgn(pφ)

(Oj +Ok

)√

O1O2+O1O3+O2O3φ− Adyn

i

) (25)

It will be an observable for each fixed value of φ, since in such case itwill be function of observables only.

1D.W. Chiou PRD (75), 24029 (2007)Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 16 / 18

Page 31: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Directional energy density:

ρi(λ, φ) :=p2φ

2 v2i

(24)

The bounce in i-th direction occurs when ρi approaches its maximumvalue1.

We would like to express above function in terms of observables andan evolution parameter φ:

ρi(λ, φ) =O1O2 + O1O3 + O2O3

8πGγ2 O2i cosh2

(3√πG sgn(pφ)

(Oj +Ok

)√

O1O2+O1O3+O2O3φ− Adyn

i

) (25)

It will be an observable for each fixed value of φ, since in such case itwill be function of observables only.

1D.W. Chiou PRD (75), 24029 (2007)Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 16 / 18

Page 32: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Directional energy density:

ρi(λ, φ) :=p2φ

2 v2i

(24)

The bounce in i-th direction occurs when ρi approaches its maximumvalue1.

We would like to express above function in terms of observables andan evolution parameter φ:

ρi(λ, φ) =O1O2 + O1O3 + O2O3

8πGγ2 O2i cosh2

(3√πG sgn(pφ)

(Oj +Ok

)√

O1O2+O1O3+O2O3φ− Adyn

i

) (25)

It will be an observable for each fixed value of φ, since in such case itwill be function of observables only.

1D.W. Chiou PRD (75), 24029 (2007)Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 16 / 18

Page 33: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Directional energy density:

ρi(λ, φ) :=p2φ

2 v2i

(24)

The bounce in i-th direction occurs when ρi approaches its maximumvalue1.

We would like to express above function in terms of observables andan evolution parameter φ:

ρi(λ, φ) =O1O2 + O1O3 + O2O3

8πGγ2 O2i cosh2

(3√πG sgn(pφ)

(Oj +Ok

)√

O1O2+O1O3+O2O3φ− Adyn

i

) (25)

It will be an observable for each fixed value of φ, since in such case itwill be function of observables only.

1D.W. Chiou PRD (75), 24029 (2007)Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 16 / 18

Page 34: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Big bounce happens when vi takes its minimal value:vmin

i = 12πGγλOi . Thus the maximum value of this density:

ρmaxi =

116πGγ2λ2

(kφki

)2

(26)

where kφ and ki taken from the metric.

λ is a free parameter of this formalism.Let assume that λ = lPl . We get:

ρmaxi ' 0,35

(kφki

)2

ρPl (27)

So we fit the Planck scale.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 17 / 18

Page 35: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Big bounce happens when vi takes its minimal value:vmin

i = 12πGγλOi . Thus the maximum value of this density:

ρmaxi =

116πGγ2λ2

(kφki

)2

(26)

where kφ and ki taken from the metric.

λ is a free parameter of this formalism.Let assume that λ = lPl . We get:

ρmaxi ' 0,35

(kφki

)2

ρPl (27)

So we fit the Planck scale.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 17 / 18

Page 36: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Big bounce happens when vi takes its minimal value:vmin

i = 12πGγλOi . Thus the maximum value of this density:

ρmaxi =

116πGγ2λ2

(kφki

)2

(26)

where kφ and ki taken from the metric.

λ is a free parameter of this formalism.Let assume that λ = lPl . We get:

ρmaxi ' 0,35

(kφki

)2

ρPl (27)

So we fit the Planck scale.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 17 / 18

Page 37: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Functions on the physical space

Big bounce happens when vi takes its minimal value:vmin

i = 12πGγλOi . Thus the maximum value of this density:

ρmaxi =

116πGγ2λ2

(kφki

)2

(26)

where kφ and ki taken from the metric.

λ is a free parameter of this formalism.Let assume that λ = lPl . We get:

ρmaxi ' 0,35

(kφki

)2

ρPl (27)

So we fit the Planck scale.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 17 / 18

Page 38: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Conclusions

Modification of gravitational part of classical Hamiltonian, realizedby using the loop geometry turns big-bang into big-bounce.

λ is a free parameter of the theory as in the case of FRW model.

Next step: quantization of classical dynamics, examine spectra ofphysical observables.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 18 / 18

Page 39: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Conclusions

Modification of gravitational part of classical Hamiltonian, realizedby using the loop geometry turns big-bang into big-bounce.

λ is a free parameter of the theory as in the case of FRW model.

Next step: quantization of classical dynamics, examine spectra ofphysical observables.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 18 / 18

Page 40: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Conclusions

Modification of gravitational part of classical Hamiltonian, realizedby using the loop geometry turns big-bang into big-bounce.

λ is a free parameter of the theory as in the case of FRW model.

Next step: quantization of classical dynamics, examine spectra ofphysical observables.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 18 / 18

Page 41: Bianchi I model in terms of loop geometry: Classical dynamicspdzi/PREZENTACJA2_Krakow.pdf · OUTLINE 1 Introduction 2 Classical level Bianchi I model Modified Hamiltonian Equations

Conclusions

Modification of gravitational part of classical Hamiltonian, realizedby using the loop geometry turns big-bang into big-bounce.

λ is a free parameter of the theory as in the case of FRW model.

Next step: quantization of classical dynamics, examine spectra ofphysical observables.

Piotr Dzierzak (INS) Bianchi I model in terms of loop geometry: Classical dynamicsKraków, 24 April 2010 18 / 18