46
J. Jasche, Bayesian LSS Inference Jens Jasche La Thuile, 11 March 2012 Bayesian Large Scale Structure inference

Bayesian Large Scale Structure inference

  • Upload
    suki

  • View
    45

  • Download
    3

Embed Size (px)

DESCRIPTION

Jens Jasche La Thuile, 11 March 2012. Bayesian Large Scale Structure inference. Motivation. Goal: 3D cosmography homogeneous evolution Cosmological parameters Dark Energy Power-spectrum / BAO non-linear structure formation Galaxy properties Initial conditions - PowerPoint PPT Presentation

Citation preview

Page 1: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Jens Jasche

La Thuile, 11 March 2012

Bayesian Large Scale Structureinference

Page 2: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Goal: 3D cosmography• homogeneous evolution

• Cosmological parameters• Dark Energy• Power-spectrum / BAO

• non-linear structure formation• Galaxy properties• Initial conditions• Large scale flows

Motivation

Tegmark et al. (2004)

Jasche et al. (2010)

Page 3: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality

Page 4: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality• Statistical uncertainties

Noise, cosmic variance etc.

Page 5: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality• Statistical uncertainties • Systematics

Noise, cosmic variance etc.

Kitaura et al. (2009)

Survey geometry, selection effects,biases

Page 6: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Motivation

No ideal Observations in reality• Statistical uncertainties • Systematics

Noise, cosmic variance etc.

Kitaura et al. (2009)

Survey geometry, selection effects,biases

No unique recovery possible!!!

Page 7: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Bayesian Approach

“Which are the possible signals compatible with the observations?”

Page 8: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Bayesian Approach

Page 9: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Prior

Bayesian Approach

Page 10: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Likelihood

Bayesian Approach

Page 11: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

Evidence

Bayesian Approach

Page 12: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Object of interest: Signal posterior distribution

“Which are the possible signals compatible with the observations?”

We can do science!• Model comparison• Parameter studies• Report statistical summaries• Non-linear, Non-Gaussian error propagation

Bayesian Approach

Page 13: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

LSS Posterior Aim: inference of non-linear density fields

• non-linear density field lognormal

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Page 14: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

LSS Posterior Aim: inference of non-linear density fields

• non-linear density field lognormal

• “correct” noise treatment full Poissonian distribution

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

Page 15: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

LSS Posterior

Problem: Non-Gaussian sampling in high dimensions • direct sampling not possible• usual Metropolis-Hastings algorithm inefficient

Aim: inference of non-linear density fields• non-linear density field

lognormal

• “correct” noise treatment full Poissonian distribution

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Credit: M. Blanton and the

Sloan Digital Sky Survey

Page 16: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

LSS Posterior

Problem: Non-Gaussian sampling in high dimensions • direct sampling not possible• usual Metropolis-Hastings algorithm inefficient

Aim: inference of non-linear density fields• non-linear density field

lognormal

• “correct” noise treatment full Poissonian distribution

See e.g. Coles & Jones (1991), Kayo et al. (2001)

HADES (HAmiltonian Density Estimation and Sampling)

Jasche, Kitaura (2010)

Credit: M. Blanton and the

Sloan Digital Sky Survey

Page 17: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

LSS inference with the SDSS

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Jasche, Kitaura, Li, Enßlin (2010)

Page 18: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Goal: provide a representation of the SDSS density posterior• to provide 3D cosmographic descriptions• to quantify uncertainties of the density distribution

LSS inference with the SDSS

Jasche, Kitaura, Li, Enßlin (2010)

Page 19: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Application of HADES to SDSS DR7• cubic, equidistant box with sidelength 750 Mpc• ~ 3 Mpc grid resolution• ~ 10^7 volume elements / parameters

Goal: provide a representation of the SDSS density posterior• to provide 3D cosmographic descriptions• to quantify uncertainties of the density distribution

3 TB, 40,000 density samples

LSS inference with the SDSS

Jasche, Kitaura, Li, Enßlin (2010)

Page 20: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

What are the possible density fields compatible with the data ?

LSS inference with the SDSS

Page 21: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

What are the possible density fields compatible with the data ?

LSS inference with the SDSS

Page 22: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Page 23: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

ISW-templates

LSS inference with the SDSS

Page 24: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Redshift uncertainties Photometric surveys

• deep volumes• millions of galaxies• low redshift accuracy

Page 25: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

Page 26: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

We know that:• Galaxies trace the matter distribution• Matter distribution is homogeneous and isotropic

Jasche et al. (2010)

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

Page 27: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

We know that:• Galaxies trace the matter distribution• Matter distribution is homogeneous and isotropic

Jasche et al. (2010)

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

Page 28: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Redshift uncertainties

Galaxy positions

Matter density

We know that:• Galaxies trace the matter distribution• Matter distribution is homogeneous and isotropic

Jasche et al. (2010)

Joint inference

Photometric surveys• deep volumes• millions of galaxies• low redshift accuracy

Page 29: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Joint sampling

Page 30: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Joint sampling

Metropolis Block sampling:

Page 31: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters

Photometric redshift inference

Page 32: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters• ~ 2x10^7 radial galaxy positions / parameters

• (~100 Mpc)

Photometric redshift inference

Page 33: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters• ~ 2x10^7 radial galaxy positions / parameters

• (~100 Mpc)• ~ 3x10^7 parameters in total

Photometric redshift inference

Page 34: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Application of HADES to artificial photometric data • cubic, equidistant box with sidelength 1200 Mpc• ~ 5 Mpc grid resolution• ~ 10^7 volume elements / parameters• ~ 2x10^7 radial galaxy positions / parameters

• (~100 Mpc)• ~ 3x10^7 parameters in total

Photometric redshift inference

Page 35: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Photometric redshift sampling

Jasche, Wandelt (2011)

Page 36: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Deviation from the truth

Jasche, Wandelt (2011)

Before After

Page 37: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Deviation from the truth

Jasche, Wandelt (2011)

Raw data Density estimate

Page 38: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Summary & Conclusion

LSS 3D density inference Correction of systematic effects, survey geometry, selection effects Accurate treatment of Poissonian shot noise Precision non-linear density inference Non-linear, non-Gaussian error propagation

Joint redshift & 3D density inference Positive influence on mutual inference Improved redshift accuracy Treatment of joint uncertainties

Also note: methods are general complementary data sets

• 21 cm, X-ray, etc

Page 39: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

The End …

Thank you

Page 40: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Resimulating the SGW

Building initial conditions for the Sloan Volume• resimulate the Sloan Great Wall (SGW)

Preliminary Work

Page 41: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Marginalized redshift posterior

Jasche, Wandelt (2011)

Page 42: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

IDEA: Follow Hamiltonian dynamics

Conservation of energy Metropolis acceptance probability is unity

All samples are accepted

Persistent motion

Hamiltonian Sampling

= 1

HADES (Hamiltonian Density Estimation and Sampling)HADES (Hamiltonian Density Estimation and Sampling)

Page 43: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

HADES vs. ARES

HADES

Variance

Mean

Page 44: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

ARESHADES

HADES vs. ARES

Page 45: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Lensing templates

LSS inference with the SDSS

Page 46: Bayesian Large Scale Structure inference

J. Jasche, Bayesian LSS Inference

Extensions of the sampler Multiple block Metropolis Hastings sampling

Example redshift sampling