24
obius numeration systems with discrete groups Bc. Tom´ s Hejda Supervisor: Prof. Petr K˚ urka, CTS, ASCR & Charles University Master’s Thesis, June 2012 Tom´ s Hejda (FNSPE CTU) M¨obius numeration systems June 2012 1 / 16

Bc. Tom a s Hejda - cvut.czhejdato1/main/www/papers/Pres_2012... · A group G of MTs isFuchsian, if it is discrete Afundamental domainof G: such P ˆU that its G-images tesselate

  • Upload
    lydang

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Mobius numeration systems with discrete groups

Bc. Tomas Hejda

Supervisor:Prof. Petr Kurka, CTS, ASCR & Charles University

Master’s Thesis, June 2012

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 1 / 16

Outline

1 Mobius numeration systems

2 Hyperbolic geometry

3 Fuchsian groups

4 Results

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 2 / 16

Motivation – Mobius number systems

Mobius transformation: MA : z 7→ az+bcz+d

with A =(

a bc d

)∈ R2×2 and det

(a bc d

)> 0

Mobius transformations form a group isometric to PGL+(2,R)

Mobius number system: given by Fa, a ∈ A and Σ ⊆ AN

u = u1u2 · · · un → Fu := Fu1 Fu2 · · ·Fun .infinite word u represents x ∈ R if

limn→∞

Fu1u2···un (i) = x

condition 1: every u ∈ Σ is a representationcondition 2: every x ∈ R has a representationFΣ is a subset of the group 〈Fa, a ∈ A〉

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 3 / 16

Motivation – Mobius number systems

Example (Binary representations)

Let

F] : z 7→ 2z , F0 : z 7→ z/2, F1 : z 7→ (z + 1)/2, F1 : z 7→ (z − 1)/2.

Let Σ be set of words of the form

{1, 0, 1}ω, ]n{1, 1}{1, 0, 1}ω, ]ω.

Then

]na1a2a3 · · · represents 2n∞∑

k=1

ak

2k, ]ω represents ∞.

All x ∈ R have a representation =⇒ (F ,Σ) is a Mobius number system.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 4 / 16

Hyperbolic plane

Mobius transformations are isometries of the hyperbolic plane

upper half-plane U unit disc D

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 5 / 16

Transformation properties

Isometric circle I (M) := {z |M•(z) = 1}Expansion area V (M) := {z |(M−1)•(z) > 1}

Example: T : z 7→ 4z

I (M) V (M)

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 6 / 16

Fuchsian groups and Mobius number systems

A group G of MTs is Fuchsian, if it is discrete

A fundamental domain of G :such P ⊂ U that its G -images tesselate U

Example

Group generatorsM0(z) =

(2 + 1/

√3)z ,

M1(z) = z√

3+1z+√

3

+ bounded fundamental domain

+ many group identities

− irrational

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 7 / 16

Fuchsian groups and Mobius number systems

A group G of MTs is Fuchsian, if it is discrete

A fundamental domain of G :such P ⊂ U that its G -images tesselate U

Example

Group generatorsM0(z) =

(2 + 1/

√3)z ,

M1(z) = z√

3+1z+√

3

+ bounded fundamental domain

+ many group identities

− irrational

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 7 / 16

Fuchsian groups and Mobius number systems

A group G of MTs is Fuchsian, if it is discrete

A fundamental domain of G :such P ⊂ U that its G -images tesselate U

Example

Group generatorsM0(z) = z/4,

M1(z) = 5z+44z+5

− unbounded fundamental domain

− only trivial group identities

+ rational

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 8 / 16

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domainexist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders 1, 2, 3, 4, 6,∞.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 9 / 16

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domainexist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders 1, 2, 3, 4, 6,∞.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 9 / 16

Our interest: Rational groups

Question

Does a rational Fuchsian groups with a bounded fundamental domainexist?

Conjecture (5.1)

There is no rational Fuchsian group with a bounded fundamental domain.

Theorem (5.3)

A rational Fuchsian group contains only elements of orders 1, 2, 3, 4, 6,∞.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 9 / 16

More results — Fuchsian groups

Theorem (4.12.)

Let G = 〈M1, . . . ,Mk〉 be agroup of Mobius transformationssuch that none of Mj fixes i andthe regions

V (M1), . . . ,V (Mk),

V (M−11 ), . . . ,V (M−1

k )

are pairwise disjoint. Then G is aFuchsian group.

Example

Group generators:

M0(z) = z/4, M1(z) = 5z+44z+5

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 10 / 16

More results — generalized Ford domains

Theorem (L. R. Ford, 1925)

Let G be a Fuchsian group such that only Id ∈ G fixes i . Then the set

U r⋃

M∈GM 6=Id

V (M)

is a fundamental domain of G .

Theorem (4.9.)

Let G be a Fuchsian group with exactly r elements fixing i . Then the set

U r⋃

M∈GM(i)6=i

V (M)

comprises exactly r copies of a fundamental domain of G .

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 11 / 16

More results — generalized Ford domains

Theorem (L. R. Ford, 1925)

Let G be a Fuchsian group such that only Id ∈ G fixes i . Then the set

U r⋃

M∈GM 6=Id

V (M)

is a fundamental domain of G .

Theorem (4.9.)

Let G be a Fuchsian group with exactly r elements fixing i . Then the set

U r⋃

M∈GM(i)6=i

V (M)

comprises exactly r copies of a fundamental domain of G .

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 11 / 16

More results — generalized Ford domains

Example (Modular group)

Transformations z 7→ az+bcz+d

Restrictions a, b, c , d ∈ Z and ad − bc = 1

The elements z 7→ z and z 7→ −1/z fix the point i

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 12 / 16

More results — generalized Ford domains

Example (Modular group)

Transformations z 7→ az+bcz+d

Restrictions a, b, c , d ∈ Z and ad − bc = 1

The elements z 7→ z and z 7→ −1/z fix the point i

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 12 / 16

More results — Angles of rotation

Let M 6= Id have a fixed point s inside UThen M is a hyperbolic rotation around the point s by angle ϕM

These M are called elliptic transformations

Theorem (4.18., explained by example)

The theorem discuss theexistence of elliptictransformations in G .

The angle of rotation ϕM is sumof the angles at (some) verticesof the domain.

M is identity ⇐⇒ ϕM ∈ 2πZ.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 13 / 16

More results — Angles of rotation

Example

Transformations

M0 : z 7→(

1+ 4√5)2(

1− 4√5)2 z , . . .

The angles at vertices are 2π/5

Therefore:

F0F−11 F2F−1

3 F4 = Id (green)

F0F−14 F3F−1

2 F1 = Id (yellow)

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 14 / 16

Conclusions

1 We conjecture that no rational Fuchsian group with boundedfundamental domain exist.

2 We prove several statements concerning Fuchsian groups:

discreteness of a large family of groups;shape of a fundamental domain of a special kind;existence of elliptic transformations in a group.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 15 / 16

Most notable references

1 Alan F. Beardon. The geometry of discrete groups. 1983.

2 Lester R. Ford. The fundamental region for a Fuchsian group. 1925.

3 Svetlana Katok. Fuchsian groups. 1992.

4 Petr Kurka. A symbolic representation of the real Mobius group.2008.

5 John M. H. Olmsted. Discussions and Notes: Rational Values ofTrigonometric Functions. 1945.

6 A. Renyi. Representations for real numbers and their ergodicproperties. 1957.

Tomas Hejda (FNSPE CTU) Mobius numeration systems June 2012 16 / 16

Compact fundamental domains

U jiných klí£ových tvrzení pak £tená°i nezbyde, aby si je zformuloval sám

� nap°íklad, ºe kompaktnost fundamentální domény je vlastností

grupy a nezávisí na volb¥ fundamentální domény

We do not claim or discuss such proposition, because it is notnecessary

We discuss existence of a compact fundamental domain

Existence of non-compact f.d. is not necessarily relevant.

Tomá² Hejda (FNSPE CTU) Errata June 2012 1 / 3

Theorem 4.12.

Theorem

Let G = 〈M1, . . . ,Mk〉 be a Fuchsian group such that none of Mj �xes i

and the regions V (M1), . . . ,V (Mk), V (M−11

), . . . ,V (M−1k ) are pairwise

disjoint. Then G is a Fuchsian group.

Proof.

[Beardon, Theorem 8.4.1]: G is Fuchsian ⇐⇒ the �xed points ofelliptic elements do not accumulate at identity.

This is true since if they accumulated at identity, P and M(P) wouldoverlap for some elliptic M (and we know that P ∩M(P) = ∅ for allM 6= Id).

Tomá² Hejda (FNSPE CTU) Errata June 2012 2 / 3

Example 2.4

Example (In thesis)

Subshift: Σ = {]N, 0N} ∪ (]∗ ∪ 0∗)({−b, . . . ,−1}{−b, . . . , 0}N

∪{1, . . . , b}{0, . . . , b}N)

Forbidden strings: X = {]0} ∪{a]

∣∣ a ∈ {−b, . . . , b}}

∪{aa′

∣∣ a, a′ ∈ {−b, . . . , b}, a · a′ < 0}

X allows a0+(−a), Σ does not (it is not SFT)

Example (Correct)

Subshift: distinguish 0 ∈ {0, . . . , b} and −0 ∈ {−b, . . . ,−0}Forbidden strings: X = {]0, ](−0)} ∪

{a]

∣∣ a ∈ {−b, . . . , b}}

∪{aa′, a′a

∣∣ a ∈ {0, . . . , b}, a′ ∈ {−b, . . . ,−0}}

X is �nite and Σ is SFT.

Tomá² Hejda (FNSPE CTU) Errata June 2012 3 / 3