17
Beam Delivery System Review of RDR(draft) rview m parameters tem description iagnostic, tune-up dump, machine protection MPS collimation Skew correction Emittance diagnostcs Polarimeter and energy diagnostics Tune-up and emergency extraction system ollimation system Muon suppression Halo power handling Tail-folding octupoles inal focus R design and integration to detector xtraction line 4.Accelerator components 4.1 Crab cavity system 4.2 Feedback system and stability 4.2.1 Train-by-train feedback 4.2.2 Intra-train IP position and angle feedback 4.2.3 Luminosity feedback 4.2.4 BDS entrance feedback( ‘train-straightener’) 4.2.5 Hardware implementation for intra-train feedbacks 4.3 Energy, luminosity and polarization measurem 4.3.1 Energy measurements 4.3.2 Luminosity measurements 4.3.3 Polarization measurements 4.4 Beam dumps and collimators 4.5 BDS magnets 4.5.1 BDS magnets: tail-folding octupoles 4.6 Vacuum system 4.6.1 Wakes in vacuum system 4.6.2 Beam-gas scattering 4.6.3 Vacuum system design 4.7 IR arrangements for two detectors 4.8 Diagnostic and correction devices RDR contents S.Kuroda

Beam Delivery System Review of RDR(draft) 1.Overview 2.Beam parameters 3.System description 3.1 diagnostic, tune-up dump, machine protection 3.1.1 MPS

Embed Size (px)

Citation preview

Beam Delivery SystemReview of RDR(draft)

1.Overview2.Beam parameters3.System description 3.1 diagnostic, tune-up dump, machine protection 3.1.1 MPS collimation 3.1.2 Skew correction 3.1.3 Emittance diagnostcs 3.1.4 Polarimeter and energy diagnostics 3.1.5 Tune-up and emergency extraction system

3.2 Collimation system 3.2.1 Muon suppression 3.2.2 Halo power handling 3.2.3 Tail-folding octupoles

3.3 Final focus 3.4 IR design and integration to detector 3.5 Extraction line

4.Accelerator components 4.1 Crab cavity system 4.2 Feedback system and stability 4.2.1 Train-by-train feedback 4.2.2 Intra-train IP position and angle feedback 4.2.3 Luminosity feedback 4.2.4 BDS entrance feedback( ‘train-straightener’) 4.2.5 Hardware implementation for intra-train feedbacks

4.3 Energy, luminosity and polarization measurements 4.3.1 Energy measurements 4.3.2 Luminosity measurements 4.3.3 Polarization measurements

4.4 Beam dumps and collimators 4.5 BDS magnets 4.5.1 BDS magnets: tail-folding octupoles

4.6 Vacuum system 4.6.1 Wakes in vacuum system 4.6.2 Beam-gas scattering 4.6.3 Vacuum system design

4.7 IR arrangements for two detectors 4.8 Diagnostic and correction devices

RDR contentsS.Kuroda

1.Overview• Single IP(14mrad) and push-pull detector

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

• measure the linac beam and match it into the final focus; • protect the beamline and detector against mis-steered beams from the main linacs; • remove any large amplitude particles (beam-halo) from the linac to minimize background in the detectors;• measure and monitor the key physics parameters such as energy and polarization before and after the collisions;

Squeeze beam at IP to x=639nm, y=6.7nm

RDR

IR14 mrad

14 mrad ILC FF9 hybrid (x 2)

14 mrad (L* = 5.5 m) dump linesdetector pit:

25 m (Z) × 110 m (X)

e- e+hybrid “BSY” (x 2)

2226 m

ΔZ ~ -650 m w.r.t. ILC2006c

M.Woodley

2.Beam Parameters

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

RDR

3.System Description

polarimeterskew correction /emittance diagnostic

MPScoll

betatroncollimation

fastsweepers

tuneupdump

septa

fastkickers

energycollimation

β-match

energyspectrometer

finaltransformer

finaldoublet

IP

energyspectrometer

polarimeter

fastsweepers

primarydump

MainLinac

ILC2006e electron BDS schematic

energycollimation

M.Woodley

3.1 Diagnostic, Tune-up Dump,

Machine protection

polarimeterskew correction /emittance diagnostic

MPScoll

β-match

MainLinac

betatroncollimation

extraction

angle = 0.837 mrad

LB =2.4 m (×3)ΔLBB = 0.3 m

Compton IP250 GeV

x = 20 mm

76.9 m

MPSEcoll±10%

8 m

3 m

laserwiredetector

16.1 m

35 GeV

25 GeV

Cerenkovdetector

2 m

12.3 cm

18.0 cmΔE/EBPM

optics

Polarimeter chicane

M.Woodley

3.2 Collimation SystemTo remove Halo particles( BG of detector ) SR which hits detectorBetatron Collimator Spoiler/Absorber pair at high beta pointsEnergy Collimator Single spoiler at high dispersion pointCollimation depth 8-10x, 60-80y

Muon suppression 5m long magnetized iron filled in tunnelTail-folding octupole Non-linear focusing of halo particles Core part of the beam unaffected

3.3 Final Focus

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

RDRLocal chromaticity correctionCorrection of geometric aberration, 2nd order dispersion and higher order aberration

3.4 IR Design and Integration to Detector

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

FD: compact superconducting magnet inside detectorFirst cryostat is attached to detector

Solenoid effect to beam anti-solenoid, DID, anti-DID

RDR

3.5 Extraction Line

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

RDR

Transport beam to dumpDiagnostics Energy measurement at 1st v-chicane Polarimetry at 2nd IP( R22=-0.5 )

4. Accelerator Components4.1 Crab Cavity SystemTo make head-on collisionTwo 3.9GHz SC 9-cell cavities

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Crab cavity prototype(RDR)

4.2 Intra-train FeedbackMeasurement of beam-beam deflection stripline kickerFONT4: R&D with digital board processor Test is on-going at ATF. Goal latency is 140ns

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

P.Burrows et al

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

4.3 Polarization Measurement

RDR

ILC physics requiresPolarization measurement with 0.25% accuracy

4.4 IR Arrangements for two detectors

QuickTime˛ Ç∆TIFFÅiLZWÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

RDR

Detector Hall surface assemblyDetector self-shield/shielding wall between detectors maintenance when off beam-line

5. Solenoid Effect

Orbit change at IP( in y )Accuracy in polarization measurement For correction, Detector Integrated Dipole(DID)At higher energy, back-scattered e+e- pair huge BG for detector DID with reversed polarity( anti-DID ) which align orbit to out-going beam line

DID/anti-DID

A.Seryi, B.Parker

Anti-Solenoid

Overlapping of solenoid field with FD produces hugebeam size blow-up. Anti-solenoid can correct the beam size growth excellently.The effect is independent on x-ing angle.

With antisolenoids and linear knobs, y = 0.9%

Y. Nosochkov, A. Seryi

6. Beam TuningBeam tuning method is being studied by computer simulation BBA, Luminosity(beam size) tuning,…

Example. BBA+Luminosity tuning with traditional method; Linear knob of SX mover + higher order knob Errors dx/dy for magnets=200um, roll=300urad, field error-1e-4, ……..

0 10 20 30 40 500

20

40

60

80

100

Tuning Iteration

% Seeds > 100% Nominal Luminosity

Disp, Waist, <x’y>, <xy>

tilt

dK

Luminosity

G.White

7. Issues for further StudyHardware Crab cavity system Feedback system SC magnets Monitors( LW,…) …….Study of beam tuning, beam dynamics, BG,…

Alternative design e.g. small x-ing angle/head-on collision including ES separator, large bore magnets for EXT

Test facility ESA, ATF/ATF2,…..