35
1 BEAMS SHEAR AND MOMENT

BEAMS

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: BEAMS

1

BEAMS

SHEAR AND MOMENT

Page 2: BEAMS

2

Beam Shear

¨ Shear and Moment Diagrams

¨ Vertical shear: tendency for one part of a beam to move vertically with respect to an adjacent part

Page 3: BEAMS

3

Beam Shear

¨ Magnitude (V) = sum of vertical forces on either side of the section– can be determined at any section along the

length of the beam¨ Upward forces (reactions) = positive¨ Downward forces (loads) = negative

¨ Vertical Shear = reactions – loads(to the left of the section)

Page 4: BEAMS

4

Beam Shear

¨ Why?¨ necessary to know the maximum value of

the shear– necessary to locate where the shear changes

from positive to negative• where the shear passes through zero

¨ Use of shear diagrams give a graphical representation of vertical shear throughout the length of a beam

Page 5: BEAMS

5

Beam Shear –

¨ Simple beam – Span = 20 feet– 2 concentrated loads

¨ Construct shear diagram

Page 6: BEAMS

6

Beam Shear – Example 1

1) Determine the reactions

Solving equation (3):

Solving equation (2):

Figure 6.7a =>

)'20()'161200()'68000(03

1200800002

01

2..

1

2..

1

RM

RRF

F

lblb

lblby

x

..

..

2

....2

360,320

200,67

200,19000,48'20

lbft

ftlb

ftlbftlb

R

R

.

1

...1

840,5

360,3200,1000,8lb

lblblb

R

R

Page 7: BEAMS

7

Beam Shear – Example 1 (pg. 64)

¨ Determine the shear at various points along the beam

.)18(

.)8(

.)1(

360,3200,1000,8480,5

160,2000,8480,5

480,50480,5

lbx

lbx

lbx

V

V

V

Page 8: BEAMS

8

Beam Shear – Example 1

¨ Conclusions– max. vertical shear = 5,840 lb.

• max. vertical shear occurs at greater reaction and equals the greater reaction (for simple spans)

– shear changes sign under 8,000 lb. load• where max. bending occurs

Page 9: BEAMS

9

Beam Shear – Example 2

¨ Simple beam – Span = 20 feet– 1 concentrated load– 1 uniformly distr. load

¨ Construct shear diagram, designate maximum shear, locate where shear passes through zero

Page 10: BEAMS

10

Beam Shear – Example 2

¨ Determine the reactions

Solving equation (3):

Solving equation (2):

)'24()'166000()]'6)('12000,1[(03

000,6)'12000,1(02

01

2..

1

2..

1

RM

RRF

F

lbftlb

lbftlby

x

..

..

2

....2

000,724

000,168

000,96000,72'24

lbft

ftlb

ftlbftlb

R

R

.

1

...1

000,11

000,7000,6000,12lb

lblblb

R

R

Page 11: BEAMS

11

Shear and Moment Diagrams

Page 12: BEAMS

12

Beam Shear – Example 2

¨ Determine the shear at various points along the beam

.

)24(

.)16(

.)16(

.)12(

.)2(

.)1(

000,7000,6000,112000,11

000,7000,6000,112000,11

000,1)000,112(000,11

000,1)000,112(000,11

000,9)000,12(000,11

000,10)000,11(000,11

lbx

lbx

lbx

lbx

lbx

lbx

V

V

V

V

V

V

Page 13: BEAMS

13

Beam Shear – Example 2

¨ Conclusions– max. vertical shear = 11,000 lb.

• at left reaction– shear passes through zero at some

point between the left end and the end of the distributed load• x = exact location from R1

– at this location, V = 0

feetx

xV

11

)000,1(000,110

Page 14: BEAMS

14

Beam Shear – Example 3

¨ Simple beam with overhanging ends– Span = 32 feet– 3 concentrated loads– 1 uniformly distr. load

acting over the entire beam

¨ Construct shear diagram, designate maximum shear, locate where shear passes through zero

Page 15: BEAMS

15

Beam Shear – Example 3

)'20(42

32)'32500()'28000,2()'6000,12()'4000,4(04

)'20(8232)'32500()'24000,4()'14000,12()'8000,2(03

)'32500(000,4000,12000,202

01

1.....

2

2.....

1

2...

1.

RM

RM

RRF

F

ftlblblblb

ftlblblblb

ftlblblblby

x

..

..

2

........2

800,1820

000,376

000,128000,96000,168000,16'20

lbft

ftlb

ftlbftlbftlbftlb

R

R

...

1

........1

200,15'20

000,304

000,192000,56000,72000,16'20

lbftlb

ftlbftlbftlbftlb

R

R

Page 16: BEAMS

16

Determine the reactions

Solving equation (3):

Solving equation (4):

Page 17: BEAMS

17

Beam Shear – Example 3

¨ Determine the shear at various points along the beam

.......

)32(

.......)28(

......)28(

......)22(

.....)22(

.....)8(

....)8(

000,4'32500000,12000,2800,18200,15

000,6'28500000,12000,2800,18200,15

800,12'28500000,12000,2200,15

800,9'22500000,12000,2200,15

200,2'22500000,2200,15

200,9'8500000,2200,15

000,6'8500000,20

lbftlblblblblbx

lbftlblblblblbx

lbftlblblblbx

lbftlblblblbx

lbftlblblbx

lbftlblblbx

lbftlblbx

V

V

V

V

V

V

V

Page 18: BEAMS

18

Beam Shear – Example 3

¨ Conclusions– max. vertical shear = 12,800

lb.• disregard +/- notations

– shear passes through zero at three points • R1, R2, and under the 12,000lb.

load

Page 19: BEAMS

19

Bending Moment¨ Bending moment: tendency of a beam to bend due

to forces acting on it

¨ Magnitude (M) = sum of moments of forces on either side of the section– can be determined at any section along the length of the

beam

¨ Bending Moment = moments of reactions – moments of loads

• (to the left of the section)

Page 20: BEAMS

20

Bending Moment

Page 21: BEAMS

21

Bending Moment – Example 1 ¨ Simple beam

– span = 20 feet– 2 concentrated loads– shear diagram from

earlier

¨ Construct moment diagram

Page 22: BEAMS

22

Bending Moment – Example 1

1) Compute moments at critical locations– under 8,000 lb. load &

1,200 lb. load

....

)'16(

...)'6(

440,13)'10000,8()'16840,5(

040,350)'6840,5(ftlblblb

x

ftlblbx

M

M

Page 23: BEAMS

23

Bending Moment – Example 2¨ Simple beam

– Span = 20 feet– 1 concentrated load– 1 uniformly distr. Load– Shear diagram

¨ Construct moment diagram

Page 24: BEAMS

24

Bending Moment – Example 2

1) Compute moments at critical locations– When x = 11 ft. and under

6,000 lb. load

...

)'16(

...)'11(

000,56421212000,1)'16000,11(

500,6021111000,1)'11000,11(

ftlbftlblbx

ftlbftlblbx

M

M

Page 25: BEAMS

25

Negative Bending Moment

¨ Previously, simple beams subjected to positive bending moments only– moment diagrams on one side of the base line

• concave upward (compression on top)

¨ Overhanging ends create negative moments• concave downward (compression on bottom)

Page 26: BEAMS

26

Negative Bending Moment

¨ deflected shape has inflection point– bending moment = 0

¨ See example

Page 27: BEAMS

27

Negative Bending Moment - Example

– Simple beam with overhanging end on right side

• Span = 20’• Overhang = 6’• Uniformly distributed load

acting over entire span

– Construct the shear and moment diagram

– Figure 6.12

Page 28: BEAMS

28

Negative Bending Moment - Example

)'20(226)'26600(03

)'26600(02

01

2.

1

2.

1

RM

RRF

F

ftlb

ftlby

x

1) Determine the reactions

- Solving equation (3):

- Solving equation (4):

..

..

2

..2

140,1020

800,202

800,202'20

lbft

ftlb

ftlb

R

R

.

1

..1

460,5

140,10600,15lb

lblb

R

R

Page 29: BEAMS

29

Negative Bending Moment - Example

2) Determine the shear at various points along the beam and draw the shear diagram

.)20(

.)20(

.)10(

.)1(

600,3)60020(140,10460,5

540,6)60020(460,5

540)60010(460,5

860,4)6001(460,5

lbx

lbx

lbx

lbx

V

V

V

V

Page 30: BEAMS

30

Negative Bending Moment - Example

3) Determine where the shear is at a maximum and where it crosses zero– max shear occurs at the right

reaction = 6,540 lb.

feetx

xV

1.9

)600(460,50

Page 31: BEAMS

31

Negative Bending Moment - Example

4) Determine the moments that the critical shear points found in step 3) and draw the moment diagram

...

)20(

...)1.9(

800,10220'20600)'20460,5(

843,2421.9'1.9600)'1.9460,5(

ftlbftlblbx

ftlbftlblbx

M

M

Page 32: BEAMS

32

Negative Bending Moment - Example

4) Find the location of the inflection point (zero moment) and max. bending moment

¨ since x cannot =0, then we use x=18.2’¨ Max. bending moment =24,843 lb.-ft.

feetfeetx

x

xxxxM

xxM

xxxM ftlb

2.18;0600

460,55460

)300(2

)0)(300(4)460,5(460,5

460,5300300460,50

2600460,50

2600)460,5(0

2

22

2

Page 33: BEAMS

33

Rules of Thumb/Review

¨ shear is dependent on the loads and reactions– when a reaction occurs; the shear “jumps” up by the

amount of the reaction– when a load occurs; the shear “jumps” down by the

amount of the load¨ point loads create straight lines on shear diagrams¨ uniformly distributed loads create sloping lines of

shear diagrams

Page 34: BEAMS

34

Rules of Thumb/Review

¨ moment is dependent upon the shear diagram– the area under the shear diagram = change in the

moment (i.e. Ashear diagram = ΔM)

¨ straight lines on shear diagrams create sloping lines on moment diagrams

¨ sloping lines on shear diagrams create curves on moment diagrams

¨ positive shear = increasing slope¨ negative shear = decreasing slope

Page 35: BEAMS

35

Typical Loadings

¨ In beam design, only need to know:– reactions– max. shear– max. bending moment– max. deflection