25

BEYOND THE STANDARD MODEL

  • Upload
    rafiki

  • View
    52

  • Download
    1

Embed Size (px)

DESCRIPTION

BEYOND THE STANDARD MODEL. Dmitri Kazakov JINR/ITEP. Outline. Part I Supersymmetry Part II Extra Dimensions. 1. What is SUSY 2. Basics of SUSY 3. The MSSM 4. Constrained MSSM 5. SUSY searches 6. SUSY DM. 1. The main idea 2. Kaluza-Klein Approach 3. Brane-world models - PowerPoint PPT Presentation

Citation preview

Page 1: BEYOND THE STANDARD MODEL
Page 2: BEYOND THE STANDARD MODEL

H

Page 3: BEYOND THE STANDARD MODEL

The SM and BeyondThe SM and Beyond

• Inconsistency at high energies due to Landau poleInconsistency at high energies due to Landau pole• Large number of free parametersLarge number of free parameters• Formal unification of strong and electroweak interactionsFormal unification of strong and electroweak interactions• Still unclear mechanism of EW symmetry breakingStill unclear mechanism of EW symmetry breaking• CP-violation is not understoodCP-violation is not understood• Flavour mixing and the number of generations is arbitraryFlavour mixing and the number of generations is arbitrary• The origin of the mass spectrum in unclearThe origin of the mass spectrum in unclear

The problems of the SM:The problems of the SM:

The way beyond the SM:The way beyond the SM:

• The SAME fields with NEW The SAME fields with NEW interactions interactions

GUT, SUSY, StringGUT, SUSY, String

• NEW fields with NEW NEW fields with NEW interactionsinteractions

Compositeness, Technicolour,Compositeness, Technicolour, preonspreons

Page 4: BEYOND THE STANDARD MODEL

Grand Unified TheoriesGrand Unified Theories

• Unification of strong, weak and electromagnetic interactions within Grand Unified Theories is the new step in unification of all forces of Nature• Creation of a unified theory of everything based on string paradigm seems to be possible

3410 m

D=10

GUT

Page 5: BEYOND THE STANDARD MODEL

What is SUSY?

• Supersymmetry is a boson-fermion symmetrythat is aimed to unify all forces in Nature including gravity within a singe framework

• Modern views on supersymmetry in particle physicsare based on string paradigm, though low energymanifestations of SUSY can be found (?) at moderncolliders and in non-accelerator experiments

| | | |Q boson fermion Q fermion boson

[ , ] 0, { , } 0 b b f f { , } 2 ( )ji ijQ Q P

First papers in 1971-1972

No evidence in particle physics yet

Page 6: BEYOND THE STANDARD MODEL

Motivation of SUSY in Particle Physics

Unification with Gravity Unification of gauge couplings Solution of the hierarchy problem Dark matter in the Universe Superstrings

Page 7: BEYOND THE STANDARD MODEL

Superalgebra

1 12 2

[ , ] 0,

( ) lgLorentz Algebra

SUSY

[ , ] ( ),

[ , ] ( ),

[ , ] [ , ] 0

,

[ , ] ( ) ,

Algebra

[ , ]

i i

i i i

P P P M i g P g P

M M i g M g M g M g M

Q P Q P

Q M Q Q M

Super A ebra

( ) ,

{ , } 2 ( ) ,

, , , 1, 2; , 1, 2,..., .

i

ji ij

Q

Q Q P

i j N

, ,

Superspace

x x

Grassmannian parameters

, 1, 2

Q i

Q i

22 0, 0

SUSY Generators

This is the only possible graded Lie algebra that mixes integer and half-integer spins and changes statistics

22 0, 0Q Q

{ , } 2 ( )ji ijQ Q P

Page 8: BEYOND THE STANDARD MODEL

Quantum StatesQuantum states: | ,E Vacuum = | , 0Q E

Energy helicity

State Expression # of states

vacuum 1

1-particle

2-particle… … …

N-particle

| ,E

| , | , 1/ 2iQ E E

| , | , 1i jQ Q E E

1 2... | , | , / 2NQ Q Q E E N

1N N

( 1)2 2

N NN

1NN

Total # of states: 1 1

0

2 2 2N

N N N Nk

k

bosons fermions

[ , ] [ , ] 0i iQ P Q P

Page 9: BEYOND THE STANDARD MODEL

SUSY MultipletsChiral multiplet

Vector multiplet

1, =0N helicity# of states

-1/2 0 1/21 2 1

1, =1/2N helicity# of states

-1 -1/2 1/2 1 1 1 1 1

( , )

( , )A

scalar spinor

spinor vector

Members of a supermultiplet are called superpartnersN=4 SUSY YM helicity -1 –1/2 0 1/2 1

λ = -1 # of states 1 4 6 4 1

N=8 SUGRA helicity -2 –3/2 –1 –1/2 0 1/2 1 3/2 2

λ = -2 # of states 1 8 28 56 70 56 28 8 1

4N S spin4N 8N

For renormalizable theories (YM)For (super)gravity

Page 10: BEYOND THE STANDARD MODEL

Simplest (N=1) SUSY Multiplets

( , ) ( , )A

Bosons and Fermions come in pairs

( , )g gSpin 0 Spin 1/2 Spin 1Spin 1/2 Spin 3/2 Spin 2

Page 11: BEYOND THE STANDARD MODEL

SUSY Transformation

14

( , ) ( ) 2 ( ) ( )

( ) ( ) ( )

2 ( ) / 2 ( ) ( )

y A y y F y

A x i A x A x

x i x F x

N=1 SUSY Chiral supermultiplet:

( )y x i

component fields

spin=0

spin=1/2 Auxiliary field

2 ,

2 2 ,

2

A

i A F

F i

parameter of SUSY transformation(spinor)

(unphysical d.o.f. needed to close SYSY algebra )

SUSY multiplets Superfiled in Superspace

Expansion over grassmannian parametersuperfield

2 2 21 2 1 2, 0!

Page 12: BEYOND THE STANDARD MODEL

Gauge superfields

1 12 2

( , , ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )]

V x C x i x i x i M x i M x

v x i x i x i x i x

D x C x

Gauge transformation V V *

*

22

( )

C C A A

iM M iF

v v i A A

D D

Wess-Zumino gauge

0C M

physical fields

Field strength tensor

214

V VW D e D e

22 ( )iW i D F D

D i

Covariant derivatives

D i

Gauge superfield

Page 13: BEYOND THE STANDARD MODEL

0, d d

4 ( )Action d x L x 4 4 ( , , )d x d L x

How to write SUSY Lagrangians

Grassmannian integration in superspace

1st step

2nd step

( , , ) ( , )Field A Superfield V

3rd step

Take your favorite Lagrangian written in terms of fields

Replace

Replace

Page 14: BEYOND THE STANDARD MODEL

Minimal Supersymmetric Standard Model (MSSM)

SM: 28 bosonic d.o.f. & 90 (96) fermionic d.o.f.

SUSY: # of fermions = # of bosons ( , ) ( , )AN=1 SUSY:

There are no particles in the SM that can be superpartners

Even number of the Higgs doublets – min = 2Cancellation of axial anomalies (in each generation)

3 64 81 127 27 27 27

L L R R L L R

3( ) 1 1 8 0 colour u d u d e eTr Y

Higgsinos

-1+1=0

SUSY associates known bosons with new fermions and known fermions with new bosons

Page 15: BEYOND THE STANDARD MODEL

Particle Content of the MSSM

a a

k

(3) (2) (1)

g g 8 1 0

W ( , ) , ( , ) 1 3 0

g B( ) ( ) 1 1 0

( , ) ( , ) 1 2 1

c L Y

k

i L i L

a

k

i

Superfield Bosons Fermions SU SU UGauge

gluon gluino

Weak W Z wino zino w w z

Hyperchar e bino bMatter

L e L e

GVV

LE

*

*

1 1

2 2

1

2

1 1 2

( , ) ( , ) 3 2 1/ 3 3 1 4 / 3

3 1 2 / 3

1 2 11 2 1

i R i R

i L i Lc

i R i R

ci R i R

i

i

i

i

E e E e

Q u d Q u dU u U u

D d D d

HiggsH HH H

QUD

HH

sleptons leptons

squarks quarks

Higgses { higgsinos {

a g

( , )

)

,

(

kw w z

gluino

wino zino

bino b

( , )

( , )

i L

i R

i L

i R

i R

L e

E e

Q u d

U u

D d

1

2

H

H

Page 16: BEYOND THE STANDARD MODEL

The MSSM Lagrangian

The Yukawa Superpotential

2 1 1 1 2R U L R D L R L L RW y Q H U y Q H D y L H E H H

Yukawa couplings Higgs mixing term

gauge Yukawa SoftBreakingL L L L

' '2NR L L L R L L L R L B R R RW L L E L Q D L H U D D

These terms are forbidden in

the SM

Superfields

Violate: Lepton number Baryon number' 6 9, 10 , 10L L B

Page 17: BEYOND THE STANDARD MODEL

R-parity

pThe consequences:• The superpartners are created in pairs• The lightest superparticle is stable

e

e

p

p

• The lightest superparticle (LSP) should be neutral - the best candidate is neutralino (photino or higgsino)• It can survive from the Big Bang and form the Dark matter in the Universe

0

0

0

3( ) 2( ) B L SR B - Baryon NumberB - Baryon NumberL - Lepton NumberL - Lepton NumberS - SpinS - Spin

The Usual Particle : R = + 1The Usual Particle : R = + 1SUSY Particle : R = - 1SUSY Particle : R = - 1

p

Page 18: BEYOND THE STANDARD MODEL

Interactions in the MSSM

Page 19: BEYOND THE STANDARD MODEL

Creation of Superpartners at colliders

Annihilation channel

Gluon fusion, ee, qq scatteringand qg scattering channels

Page 20: BEYOND THE STANDARD MODEL

Decay of Superpartners

0

,

,

'

iL R

iL

L R

q q

q q

q q g

0

i

L il

l l

l

g q q

g g

0 0

1

0 0

1

0

1

0 0

1

'

i

i

i l

li l

l l

q q

l

squarks

sleptons

chargino neutralino

gluino

0

0'

i ie

i i

e

q q

Final sates

2 jets T

T

T

T

l l EE

EE

Page 21: BEYOND THE STANDARD MODEL

Soft SUSY BreakingHidden sectorMSSM

SUSY Messengers

Gravitons, gauge, gauginos, etc

2 20 ij | | A BSoft i i i i i ijk i j k i j

i ijk ij

L M m A A A A A A

scalar fieldsgauginos

Over 100 of free parameters !

Breaking via F and D terms in a hidden sector

Page 22: BEYOND THE STANDARD MODEL

MSSM Parameter Space

Five universal soft parameters: 0 1/ 2 2 1, , , tan / and A m M B v v

versus m and in the SM

2 1 1 1 2{ }Soft t L R b L R L L RL A y Q H U y Q H D y L H E B H H 2 2 1

0 1/ 22| |ii

m M

mSUGRA Universality hypothesis (gravity is colour and flavour blind):Soft parameters are equal at Planck (GUT) scale

• Three gauge couplings• Three (four) Yukawa matrices• The Higgs mixing parameter • Soft SUSY breaking terms

Page 23: BEYOND THE STANDARD MODEL

Constrained MSSM

• Unification of the gauge couplings• Radiative EW Symmetry Breaking• Heavy quark and lepton masses• Rare decays (b -> sγ) • Anomalous magnetic moment of muon• LSP is neutral • Amount of the Dark Matter• Experimental limits from direct search

Requirements:

Allowed regionin the parameterspace of the MSSM

0 0 1/ 2, , , , tanA m M

0 1/ 2100 GeV , , 2 TeVm M

0 0 03 3 , 1 tan 70m A m

Page 24: BEYOND THE STANDARD MODEL

In allowed region one fulfills all the constraints simultaneously and has the suitable amount of the dark matter

Narrow allowed region enables one to predict the particle spectra and the main decay patterns

Allowed regions after WMAP

WMAPLSPcharged

Higgs EWSB

tan β =50

Phenomenology essentially depends on the region of parameter space and has direct influence on the strategy of SUSY searches

Page 25: BEYOND THE STANDARD MODEL

Mass Spectrum in CMSSM

Symbol Low tan High tan

214, 413 170, 3221028, 1016 481, 498413, 1026 322, 4991155 950303, 270 663, 621290 6581028, 936 1040, 1010279, 403 537, 634953, 1010 835, 915727, 1017 735, 906

h, H 95, 1344 119, 565A, H 1340, 1344 565, 571

SUSY Masses in GeV

Fitted SUSY Parameters

Symbol Low tan High tan

tan 1.71 35.0m 0 200 600m 1/2 500 400(0) 1084 -558

A(0) 0 01/ GUT 24.8 24.8M GUT

16

1.6 •10 16

1.6 •10

0 03 1 4 2( ), ( )H H

0 0 31 2( ), ( )B W

1 2( ), ( )W H

g,L Re e

L,L Rq q

1 2,

1 2,b b

1 2,t t

(Sample)