8
8/17/2015 Béla Lipták defines 5 levels of process control http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 1/8 LOGIN | REGISTER Print Email A A A A + Home / Articles / 2015 / Béla Lipták defines 5 levels of process control Béla Lipták defines 5 levels of process control Manual, feedback, cascade, feedforward and lead/lag all have their place. By Bela Liptak May 11, 2015 1 of 2 <1|2> View on one page About the Author Béla Lipták, PE, control consultant, is also editor of the Instrument Engineers' Handbook and is seeking new coauthors for the for coming new edition of that multi volume work. He can be reached at [email protected]. In process control, there are at least five levels of sophistication that the automation engineer can apply. The advantage of the higher levels is better control, but applying a higher level also requires better understanding of the process. In the analog age, using higher levels of sophistication also involved substantially higher costs, but in the digital age, this consideration has become less significant. To illustrate the five levels, I will use the example of controlling the outlet temperature from a steampowered liquid heat exchanger. Manual Control (Figure 1): Manual feedback control is performed by the operator by watching the hot water temperature and manually throttling the steam flow to keep this outlet temperature constant. Manual feedforward control is performed when the steam flow is throttled on the basis of the temperature and flow of the incoming cold water. Feedback Control (green components in Figure 2) is similar to manual control, except that the operator is replaced by an automatic controller, which is more accurate and does not get tired or distracted, and its "personality" is tuned to match that of the controlled process. By "personality" I refer MENU Share Share

Béla Lipták Defines 5 Levels of Process Control

Embed Size (px)

DESCRIPTION

Béla Lipták defines 5 levels of process control

Citation preview

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 1/8

LOGIN | REGISTER

Print   Email Tweet     

   A   A   A   A    +

Home / Articles / 2015 / Béla Lipták defines 5 levels of process control

Béla Lipták defines 5 levels of process controlManual, feedback, cascade, feedforward and lead/lag all have their place.

By Bela Liptak

May 11, 2015

1 of 2  < 1 | 2 >  View on one page

About the AuthorBéla Lipták, PE, control consultant, is also editor of the Instrument Engineers'Handbook and is seeking new coauthors for the for coming new edition of that multivolume work. He can be reached at [email protected].

In process control, there are at least five levels of sophistication that the automationengineer can apply. The advantage of the higher levels is better control, but applying

a higher level also requires better understanding of the process. In the analog age, using higher levelsof sophistication also involved substantially higher costs, but in the digital age, this consideration hasbecome less significant. To illustrate the five levels, I will use the example of controlling the outlettemperature from a steampowered liquid heat exchanger.

Manual Control (Figure 1): Manual feedback control is performed by the operator by watching the hotwater temperature and manually throttling the steam flow to keep this outlet temperature constant.Manual feedforward control is performed when the steam flow is throttled on the basis of thetemperature and flow of the incoming cold water.

Feedback Control (green components in Figure 2) is similar to manual control, except that theoperator is replaced by an automatic controller, which is more accurate and does not get tired ordistracted, and its "personality" is tuned to match that of the controlled process. By "personality" I refer

MENU

Share Share

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 2/8

to the dynamics (gain, time constant, dead time) of the process.

See also "Controlling distributed processes"

Hands onManual feedforward and feedback control depend on the operator to controlthe process.

Figure 2 illustrates the case when the control valve is on the steam side of the heater. If it is on thecondensate side, a smaller valve can be used, but the dynamics of the process will be slower and nonsymmetrical, because lowering the condensate level is much faster than building it up. On the otherhand, this configuration eliminates the minimum condensing pressure problems that can interfere withthe steam trap operation at low loads.

While feedback control is the most commonly used, it has serious limitations. The main one is that itcannot anticipate and, therefore, cannot prevent errors because it can initiate corrective action onlyafter an error has developed. Therefore, in the case of the liquid heater process, if either the propertiesof the manipulated variable (for example, steam pressure) or the load (cold fluid flow or temperature)change, feedback control will wait until these changes upset the outlet temperature before initiatingcorrective action.

Cascade Control (red components in Figure 2) can correct for manipulated variable upsets, such assteam pressure changes, before they could upset the controlled variable (temperature). As shown inFigure 2, the cascade loop consist of two controllers in series, but has only a single setpoint, that of theprimary (master) controller, the TIC. The main value of having a secondary (slave) controller (the FICshown in red) is that it will act as the first line of defense against steam quality disturbances, preventingthese upsets from entering and upsetting the primary controlled variable (temperature).

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 3/8

Let the controller do itMore advanced systems replace theoperating person with an automaticcontroller capable of handling thepersonality of the process.

For the cascade slave loop (FIC) to be effective, it should be more responsive (faster) than the master.Some rules of thumb suggest that the slave time constant should be less than 1/4 to 1/10 that of themaster loop, and the slave’s period of oscillation should be less than 1/2 to 1/3 of the master loop. Incase of the steam heater process, this requirement is usually satisfied.

One should also be careful to prevent "reset windup" in the primary controller (TIC). This can occurbecause the TIC is usually provided with an integral mode, which keeps integrating the error as long asit exists and, therefore, if the FIC setpoint is blocked (such as when it is switched to manual) it keepsintegrating until its output saturates (reaches maximum), and when the FIC is returned to automaticcontrol, a large upset occurs. To guarantee "bumpless transfer," provide "external reset," which is aninternal logic component in the TIC algorithm that deactivates the integral mode if the TIC output doesnot equal the FIC measurement, and reactivates it only when it does.

1 of 2  < 1 | 2 >  View on one page

Join the discussionWe welcome your thoughtful comments. Please comply with our Community rules.All comments will display your user name.

Want to participate in the discussion?

REGISTER FOR FREE

Log in for complete access.

CommentsNo one has commented on this page yet.

RSS feed for comments on this page | RSS feed for all comments

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 4/8

Related Content

Don't overlook the virtues of PID when optimizing processesModel predictive control isn't always the best choice

Why automation isn't process controlProducts shaped by the needs of expedient automation may get us bitten by the wild process…

Process Control Improvement Recommendations TipsHere we look at how to make sure the measurement system is able to provide the analysis,…

The power of external-reset feedbackPreventing windup requires reconfiguration of the controller, according to process control…

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 5/8

Past 7 Days Past 30 Days Past 6 Months All Time

Most Popular

Actual control system cyber incidents are numerous and very expensive yet the C-Suite is missingMy database now has more than 725 actual control system cyber incidents.

01When will we see more four-year U.S. degrees in automation engineering?If Americans want to strengthen our manufacturing base, we need more…02How to do wireless for safety systemsISA TR 84.00.08 offers some important guidelines for making it work03Technology trends in process energy efficiencyToday's monitoring and control systems are making it easier to…04Why automation isn't process controlProducts shaped by the needs of expedient automation may get us bitten by…05

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 7/8

Voices

Blogs

Out of Control Cartoons

News

White Papers

Multimedia

Special Reports

Events

Products

Technology Roundups

Elits

Magazine

Subscribe

Digital Edition

Issue Archive

Reprints

Site Tools

Jobs

Knowledge Center

Microsites

Company Profiles

Site Map

Stay Connected

My Account

Newsletters

Social Media

RSS

Contact Us | Advertise | Privacy Policy | Legal Disclaimers, Terms & Conditions

Copyright © 2004  2015 Control Global. All rights reserved.

P: 6304671300 | 1501 E. Woodfield Road, Suite 400N, Schaumburg, IL 60173

Chemical Processing | Control | Control Design | Food Processing | Industrial Networking | PharmaceuticalManufacturing | Pharma QBD | Plant Services | Wellness Foods

8/17/2015 Béla Lipták defines 5 levels of process control

http://www.controlglobal.com/articles/2015/belaliptakdefinesprocesscontrol/ 8/8