36
Beam characterization for the TULIP accelerator for protontherapy through Full Monte Carlo simulations C. Cuccagna TERA Foundation (CERN) and University of Geneva Naples, 17/10/2017 TERA: Vittorio Bencini , Daniele Bergesio , Pedro Carrio Perez , Enrico Felcini , Mohammad Varasteh Anvar , Adriano Garonna , Ugo Amaldi CERN: Stefano Benedetti , Wioletta Kozlowska , Vasilis Vlachoudis , MCMA 2017

Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Beam characterization for the TULIP accelerator for protontherapy

through Full Monte Carlo simulations

C. CuccagnaTERA Foundation (CERN) and University of Geneva

Naples, 17/10/2017

TERA: Vittorio Bencini , Daniele Bergesio , Pedro Carrio Perez , Enrico Felcini , Mohammad Varasteh Anvar , Adriano Garonna , Ugo Amaldi

CERN: Stefano Benedetti , Wioletta Kozlowska , Vasilis Vlachoudis ,

MCMA 2017

Page 2: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions

TULIP-Turning Linac for Protontherapy

Beam production and transport system Beam application system

750 MHz

CERN RFQSCDTL

LEBT

≤ 232 MeV

70 MeV+/-110 °

S. Benedetti, A. Grudiev, A.Latina, High Gradient LINACS for ProtontherapyPhysRevAccelBeams 20 040101 2017

Page 3: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions

70 MeV

LEBT

≤ 232 MeV

High efficiency Klystron (VDBT)- tested at CERN (I. Siracev)

CERN FeCo magnetprototype (D. Tommasini)

TULIP-Turning Linac for Protontherapy

70 MeV

One Backward Travelling Wave linac tank

Page 4: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions

fast longitudinal scanning: ~ 5 msTumor volume

Slice thickness (< 10 mm)

Voxel grid < 10 mmtransverse scanning: < 10

msbeam spots (FWHM: 2-14

mm)

depth in the body

4D active fast spot scanning (ACTIVE and FAST energy variation) suitable for volumetric rescanning

Lower shielding requirement wrt cyclotrons

Small beam emittance (small spots)

Proton LINAC

Courtesy of A. Degiovanni

Page 5: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 55

Generally, for Full Photon Linac MC Modeling

2 Approaches

Phase-space approach

Primary Proton Beam

Source model approach

Calculates particle distribution differential in Energy, position or angle

Follows each particle with all the phase-spaceparameters

+ information in individual particles+ correlation between angle, energy, position preserved- large amount of information to be stored- Computing time

- lost of information on individual particles- approximated

MC techniques in Rad. therapy, Joao Seco, Frank Verhaegen, 2013

Why Full MC simulations for TULIP?

Page 6: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 6

En =142.1 MeV INFORMATION ON INDIVIDUAL PARTICLE for each beam

Why Full MC simulations for TULIP?

Page 7: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 7

660 multi particle files corresponding to different Energy valuesEnergy step ~0.5 MeV

0.13 MeV (≤ 0.1 % dE/E)

Why Full MC simulations for TULIP?

Page 8: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 8

Phase-space files.dat.dst Phase-space files

.dat

Commercial TPS(Physics module)

Methods : Full MC simulations for TULIP

MATLAB Code for the integration

TULIP Beam model files

RFA300·ASCII BDS format

Linac simulations

RF TRACK* Code

Beamproduction

*CERN A. Latina, S.Benedetti

Beam transport lines simulations

MADX-PTC + Code

Beamtransport line

+CERN http://madx.web.cern.ch/madx/

Beamapplication

Beam interaction with:Last magnetsDose delivery systems WATER Phantom/AIR

FLUKA &FLAIR §

§ Ferrari A, Sala PR, Fasso A, Ranft J.

FLUKA: A multi-particletransport code, CERN-2005-10; 2005. INFN/TC05/11, SLAC-R-773

Page 9: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 9

MODEL OF THE NOZZLE

re-adapted from CNAO nozzlespecifications

Box1

Box2

SADX =216.3 cm

SMYSMX

SADY=176.3 cm

Modelled to have an Irradiation field :35x38 cm2

Page 10: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 10

Scanning magnet xy: Magnetic Field in Fluka

SMx

SMy

SADX =216.3 cm

SADY=176.3 cm

ISO

En =232 MeV

Page 11: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 11

Results : Nozzle effect on the beam size

Ea= 107 MeV

ISO

Page 12: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 12

Results : Nozzle effect on the beam size

Ea= 210 MeV

Page 13: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 13

Results: TULIP –Beam Characterization for TPS

1. In-air fluences :

ISO-20 cm

+20 cm

z

y

2. IDD Integral Depth Dose (Bragg’s Peaks)

Distributions in air at isocenter and at other predefinedpoints before and after isocenter(in order to define the beam divergence)

VSAD

Page 14: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 14

Results: TULIP –Beam Characterization for TPS

1. In-air fluences :ISO-20 cm +20 cm

z

y

Page 15: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 15

Results: TULIP –Beam Characterization for TPS

1. In-air fluences :ISO-20 cm +20 cm

z

y

Page 16: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 16

Results: TULIP –Beam Characterization for TPS

1. In-air fluences :ISO-20 cm +20 cm

z

y

Page 17: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 17

2. IDD Integral Depth Dose curves (Bragg’s Peaks)Results: TULIP –Beam Characterization for TPS

Page 18: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 18

2. IDD Integral Depth Dose curves (Bragg’s Peaks)Results: TULIP –Beam Characterization for TPS

80 MeV

210 MeV

232 MeV

Page 19: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 19

Linac simulations

RF TRACK Code

Beamproduction

Beamapplication

Beam interaction with:

Last magnetsDose delivery systems WATERPhantom/AIR/

FLUKA &FLAIR

Beam transport lines simulations

MADX-PTC Code

Beamtransport line

Clinical TPS(Physics module)

Conclusions and future works

DoseComparisons

* Front. Oncol., 11 May 2016 https://doi.org/10.3389/fonc.2016.00116

Dose recalculationsWith clinical TPS

Dose recalculationsWith FLUKA QA MC TPS*And phase-space files

DICOM RT files

PATIENT

Page 20: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 20

Thank you!!Coming together is a beginning

keeping together is progressworking together is success Henry Ford

Page 21: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 21

Results : Nozzle effect on the energy spread

Ea= 73.2MeV

Page 22: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 22

Results : Nozzle effect on the energy spread

Ea= 232.2MeV

Page 23: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

TULIP Optics in MADX

Matching for the complete spectrum of energy:70-232 MeV

Fixed value of Beta at the isocenter in vacuum (beam size ~2.5mm for all energies)

Page 24: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

• Orbit deviation (misalignment) correction

• Multi Particle analysis (PTC) • Optimization and linearization of the quadrupole gradients

• Field error analysis on the harmonic components on dipoles and quadrupoles

TULIP Optics in MADX-PTC

Page 25: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 25

Conclusions and future works

En= 80 MeV

BEFORE NOZZLE En=73 MeV

AFTERNOZZLE

Page 26: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 26

Conclusions and future works

AFTERNOZZLE

En= 122.1 MeVBEFORE NOZZLE En=107.4 MeV

Page 27: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 27

Conclusions and future works

AFTERNOZZLE

En=232.4 MeVBEFORE NOZZLE En=142.1 MeV

Page 28: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 28

Differences wrt the inizial Energy

Dominance energy losses in the nozzle (Landau-Vavilov distribution)

Pencil beam without energy spread

Results

Delta E

Page 29: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Introduction Methods Results Conclusions 2919.09.2017 29

TULIP –Beam Characterization in air

y = 60.692x-1.719

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

0 50 100 150 200 250

Ener

gy lo

ss(%

)

En (MeV)

Energy loss in the nozzle and air

Page 30: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Multi particle-Fluka Bragg’s Peak

Comparison with built-in

Page 31: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

31

FLu

ka

Bending effect on the beam in Fluka

Op

era

cod

e

Courtesy of R.Lopez TE-MSC-MNC

Scanning magnet : Complex Map Field Field

Page 32: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Multi particle-Fluka-Energy straggling

Range stragglingand Energy spread from the accelerator

Page 33: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Synchrotron for carbon ions (and protons)

CNAO in Pavia from PIMMS TERA/CERN DESIGN

Linacs for protons and carbon ions :

proton linacs: ADAM’s LIGHT and TULIP

Cyclinac & ion linacs for C-12 an He-4– under development

TErapia con Radiazioni Adroniche

Two programmes in accelerators :

AQUA* program in monitoring lead by prof. F.Sauli

*Advanced QUality Assurance

No profit Foundation created in 1992

by prof. U.Amaldi http://enlight.web.cern.ch/sites/enlight.web.cern.ch/files/media/downloads/enlight_highlights_2017-web.pdf

Page 34: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Physical advantage: the Bragg’s Peak

Radiation beam in matter

Page 35: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Proton Single Room facility: TULIP

http://medicalphysicsweb.org/cws/article/research/69024

Page 36: Beam characterization for the TULIP accelerator for …people.na.infn.it/~mettivie/MCMA presentation/17 Aula Magna/11_45... · One Backward Travelling Wave linac tank. Introduction

Proton SourceModulator-klystron

systems

Radio Frequency

Quadrupole (CERN-RFQ)Side Coupled Drift

Tube Linac (SCDTL)Coupled Cavity Linac

(CCL)

AVO-ADAM’s LIGHT proton system

http://www.advancedoncotherapy.com/

Linac for Image Guided Hadron Therapy