64
1 GDR n°3339 Piles A Combustible, Systèmes 2 nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012 Basics on Components of the Polymer Electrolyte Fuel Cell Claude LAMY, Professor Institut Européen des Membranes, CNRS - GDR n°3339 (PACS), University of Montpellier 2, 2 Place Eugène Bataillon, 34095 Montpellier, France, E-mail: [email protected]

Basics on Components of the Polymer Electrolyte … GDR n 3339 Piles A Combustible, Systèmes 2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012 Basics

  • Upload
    dothu

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

1

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Basics on Components of the Polymer Electrolyte Fuel Cell

Claude LAMY, Professor

Institut Européen des Membranes, CNRS - GDR n°3339 (PACS),

University of Montpellier 2,2 Place Eugène Bataillon, 34095 Montpellier, France,

E-mail: [email protected]

2

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

The Polymer Electrolyte Fuel Cell (PEFC)

♦ Principle of a Polymer Electrolyte Fuel Cell

♦ Cell components (membrane, catalysts, etc.)

3

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

2 H+

I4 OH

Anodic catalyst

Cathodiccatalyst

H2O

½ O2

2e-

2e-

PEM

H2

2e-

+ We

Overall reaction: H 2 + ½ O2 →→→→ H2O with ∆G < 0

Schematic representation of a PEFC elementary cell

4

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Schematic representation of a PEFC elementary cell

End Plate

BipolarPlate End Plate

Bipolarplate

Teflon ® gasket

MEA

Polymer Electrolyte Fuel Cell (PEFC)

5

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Schematic representation of the Membrane Electrode Assembly (MEA)

AnodeVent

CathodeVent

AnodeFeed, H2

CathodeFeed, O2

0.5 to 0.9 V

Gas DiffusionBacking

Proton Exchange Membrane (≈≈≈≈ 100 µm)

CatalystlayerH+

Membrane Electrode Assembly (MEA)Thickness e ≈≈≈≈ 5 mm

Thickness e ≈≈≈≈ 500 µm

(10 µm)

(200 µm)

, Alcohol

6

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Development of new proton exchange membranes with improved

conductivity and thermal stability

7

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Chemical stability : 60 000h - 80°C Good ionic conductivity : 4.10-2 to 10-1 S.cm-1

Easy to solubilize ~ colloidal dispersion Complex synthesis : high cost (400 $/m2), recycling difficulty Good mechanical properties, but low Tg (110°C) Permeation to methanol / swelling

Nafion (Dupont de Nemours - 1966)

Nafion is the Reference Membrane: Sulfonic Acid Functionalized Perfluorinated Polymer

8

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Structures of perfluoronated sulfonic acid ionomers

Polymer structures

DOW

CF2CF2CFCF2CF2

O

CF2

CF2

S OO

O

H+

DUPONT NAFION®

O

CF2

CF

O

CF2CF2CF2CFCF2CF2

H+

CF2

S=OO=

O

CF2

– CF3

––

Rf-SO3- H+

9

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

E(j) characteristics of a PEMFC elementary cell with different membranes : Dow (e = 125 µm) ; o Nafion® 115 (e = 125 µm) ; ∆ Nafion® 117 (e = 175 µm)

After K. Prater (Ballard), J. Power Sources, 29 (19 90) 239

Current density (j/A cm -2)

Cel

l vol

tage

(E/V

)

Specific resistance (R e = e / σσσσ)e.g. for Nafion ® 115 :

0.0125 cm / 0.125 S cm -1

≈≈≈≈ 0.1 ΩΩΩΩ cm 2

><><><><

DUPONT NAFION®

O

CF2

CF

O

CF2CF2CF2CFCF2CF2

H+

CF2

S=OO=

O

CF2

– CF3

––

Dow

10

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

jo = 10-8 A cm -2; Re = 0,15 ΩΩΩΩ cm 2; j l = 1,3 A cm -2

jo = 10-8 A cm -2; Re = 0,30 ΩΩΩΩ cm 2; j l = 1,2 A cm -2

0,000

0,200

0,400

0,600

0,800

1,000

1,200

0 0,25 0,5 0,75 1,0 1,25 1,5Current density j/A cm -2

Ohmic drop R e j

Charge transfer activation

Mass transferactivation

0,7

Eeq = 1,23 V

0,4

Cel

l vol

tage

E/V

Cell voltage E(j) = E +(j) – E–(j) - Re j

Influence of the membrane specific resistance (Re = e/σ) on the cell voltage-current density characteristics E(j)

11

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

The polyetheretherketones (PEEK) family: ether and ketone units

Good stability, conductivity, low cost; Can be used for hybrid membranes

Polyethersulfone: ether and sulfone units

Good stability, conductivity, low permeability to methanol, water retention at high T

12

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Para-Phenylene family

Sulfonated Polyimides (sPI)

Polybenzimidazole (PBI)

13

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Copolymers: e.g. sulfonated polytrifluorostyrene (B allard)

Irradiation grafting: sulfonated polystyrene on ETFE structure

Co / terpolymerisation of fluoro-aromatic monomers with VF2, HFP or CTFE

Good performances, 14 000 h at 70°C

Other means of fabrication :

14

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Organic-inorganic copolymers

Inorganic network (SiO2-PWO acid) Splitting of the alkyl-glycol chain by solvated protons Low conductivity (10-4 S cm-1 at 160°C) Strong interaction between the polymeric acid and Si

15

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

N

N

N

N

n

HH

+

Polyetheretherketones PEEK

Polybenzimidazole (PBI) - Celazole

Alternative membranes : Sulfonation of thermostable polymers

N

N

H

n

AB-PBI

ICG-AIME CNRS-Montpellier

16

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Ionic Conductivity

0.01

0.1

0 20 40 60 80 100

σ (

S/c

m)

T (°C)

sPEEK

sPEEK-ZrP 40%

sPEEK-ZrP 20%

Conductiviy at 100 % relative humidity Conductivity at 100 °C

0,001

0,01

0,1

65 70 75 80 85 90 95 100

PEEK-S

PEEK-S-ZrP30

cond

uctiv

ity (

Scm

-1)

relative humidity (%)

ICG-AIME CNRS-Montpellier

17

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Ionic conductivity of sulfonated PEEKsSTRUCTURE IEC

(meqH+/g)σ

(S/cm)

1,31,6

0,5 10-2

0,7 10-2

BLOCK CO-POLYMER

1,31,6

1,6

0,6 10-2

1,1 10-2

1,6 10-2

1,3 0,2 10-2

NAFION 2,4 10-2

OO

CH3

CH3

O

HO3S

SO3H

OO

CH3

CH3

O

OO

CF3

CF3

O

HO3S

SO3H

OO

CF3

CF3

O

OO

OO

CH3

CH3

O

SO3H

HO3S

OO

CH3

CH3

O

CNRS-Lyon Solaize

18

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Alternative Membranes : POST MODIFICATION of POLYME RSCF3

CF3

O O

OO

AR

CF3

CF3

O O

OO

AR

SO3H

SO3H

O

O O

SO3H

SO3H

CH3

CH3

O

POLYMERIZATION of SULFONATED MONOMERS

CNRS-Lyon Solaize

19

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Development of new electrode materials with improved

electrocatalytic properties

20

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Influence of the catalytic properties of electrodes (exchange current density jo) on the cell voltage E(j)

0,000

0,200

0,400

0,600

0,800

1,000

1,200

0 0,25 0,5 0,75 1,0 1,25 1,5Current density j/A cm -2

Cel

l vol

tage

E/V

Ohmic drop R e jCharge transfer

overvoltage

Eeq = 1,23 V

Mass transfer overvoltage

0,7

E(j) = E+(j) - E–(j) - Re j = Eeq – (|η|η|η|ηc(j) |||| + |η|η|η|ηa(j) ||||) - Re j

0,4 0,9

jo = 10-8 A cm -2; Re = 0,15 ΩΩΩΩ cm 2; j l = 1,3 A cm -2

jo = 10-6 A cm -2; Re = 0,15 ΩΩΩΩ cm 2; j l = 1,4 A cm -2

21

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Fuel cell characteristics of a DEFC recorded at 110 °C.Influence of the nature of the bimetallic catalyst (30% loading).

Anode catalyst : 1.5 mg.cm -2 ; Cathode catalyst : 2 mg.cm -2 (40% Pt/XC72 E-TEK)Membrane : Nafion ® 117; Ethanol concentration : 1 M

0 20 40 60 80 100 120 140 160

0100200300400500600700800

PtPt-Sn(80:20)Pt-Ru(80:20)Pt-Mo(80:20)

Cel

l vol

tage

/ m

V

Current density / mA cm -2

Polarization curves Power density curves

0 20 40 60 80 100 120 140 1600

5

10

15

20

25

30 PtPt-Sn(80:20)Pt-Ru(80:20)Pt-Mo(80:20)

Pow

er d

ensi

ty /

mW

cm

-2

Current density / mA cm -2

After C. Lamy et al., in ”Catalysis for Sustainable Energy Production”, edited by P. Barbaro and C. Bianchini, Wiley-VCH, Weinheim, 2009, Chap.1, pp. 3-46.

22

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Activation barrier for an electrochemical reaction :K is the decrease in activation energy due to the ele ctrode catalyst,so that the effect of the electrocatalyst is contai ned in, ∆∆∆∆G+

o, i.e. in jo

Principle of Electrocatalysis : activation of elect rochemical (interfacial) reactions by both the electrode potential and the e lectrode material

a0aa

acta j

jln

Fnα

RTη ====

c0cc

actc j

jln

Fnα

RTη ====

Abcissa along the reaction path

Ene

rgy

chan

ge

RTη F n α

oRTη F n α

RTG

-ioii e j e e c k F n c E)k(T, F n v F n j

o

================

++++∆∆∆∆

with e c k F n j RTG

-ioo

o++++∆∆∆∆

====

23

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

HOW TO DESIGN PLURI-METALLIC PT-BASED ELECTROCATALYSTS FOR MULTI-STEP MULTI-ELECTRON TRANSFER REACTIONS, SUCH AS METHANOL OXIDATION:

CH3OH + H2O →→→→ CO2 + 6 H+ + 6 e-

Platinum allows the breaking of the C -H bonds .

The role of the other metals may be as follows: * to provide OH (or O) species necessary for complete

oxidation (towards CO2) at low electrode potentials,

* to avoid the formation of poisoning species,

* to allow the oxidation of the poisoning intermediates at lower potentials,

* to break the C -C bond at low temperature and low electrode potentials (e.g. for ethanol oxidation).

24

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Preparation and characterization of Pt-based pluri-metallic electrocatalysts

♦ Preparation by electrochemical pulse methods

♦ Classical impregnation-reduction methods

♦ Preparation of the catalysts by the “Bönnemann colloidal” method

♦ Preparation of the catalysts by the “carbonyl complex” method

♦ Preparation of the catalysts by the “water-in-oil” micro-emulsion method

♦ Physical characterizations of catalysts by TEM, EDX, XRD, CV,IRS, HPLC, etc.

25

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Preparation and characterization of Pt-based pluri-metallic electrocatalysts

Electrochemical MethodsPotentiostatic or galvanostatic methods

Galvanic pulses

This allows to prepare mono and pluri-metallic catalysts.

This a clean process, allowing the control of particle size, atomic composition and metal loading.

Chemical methods (non-noble metal based catalysts)Macrocycle catalysts such as MeN 4 : MPc (phthalocyanine)

Chalcogenides : catalysts such as Ru xSey

=> These catalysts display a good activity for the oxygen reduction reaction (ORR) and are completely tolerant to the presence of alcohols.

26

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Chemical methods (platinum -based catalysts)Colloïdal route (Bönnemann):

MeCln+nNalk4[BEt3H] Me[Nalk4Cl]n +nBEt3 +n/2H2

This allows to control the particle size, atomic composition and structure of the catalyst (alloying, decoration, etc.)

Carbonyl route :

Na2PtCl6 + SnCl4 + NaCH3CO2 [+ CO (24h)] + [C (12h)] PtxSny/C

This allows to control the particle size and atomic composition of the catalysts

Water-in-oil method :

H2PtCl6aq(Brij®30)+NaBH4aq(Brij ®30) + [C (0,5 – 2h)]Pt/C

Easy process, allowing to control the particle size, atomic composition and structure of the catalysts.

⇒ Pluri-metallic anodic catalysts for the oxidation of alcohols and carbon monoxide (reformate gas) and alcohol tolerant cathodic catalysts.

Physical methods (platinum -based catalysts) : PVDPlasma sputtering : this allows to reduce the platinum loading (< 100 µg/cm2)

27

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

EXPERIMENTAL CHARACTERIZATION OF Pt-BASED ELECTROCATALYSTS

♦♦♦♦ Transmission Electron Microscopy (TEM) :- Observation of the morphology and determination of the particle size- Determination of the particle composition by Energy Dispersive Analysis of X-rays (EDX)♦♦♦♦ X-Ray Diffraction (XRD) :- Determination of the catalyst structure and lattice parameters- Evaluation of the particle size of the catalyst ♦♦♦♦ Cyclic Voltammetry (CV) :- Determination of the true surface area- Evaluation of the electrocatalytic activity♦♦♦♦ Infrared Reflectance Spectroscopy (IRS) :- Identification of the adsorbed species and reaction products by “in situ” Infrared Reflectance Spectroscopy (SNIFTIRS and SPAIRS)♦♦♦♦ Chromatographic Analysis (HPLC) of the reaction pro ducts

28

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Digital storage oscilloscope

Waveform generator

PotentiostatControl Input

CE RefWE

R = 10 Ω

Membrane

Carbon electrode

Computer

- 20 mA.cm -2

toff

ton

Aqueous solution (1.0 M H2SO4) :- K2PtCl6- K2RuCl5

Analysis of the solutions after metal deposition:

=> metal loading between 1.9 and 2.1 mg cm-2

♦ Catalyst preparation by electrochemical pulse metho ds

29

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

XRD TEM EDX

Physical characterization of Pt 1-xRux catalysts prepared by the electrochemical deposition method

30

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

• Advantages :– Clean process– Easy and reproducible process– Controlled atomic composition– Controlled particle size– Possibility of manufacturing FC electrodes

• Disadvantages :– Low faradic yield (close to 10%) due to H2 evolution– Long duration of experiments– Only formation of alloy compounds

Advantages and disadvantages of catalysts prepared by electrochemical deposition

31

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

20 nm 50 nm

Loading limited to 10 wt. %

HVulcan XC72 C

O

OH

NaClO

Vulcan XC72

NH3

CO

O-NH4+

Vulcan XC72

CO

O-

Pt2+Vulcan XC72

Pt(NH3)42

+

2

PtVulcan XC72

∆∆∆∆H2

♦ Classical impregnation-reduction method : Cationic exchange

32

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

=> Preparation of Pt/C and PtSn/C catalysts

⇒ Variation of the Pt/Sn atomic ratio

⇒ Loading up to 30 wt. %

Aqua regia

H+ PtCl 6-

∆∆∆∆air

∆∆∆∆H2

HVulcan XC72 H

OHVulcan XC72 OH

OH

HVulcan XC72

+

OH

H+

PtCl 6-Vulcan

XC72

OH2+

OH2+

PtVulcan XC72

20 nmTEM pictures of a Pt/C catalyst

♦ Classical impregnation-reduction method : Anionic exchange

33

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

♦♦♦♦ Preparation of Pt-based plurimetallic electrocataly sts by the “Bönnemann colloidal” method

Preparation of the reducing agent(tetraalkylammonium triethylborohydride):

N(CnH2n+1)4Br + KB(C2H5)3H → N(CnH2n+1)4[B(C2H5)3H] + KBr↓

Preparation of the mono and bimetallic colloid precursors :

PtCl2 + 2 N(CnH2n+1)4[B(C2H5)3H] →Pt[N(CnH2n+1)4Cl]2 + 2 B(C2H5)3↓ + H2↑

m PtCl2 + n XCly + (2m + yn) N(CnH2n+1)4[B(C2H5)3H] →PtmXn[N(CnH2n+1)4Cl](2m + yn) + (2m + yn) B(C2H5)3↓ + (2m+ yn)/2 H2↑

34

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Pt-X/XC72 catalyst

+Pt VulcanXC-72

VulcanXC-72

Pt

Pt

Pt

T = 300°C

air

Pt/XC72 catalystcolloid particles

+

Pt

X

VulcanXC-72

VulcanXC-72

Pt

Pt

Pt

X

X

XT = 300°C

air

X = Ru, Sn, Cr, Fe…

X

X

Deposition of the colloid particles on a carbon pow der

35

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Deposition of the colloid particles on a carbon powder (Vulcan XC72)

Codeposition

Colloid Pt

Colloid Ru

x Pt[N(alk) 4Cl]2 + y Ru[N(alk) 4Cl]3

300°C XC72 air

Ptx+ Ruy/C

Coreduction

xPtCl 2 + yRuCl 3 +(2x+3y)N(alk) 4BEt3H

300°C XC72 air

Ptx-Ruy/C

PtxRuy[N(alk) 4Cl] (2x+3y)

Mixture of catalysts

Colloid Pt

Colloid Ru

Pt/C Ru/C

xPt/C+ yRu/C

300°C XC72 air

300°C XC72 air

36

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Codeposition Pt+Ru/C

1.0 1.5 2.0 2.5 3.0 3.5 4.0 mean particle size/nm

400

300

200

100

0Num

ber

of p

arti

cles

40 60 80

Inte

nsit

y / a

.u.

2θ (°)

ExperimentalPtRu

simulation of Pt+Ru

40 60 80 2θθθθ(°)

n

dnd i

ii

TEM

=

Coreduction Pt-Ru/C

From XRD measurement: alloy character

1.0 1.5 2.0 2.5 3.0 3.5 4.0 mean particle size/nm

500 400 300 200 100

0

Num

ber

of p

arti

cles

Characterization of Pt 0.8Ru0.2 catalysts prepared by the colloidal method

37

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Catalysts d TEMCrystallographic

structure

Pt/XC72 2.2 fcc

Pt+Ru/XC72 (80:20)

2.1Pt fcc + Ru hc in

interaction

Pt-Ru/XC72 (80:20)

1.9 fcc alloy

Pt/XC72+Ru/XC72 (80:20)

Pt(2.1)+Ru(1.5) Pt fcc + Ru hc

Ru/XC72 1.5Hexagonal compact (hc)

Characterization of Pt 0.8Ru0.2 catalysts prepared by the colloidal method

38

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

TEM image of a Vulcan supportedPt-Sn(90:10)/XC72 catalyst

(with a metal loading of 30%)prepared by the colloidal method

Particle size distribution of aPt-Sn(90:10)/XC72 catalyst

(based on the observation of 1005 particles)

Mean diameter : 2.4 ± 0.3 nm

0 1 2 3 4 5 60

50

100

150

200

250

300

Num

ber

of p

artic

les

Particle size / nm

Characterization of a Pt 0.9Sn0.1 catalyst prepared by the colloidal method

39

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

EDX analysis of a 30% Pt-Sn(90:10/XC72 catalyst

XRD patterns of Pt-Sn/XC72 catalystswith different atomic composition

30 40 50 60 70 80 90

Pt3Sn Pt

Pt-Sn(75:25)

Pt-Sn(80:20)

Pt-Sn(90:10)

Pt

Inte

nsity

/ a.

u.

2 theta / degree

(111)(200)

(220) (311)

Physical characterizations of 30% Pt 1-xSnx/XC72 catalysts prepared by the Bönnemann method (colloidal method)

0 2 4 6 8 10 12

Sn LPt L

Pt L

Cu

CuCu (grid)

Sn L

Pt M

O

C (support)

Cou

nts

(a.u

.)

Energy / keV

(α)

(α)

(β)

(β)(α)

Energy / keVElement Pt Sn

Zone n°1 89.7 10.3

Zone n°2 91.1 8.9

Zone n°3 89.7 10.3

40

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

ElectrocatalystdTEM

/ nmDispersion/ %

dXRD

/ nmAtomic composition (EDX)

S / m2.g-1

30% Pt/XC72 2.4 44 2.1 / 39

30% Pt-Sn(90:10)/XC72 2.4 45 1.9 89.7 / 10.3 24

60% Pt-Sn(90:10)/XC72 2.8 40 3.4 89.8 / 10.2 11

30% Pt-Sn(80:20)/XC72 2.7 41 2.1 80.4 / 19.6 15

30% Pt-Sn(75:25)/XC72 2.9 38 2.0 74.1 / 25.9 8

Values of the physical and electrochemical paramete rsof different Pt-Sn electrocatalysts prepared

by the colloidal method

41

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Preparation of a Pt carbonyl complex :

3n [PtClz]2- + (3nz/2 + 3n + 1) CO + (3nz – 6n + 2) OH- →

[Pt3(CO)6]n2- + 3nz Cl- + (3nz/2 - 3n + 1) CO2 + (3nz/2 - 3n + 1) H2O

Preparation of bimetallic Pt1-xMx carbonyl complex :

3n(1-x) [PtCl6]2- + 3nx [MClz]2- + [3n (4 - 6x + zx)/2 + 6n + 1)] CO

+ [3n (4 - 6x + zx) + 2)] OH- → [(Pt1-xMx)3(CO)6]n2- + 3n [6(1 – x) + zx)] Cl-

+ [3n (4 - 6x + zx)/2 + 1)] CO2 + [3n (4 - 6x + zx)/2 + 1)] H2O

Deposition of the metallic particles on Vulcan XC72 :

♦ Preparation of Pt-based plurimetallic electrocataly sts by the “carbonyl complex” method

+ 2 Na+

Water rinsing

Then heating at 300°Cunder H 2 for 1h30

42

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Physical characterization of a (4:1)Pt-Co/C catalyst prepared by the carbonyl complex method

EDX

1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,50

10

20

30

40

50

60

70

80

90

<d>=2.40 +/- 1,06 nm

Num

ber

of p

artic

les

Particle size (nm)

Pt-Co (4:1)/C

TEM image

High resolution TEM

XRD

30 40 50 60

Pt-Co (4:1)

Inte

nsity

/ u.

a.

Angle (2 θθθθ) / degree

43

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Physical characterization of (2:1)Pt-Ni/C prepared b y the carbonyl complex method

Particle size distribution (from TEM) EDX analysisTEM micrograph

Catalyst Nominal atomic Experimental Particle size Dispersioncomposition (%) composition (%) (nm) (%)

44

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

♦♦♦♦ Preparation of Pt-based plurimetallic electrocatalysts by the “water-in-oil” method

PtCl 62- + 4 e- → Pt(s) + 6 Cl -

BH4- + 3 H2O → BO3

3- + 2 H2 + 6 H+ + 4 e-

___________________________________________________

(PtCl 62-)aq + 3H2O + (BH4

-)aq

→ Pt(s) + BO 33- + 2 H2 + 6 H+ + 6 Cl-

45

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Description of the “water-in-oil” microemulsion metho d

Deposition on C

(Vulcan XC72)

Reducing agent NaBH4

H2O

SurfactantBrij® 30

n-Heptane

Metallic salts, H2O

MixingMetallic particles

Metallicparticles

D

airVulcanXC-72

Pt-M

Pt-M

Pt-M

Pt-M

46

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Physical characterization of a Pt 0.9Bi 0.1/C catalyst prepared by the “water-in-oil“ method

Pt0.9Bi0.1 50%/C

TEM imageMean particle size :

5 ± 1.2 nm

00 3 6 9 12

PtMα

BiMγ

PtLλ

NiKβ

NiKα

PtLα

BiLλ

PtLβ

BiLα

BiLβ PtLλ

EDX analysis of a Pt0.9Bi0.1 50%/C catalystResult : Pt 88%, Bi 12%

3 4 5 6

7 Particle size (nm)

0

0.05

0.1

0.15

0.2

0.25

Par

ticle

dis

trib

utio

n (%

)

47

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

TEM characterization of 40% PdxAu1-x/C electrocatalysts prepared by the “water-in-oil” method

(a) (b) (c)

Mean particle size : 4.0 ±±±± 1.0 nm 5.0 ±±±± 1.2 nm 7.4 ±±±± 1.4 nm

48

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Electrocatalysts for fuel cell reactions at low temperatures (< 90°C)

♦ Electrocatalytic oxidation of hydrogen

♦ Electrocatalysts for CO oxidation

♦ Electrocatalytic reduction of dioxygen

49

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

M-H bond strength / kcal.mol-1

-Lo

g j o

for

the

h.e.

r. (j o

in A

.cm

-2)

2 M + H2 →→→→ 2 M-Hads Dissociative H 2 adsorption v 1 = k1 (1-θθθθ) eββββ|∆∆∆∆GM-H|/RT

2 (M-Hads →→→→ H+aq + e- +M) Electron transfer reaction v 2 = k2 θθθθ e-(1-ββββ)|∆∆∆∆GM-H|/RT eααααnFE/RT

(θθθθ is the degree of coverage of the surface by H ads)H2 →→→→ 2 H+

aq + 2 e- Overall oxidation reaction v = v 1 = v2 (stationary state)

Exchange current density j o of the hydrogen evolution reactionas a function of the metal-hydrogen bond energy

50

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5

P /

W c

m-2

E /

V

j / A cm -2

Cel

l vol

tage

E/V

Current density j / A cm -2

∆∆∆∆ : cathode and anode prepared in LACCO, 0.35 mg Pt cm -2 (Bönnemann colloidal method) : cathode LACCO 0.35 mg Pt cm -2 and anode LACCO+GREMI 0.1 mg Pt cm -2 (Plasma PVD)O : anode LACCO 0.35 mg Pt cm -2 and cathode LACCO+GREMI 0.1 mg Pt cm -2 (Plasma PVD)

Polarization and power density curves of a PEMFC ob tained with a homemade MEA. Tcell=85°C, Thuma=80°C, Thumc =35°C, fa=600 ml mn -1, fc=400 ml mn -1, pa=pc=3 bar

51

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

j / m

A c

m-2

E / V vs. RHE

Pt (bulk)

PAni/Pt

PAni/Pt-Ru

PAni/Pt-Sn

PAni/Pt-Ru-Sn

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

j / m

A c

m-2

E / V vs. RHE

Pt (bulk)

PAni/Pt

PAni/Pt-Ru

PAni/Pt-Sn

PAni/Pt-Ru-Sn

Electro-oxidation of CO on different Pt-based electrodes dispersed in polyaniline (PAni) : () bulk Pt ; (– – – ) PAni/Pt ; (• • • •) PAni/Pt-Ru ; (• – • – • –) PAni/Pt-Sn ; (- - - -) PAni/Pt-Ru-Sn

Pt + CO →→→→ Pt-COads CO adsorptionM + H2O →→→→ M-OHads + H+

aq + e- Dissociative adsorption of waterPt-COads + M-OHads →→→→ Pt + M + CO2 + H+

aq + e- Surface reactionCO + H2O →→→→ CO2 + 2 H+

aq + 2 e- Overall oxidation reaction

52

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Single Cell performance plots for Pt/C, PtRu/C and PtSn/C at 85°C at several CO concentrations: () 0 ppm; (O) 5 ppm; () 20 ppm; () 50 ppm and () 100 ppm.

After Mukerjee et al.,Electrochim. Acta, 44 (1999) 3283

Effect of a few ppm of CO on the E(j)

characteristics of a H2/O2 PEMFC fed with a

reformate gas

53

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Polarization and power density curves of a PEMFC wi th a homemade MEA (Nafion ® 112) : a) with pure H 2; b) with H 2 + 100 ppm CO.

Tcell = 85°C, catalyst loading : 0.4 mg cm -2 Pt for the cathode; 0.4 mg cm -2 PtSn(3:1)/C for the anode

100

200

300

400

500

600

700

800

900

1000

E /

mV

j / A.cm-2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80

PtSn(3:1)/C 20 % E-TEKPt-Sn/C 20 % carb.Pt-Sn/C 30 % carb.

0

100

200

300

400

500

600

700

P /m

W.cm

-2100

200

300

400

500

600

700

800

900

1000

E /

mV

j / A.cm-2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80

PtSn(3:1)/C 20 % E-TEKPt-Sn/C 20 % carb.Pt-Sn/C 30 % carb.

0

100

200

300

400

500

600

700

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.80

PtSn(3:1)/C 20 % E-TEKPt-Sn/C 20 % carb.Pt-Sn/C 30 % carb.

0

100

200

300

400

500

600

700

P /m

W.cm

-2

0.00

100

200

300

400

500

600

700

800

900

1000

E /

mV

j / A.cm-2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PtSn(3:1)/C 20% E-TEKPt-Sn/C 20% carb.Pt-Sn/C 30% carb. 0

50

100

150

200

250

P /m

W.cm

-2

0.00

100

200

300

400

500

600

700

800

900

1000

E /

mV

j / A.cm-2

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PtSn(3:1)/C 20% E-TEKPt-Sn/C 20% carb.Pt-Sn/C 30% carb. 0

50

100

150

200

250

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

PtSn(3:1)/C 20% E-TEKPt-Sn/C 20% carb.Pt-Sn/C 30% carb. 0

50

100

150

200

250

P /m

W.cm

-2

a) b)

54

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

The rather difficult oxygen reduction kinetics

O2 (O2)surf (H2O2)ads H2O

(H2O2)surf H2O2

H2O

k1

k2

k ’2

k3

k4

k5k ’

5

Possible reaction paths for oxygen reduction

55

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Detailed reaction mechanism of the ORR involving th e possible formation of H 2O2

Pt + O2 → Pt - O2ads

Pt - O2ads + H+ + e- → Pt - O2Hads

either Pt - O2Hads + H+ + e- → Pt + H2O2

or Pt + Pt – O2Hads → Pt - Oads + Pt - OHads

Pt - Oads + H+ + e- → Pt - OHads

2 Pt - OHads + 2 H+ + 2 e- → 2 Pt + 2 H2OOverall reaction : O2 + 4 H+ + 4 e- → 2 H2O

This complex 4-electron transfer reaction leads to high overvoltages (|η| ≈ 0.2 to 0.6 V)

56

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0,2 0,4 0,6 0,8 1 1,2

E/ V vs. RHE

j/ m

A m

g-1

Pt Pt/C

Pt-Cr10/C

Pt-Cr20/C

Pt-Cr30/C

Pt-Cr40/C

Mass Activity for Oxygen reduction ; effect of Cr c omposition0.5 M H2SO4 ; ; T= 25°C ; v = 5 mV s -1 ; ΩΩΩΩ = 2500 rpm .

After Hui Yang et al. J. Phys. Chem. B, 108(6), 193 8, 2004.

57

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

After Xiong et al., 204th ECS Meeting, Orlando, Oct ober 2003

Current density (A/cm 2)

Cel

l pot

entia

l (V

)

Comparison of the performances of several Pt-Co alloys in a PEMFC single cell (alloys prepared by hydrogen reduction of cobalt hydroxide)

Effect of Pt alloying on the oxygen reduction overv oltage

58

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

N

N

N

N

N

N N N

M

Transition metal phthalocyanines (MPc)as Oxygen Reduction Catalysts

The catalytic active site for oxygen reduction is the central metal atom M(under its 2 oxidation states M2+ / M3+) with M = Fe, Co, Ni, Mn, etc.

59

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

E / mV (RHE)0 100 200 300 400 500 600 700 800 900 1000

-5

-4

-3

-2

-1

0j /

mA

.cm

-2

Pt

FePc

CoPc

MnPc

O2 saturated 0.5M H 2SO4

Oxygen reduction at metal phthalocyanine

60

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Effect of methanol on oxygen reduction atmetal phthalocyanine

PtH2SO4 0,5M O2

saturated

PtH2SO4 0,5M ; O2

saturated+ MeOH 1M

FePcH2SO4 0,5M O2

saturated

FePcH2SO4 0,5M O2

saturated+ MeOH 1M

200 300 400 500 600 700 800 900 1000 1100

-5

-4

-3

-2

-1

0

j / m

A.c

m-2

E / mV (ERH)E / mV (RHE)

j / m

A.c

m-2

61

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

0 5 10 15 20 25 30 350

100

200

300

400

500

600

700

j / mA.cm -2

E /

mV

0

1

2

3

4

5

6

7

P / m

W.cm

-2

PAni + FeTsPc

FePc / C

Anodes: PtRu/C E-Tek ; 5M MeOH ; room temperatureFePc / C (O2) P < 1 mW cm -2

PAni + FeTsPc (O 2) P = 6 mW cm -2

Direct Methanol Fuel Cell with a FePc cathode

62

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

References[1] J. O’M BOCKRIS, S. SRINIVASAN, Fuel Cells : thei r electrochemistry,

McGraw Hill Book Co., New York, 1969.[2] K. KORDESH, G. SIMADER, Fuel cells and their app lications, VCH, Weinheim, 1996.[3] C. LAMY, J-M. LEGER, Electrocatalysis with Elect ron-conducting Polymers

Modified by Noble Metal Nanoparticles, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, A. Wieckowski, E. Savinova, C. Vayenas (Eds.), Marcel Decker Inc. (New-York), chap 25 (2002) pp 907-929.

[4] Handbook of Fuel Cells, W. Vielstich, H. Gast eiger, A Lamm (Eds.), Wiley, Chichester (UK), Volume 1, "Fundamentals and Survey of Systems", (2003)pp.323-334. Volume 2 to 6, 2003-2009.

[5] J.-M. Léger, C. Coutanceau, C. Lamy, "Electro catalysis for the direct alcohol fuelcell", in “Fuel Cell Catalysis“, M. Koper, A. Wieck owski (Eds.), Wiley-VCH, Weinheim, 2009, Chap.11, pp. 337-367.

[6] C. Lamy, C. Coutanceau, N. Alonso-Vante, “Met hanol tolerant cathode catalystsfor DMFC”, in “Electrocatalysis of Direct Methanol Fuel Cells”, H. Zhang, H. Liu (Eds.), Wiley-VCH, Weinheim, 2009, Chap 7, pp. 257- 314.

[7] C. Coutanceau, S. Baranton, C. Lamy, "Determi nation of Reaction Mechanisms Occurring at Fuel Cell Electrocatalysts Using Elect rochemical Methods, Spectroelectrochemical Measurements and Analytical Techniques", in "Modern Aspects of Electrochemistry", P. Balbuena, V.R. Sub ramanian (Eds.), Springer, New

York, Vol. 50, 2010, Chap 11, pp. 397-501.

63

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

ACKNOWLEDGEMENTS

We acknowledge the support of different research agencies :

CNRS, Institute of Chemical Sciences

Agence de l'Environnement et de la Maîtrise de l'EnergieADEME/ AGRICE Programme),

Ministry of Research (French Fuel Cell Network),

to which we are greatly indebted.

64

GDR n°3339Piles A Combustible, Systèmes

2nd Joint European Summer School for FC & H2 Technology-Heraklion-September 2012

Thank you for Thank you for Thank you for Thank you for

your kind attentionyour kind attentionyour kind attentionyour kind attention