29
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337604723 Behavior of Concrete Columns Subjected to ASTM-E119 fire Research · December 2017 CITATIONS 0 READS 5 2 authors: Some of the authors of this publication are also working on these related projects: Effect Of Fire On Confined Concrete Columns Under Axial Loading by ANSYS View project complex variable method for solution an elastic problem for plane stress View project Manar Takla Al-Baath University 8 PUBLICATIONS 9 CITATIONS SEE PROFILE Ihssan Tarsha Al-Baath University 30 PUBLICATIONS 25 CITATIONS SEE PROFILE All content following this page was uploaded by Manar Takla on 11 December 2019. The user has requested enhancement of the downloaded file.

Behavior of Concrete Colu mns Subjected to ASTM-E119 fire

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

INTRODUCTIONSee discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337604723
Behavior of Concrete Columns Subjected to ASTM-E119 fire
Research · December 2017
2 authors:
Some of the authors of this publication are also working on these related projects:
Effect Of Fire On Confined Concrete Columns Under Axial Loading by ANSYS View project
complex variable method for solution an elastic problem for plane stress View project
Manar Takla
Al-Baath University
SEE PROFILE
All content following this page was uploaded by Manar Takla on 11 December 2019.
The user has requested enhancement of the downloaded file.
Manar Takla (1) Ihssan Tarsha (2)
(1) PhD student, Structural Engineering Department, Faculty of civil Engineering, AL Baath University
(2) Professor, Structural Engineering Department, Faculty of civil Engineering, AL Baath University
Abstract
Over the centuries, the world has witnessed many disasters
that humans have not been able to control. Fire is one of the most
devastating disasters that have caused human damage, prompting
researchers to conduct numerous studies on the behavior of fire-prone
elements and take action to minimize damage. With the development
of computer simulation theories, it is possible to study the behavior
of structures under the influence of different loads. Using the theory
of finite elements, we can model the behavior of concrete in a
nonlinear manner, taking into account the causes of the various
failures. The study was carried out using the research-oriented FE
code ANSYS APDL for concrete column under axial loading
dimensions and subject to ASTM-E119 standard fire from the four
sides to determine its capacity load when exposed to fire.
Keywords: ASTM-E119, Thermal Analyses, Coupled Analyses,
Finite Elements, ANSYS.
- - .-1 - - .-2
:


.
.
ANSYS ASTM-E119 .
ASTM-E119 : .ANSYS
- 3 -
ASTM-E119
: .1
.
.
1923 142
38 .
.
: .2 ANSYS
ASTM-E119 [1] .
:((ASTM-E119 .3
1907( ASTM )
- 4 -
ASTM-E119)) [1]
. (1) ( 1 )
.
(1 ) 0
g
ASTM-E119 (: 1 ) : .4
Abrams [2]
Malhotra [3] Schneider [4,5].
. NSC
- EC4 [6] :
0
200
400
600
800
1000
1200
0
.θ −, , .
)
. (
)(

(. mm 40 )
.[7] 250
: .5
(2 )


- 6 -
EC4 [6] . 550 (.1 ) -
(: 2 )
:Finite Element Theory – .6
EC4 - : (1)
- : (1-4)
- 7 -
.
. ANSYS APDL V15.0
ANSYS : ) ...(
coupled field analysis.
:ANSYS .7 ANSYS
:
.
:[8] .8 :
. :Solid65 . X,Y,Z
.Solid65( 3 . )
- 8 -
:Link180 .
X,Y,Z (.4 )
Link180-3D spar(: 4 )
( 5 ) :Solid185 ) ( X,Y,Z.
D3-Solid65 (: 3 )
: (6 ) Solid70 :Solid70
(steady state) . .(Transient )
.
Solid70(: 6 )
solid185(: 5 )
- 10 -
( 7 )Link33 :Link33 .
Link33 (steady state) ( Transient) .
:. 10 (discrete)
(.2 ) (: 2 )


0 113,09 (mm²) Link180
) ( 2
0 50,26 (mm²) Link180
) ( 3
0
: .11
Link33(: 7 )
]/[) ( KmWa EC4
: [6] : steelReinforcing
(3 )]/[.10.33,35480020 2 KmWTCTC aaa
]/[3,271200800 KmWCTC
- . :Concrete
2
- .
:Specific Heat – -2 [K].[Kg] /[J] 1
: EC4 C :
36231 .10.22,2.10.69,1.10.73,742560020 aaaaa TTTCCTC
- 12 -
6501200900 aa CCTC
:
(.6)
(6 ) 2
100 .4,3
100 .2,56890
TT C
: Density – -3 :EC4 [6]
Reinforcing steel : = 7850 [kg/m3]
:Concrete (7) = 2354 − 23.47 /100 [kg/m3]
(:3 )
(: 3 )
2300 ]3[Kg/m
Solid70 1 1100 [J]/ [Kg].[K] 1,2 [W]/ [m].[K]
1e-5 7850 ]3[Kg/m
Link33 2 700 [J]/ [Kg].[K] 45 [W]/ [m].[K]
1,3e-5 7850 ]3[Kg/m 3
- 13 -
Mechanical Properties: - Mander [9] :
:(8 )
= (
) × () × ( )
2 × )
700 [J]/ [Kg].[K] [K].[m] /[W] 45
- 14 -
= ×


0 = . 0.002 - . ρ - . - .
- (MPa).
.(MPa) - - (2).
- (2). - .
- 15 -
-(: 8 )
- : ( 4 ) ( 9)
ANSYS.
-(: 9 )
- 16 -

Linear Isotropic
Multilinear Isotropic Stress(MPa) Strain
9 0,00031 Point1 13,93 0,0005 Point2 18,51 0,0007 Point3 22,28 0,0009 Point4 26,37 0,0012 Point5 28,13 0,0014 Point6 29,24 0,0016 Point7 29,83 0,0018 Point8 29,95 0,0019 Point9
30 0,002 Point10 Concrete
0,3 0,8 3 1- 0 Biaxial Crushing Stress 0 Hydrostatic Pressure
- 17 -
0 Hydro Biax Crush Stress 0 Hydro Uniax Crush Stress
0,6 Tensile Crack Factor Linear Isotropic(S)
Link180
2
Linear Isotropic(L)
Linear Isotropic Solid185
L – longitudinal reinforcement ; S – stirrups reinforcement
: [10] .12
(5 )
.
Solid65
65
1
- 18 -
. ( 10 )
.
:(10 ) (: 5 )
200 ( ) × 200 × 800) )
30 (MPa) 25 ( )
400 (MPa ) 240 (MPa )
- 19 -
: .13
OCO [14] 200) × 200 ×
800 ) ( 11)
(Teng ) [11-12] - (9)
.(Mander) ( 8)
= × − (−2)2
4×0 ×
+ 2 × > :
− .
− )

= 0.003368
( %4,78 )
OCO(: 11 )
- 20 -
( 12 )( 6)
.OCO
(: 6) OCO
OCO ANSYS 3248 3411.2 (KN) (mm) 4.58 4.583
OCO(: 12 )
ANSYS C10
15) [13] × 15 × 100 ) 600
- 21 -
C10 ( 13 ) ( %4,2 )
. .( 7 )
C10(: 7 )
600 (KN) 600 (C10) 625 ANSYS
C10(: 13 )
ANSYS (14 ) [13] [14]
(8 )
(MPa) ′
ANSYS :
) ) (
- 22 -
( 8) (
′.
Mander: ) (8) (.8
(: 14 )
( 9 ) ( ) ( . 02-15 )
(14 ) 21 ( 22 )(21)
.ASTM-E119
Mander
C30 30 ---- ---- 1209.5 ---- ----
- 23 -
C30-L12 30 12 ---- 1396.5 ---- ---- C30-L12-S8 30 12 8 1416.3 31,01 33,18
C: concrete : L: longitudinal reinforcement ; S :stirrups reinforcement
-(: 9 )
(min ) C30-L12 C30-L12-S8
t = 10 min 1278,6 1340,4 t = 20 min 1170,3 1219,7 t = 30 min 1092,5 1121,34 t = 60 min 953,73 900,52 t = 90 min 786,4 721,8 t = 120 min 470.29 406.11
10(: 15 )
- 24 -
30(: 17 )
- 25 -
(: 19 )
- 26 -
0
200
400
600
800
1000
1200



C30-L12 C30-L12-S8
Mander -1 ANSYS
(%6,27) (8 ) .
C30-L12-S8 ( 9 ) -2 (%5,7)
)650( ASTM-E119 (%71,3).
. (1007,49)
( 21 ) -3
.
: .15
-1 .
-2 .
- 28 -
References
1- ASTM. International, "Building Construction," vol. 04.11, p. E119, 2004
2- Abrams M,S., "Compessive Srength of Concrete at Temperature to 1600ºF,"
American Concrete Institute (ACI) SP 25, Temperature and Concrete,
Detroit, Michigan, 1971.
3- Malhotra, H.L., "The effect of temperature on the compressive strength of
concrete", Magazine of Concrete Research, v.8(22)(London,1956), 85-94.
4- Schneider, U., "Concrete at high temperatures-A general review" , Fire Safty
Journal, The Netherlands (1988) 55-68.
5- Schneider, U., "Properties of materials at high temperatures-concrete" , Rilem-
committee 44-PHT,Department of civil Engineering,university of
Kassel,Kassel,june, 1985.
6- Eurocode 4: " Design of Composite Steel and Concrete Structures – Part 1.2 :
Structural Fire Design " Draft prENV 1994-1-2, January 1993.
-7 .2012 ,
8- ANSYS. Manuals, 2015.
9- J. Mander, M. J. N. Priestley and R. Park, "Theoretical StressStrain
Model for Confined Concrete," Journal of Structural Engineering, 1988.
10- Ihssan Tarsha, Manar Takla, Ultimate load for composite column Subjected
to ISO 834 fire, Journal of Al- Baath University, Vol.38, 2016.
11- Ihsan Tarsha, Manar Takla, "Effect of fire on confined concrete columns
under axial loading", "International Knowledge Sharing Platform
Advance in physics",Vol.9,No.9,2017.
12- C. J. F. ,. S. S. T. ,. L. L. Teng J G, FRP-Strengthened RC Structures, Wiley
,West Sussex,UK, 2002.
13- M. B. M, E.-S. Nasser F and E.-H. Hany M, "Behavior of reinforced concrete
short columns exposed to fire," Alexandria Engineering, vol. 53, no. 4,
pp. 643-653, 2014.
14- M. W. Hadi, "Axial and flexural performance of square RC columns
wrapped with CFRP under eccentric loading," Journal of Composites for
Construction , vol. 16, no. 6, pp. 640-649, 2012.
View publication statsView publication stats