57
Basic CMOS OPAMPs

Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

  • Upload
    ngodien

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Basic  CMOS  OPAMPs  

Page 2: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Amplifiers  

Name   Input  Quan,ty   Output  Quan,ty  

Opera3onal  Amplifier  (OPAMP)   Voltage   Voltage  

Opera3onal  Transconductance  Amplifier  (OTA)  

Voltage   Current  

Opera3onal  Current  Amplifier  (OCA)   Current   Current  

Current  Mode  Amplifier   Current   Voltage  

Page 3: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

OPAMPs  

•  An  OPAMP  is  essen3ally  a  single  pole  amplifier.  It  exchanges  gain  for  bandwidth.  All  other  poles  are  beyond  the  GBW.  

•  Mul3stage  amplifiers  have  several  poles  and  can  work  properly  at  one  gain.  They  do  not  exchange  gain  for  bandwidth.  

Page 4: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  VDD

VSS

Vin- Vin+

VoutQ1

Q4

Q5

Q6

Q7

+

I1

Q8

Q2

Q3

Cc

Page 5: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  The  gain  can  be  wriJen  simply  as,  

•  The  capacitances  are,  €

A1 = −Gm1R1 = −gm1 r02 r04( )A2 = −Gm2R2 = −gm6 r06 r07( )A = A1A2Rout = r06 r07

C1 = Cgd 2 +Cdb2 +Cgd 4 +Cdb4 +Cgs6

C2 = Cdb6 +Cdb7 +Cgd 7 +CL

Page 6: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  From  the  previous  discussion  on  frequency  compensa3on,  

•  To  achieve  -­‐20  dB/dec  down  to  0  dB,  €

f p1 ≈1

2πR1Gm2R2CC

f p2 ≈Gm2

2πC2

fz ≈Gm2

2πCC

GBW = f t = A fp1 =Gm1

2πCC

Page 7: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  This  frequency  must  be  lower  than  fp2  and  fz.  Thus,  

•  In  prac3ce,  C2  is  typically  equal  to  CL.  C1  is  a  parasi3c  capacitance  and  should  be  included  into  the  calcula3ons  as  a  correc3on.  

Gm1

CC

<Gm2

C2

Gm1 <Gm2

GBW =Gm1

2πCC

, fnd =Gm2

2πCL

1

1+Cn1

CC

Page 8: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  CMOS  OPAMP  

•  Assigning  fnd  as  3GBW  and  Cn1/CC  as  0.3,  we  find  a  simple  rule,  

•  This  expression  tells  us  to  use  larger  current  in  the  second  stage.  

•  Once  CC  is  chosen,  the  design  can  be  completed  easily.  

Gm2

Gm1≈ 4 CL

CC

Page 9: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  The  total  phase  at  f=ft  is  simply  

•  The  phase  of  the  zero  is  added,  not  subtracted  because  it  is  a  posi3ve  zero.  €

φtotal = 90° + tan−1 f tf p2

⎝ ⎜ ⎜

⎠ ⎟ ⎟ + tan

−1 f tf z

⎝ ⎜

⎠ ⎟

PhaseM argin = 90° − tan−1 f tf p2

⎝ ⎜ ⎜

⎠ ⎟ ⎟ − tan

−1 f tf z

⎝ ⎜

⎠ ⎟

Page 10: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  This  zero  is  actually  due  to  the  feedforward  through  the  capacitance.  

•  The  current  passing  through  the  capacitor  cancels  out  the  output  current  of  the  amplifier,  causing  a  zero.  

•  To  get  rid  of  this  zero,  we  have  to  make  the  flow  unidirec3onal;  that  is,  cut  the  feedforward,  but  keep  the  feedback.  

Page 11: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  There  are  several  solu3ons  by  using  source  followers  or  cascodes,  but  they  are  complicated  circuits.  

•  The  simplest  solu3on  is  to  use  a  resistance  R  in  series  with  CC.    

•  The  func3onality  of  this  resistor  can  be  easily  understood  if  we  write  the  current  through  CC.  

Page 12: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Thus,  

•  The  new  loca3on  of  the  zero  is  at  

•  By  selec3ng  R  =  1/Gm2,  the  zero  can  be  eliminated.    

•  Even  if  complete  matching  cannot  be  achieved,  the  zero  can  be  pushed  to  higher  frequencies  or  converted  to  a  nega3ve  zero.    

Vi2

R +1sCC

=Gm2Vi2

s =1

CC1Gm2

− R⎛

⎝ ⎜

⎠ ⎟

Page 13: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  However,  too  large  a  value  should  not  be  chosen  either  since  the  nega3ve  zero  is  beneficial.  Hence  choose  the  zero  to  be  less  than  3GBW.  

•  Thus,  a  range  for  R  can  be  determined  as,  

1Gm2

< R <13Gm1

Page 14: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Slew  rate  is  generally  due  to  the  first  stage  and  the  compensa3on  capacitance.  

•  Slew  rate  is  simply  I/CC,  where  I  is  the  tail  current  of  the  first  stage.  

•  Also,  from  these  equa3ons,  SR  =  VOVωt.  

Page 15: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Define  a  Figure  of  Merit  (FOM)  for  our  OPAMP  designs  as  

•  This  will  be  used  to  evaluate  our  designs.    €

FOM =GBWxCL

IBIAS

Page 16: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Let  us  try  to  design  a  two  stage  OPAMP  with  GBW  of  400  MHz  and  CL  =  5  pF.  

•  We  have  two  equa3ons  rela3ng  the  three  unknown  variables,  Gm1,  Gm2,  and  CC.  

•  If  you  start  by  choosing  CC  first,  its  minimum  is  about  3Cn1  and  maximum  is  CL/{2-­‐3}.  

•  By  adjus3ng  CC,  a  minimum  power  point  can  be  found.  

Page 17: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

0.0E+00  

5.0E-­‐06  

1.0E-­‐05  

1.5E-­‐05  

2.0E-­‐05  

2.5E-­‐05  

3.0E-­‐05  

0   1E-­‐12   2E-­‐12   3E-­‐12   4E-­‐12   5E-­‐12   6E-­‐12  

I1  

I6  

Itot  

Page 18: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  This  graph  was  drawn  for  GBW  =  1MHz,  CL  =  10pF,  Cn1  =  0.4pF,  VGS  –  VT  =  0.2V,  and  fnd  =  3MHz.  

•  You  can  play  with  these  values  in  the  excel  chart  to  obtain  your  op3mum.  

•  Note  that  Cn1  actually  changes  with  the  sizing  of  transistor  M6.  Thus,  this  graph  is  not  exact.  

Page 19: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  The  second  alterna3ve  is  to  choose  Gm2  first.  The  absolute  minimum  for  this  value  is  3(GBW)(2π)CL.    

•  Now,  choose  a  Gm2  which  is  30%  larger  (corresponding  to  CC  =  3Cn1).  Then,  the  parasi3c  Cn1  is  determined  right  away.  One  can  move  from  here  to  calculate  other  variables.  

•  The  third  alterna3ve  is  to  choose  Gm1  first.  This  is  useful  to  minimize  noise.  

Page 20: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Concentrate  the  choices  in  coefficients:  

•  Then,  the  GBW  is  given  as  

CL = αCC ,CC = βCn1 = βCGS6, fnd = γGBW

GBW =gm62πCgs6

1αβγ 1+1 β( )

fT6  

Page 21: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Choose  α,β,γ                  2  3  2  •  Calculate  fT6  from  GBW          6.4  GHz  •  Calculate  L6  for  VGS  –  VT  of  0.2V      0.5  µm  •  Calculate  W6  from  CL            417  µm  – Determine  IDS6                2.3  mA  – Determine  Cn1                0.83  pF  

•  Calculate  CC  from  CL  and  α        2.5  pF  •  Calculate  gm1  and  IDS1            0.63  mA  

Page 22: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  The  total  current  consump3on  is  3.56  mA.  •  The  FOM  is  561  MHzpF/mA.  

•  Remember  fT  in  ac3ve  region:  

•  And  fT  in  subthreshold  region:  

fT =1.5 µn

2πL2(VGS −VT )

fT =12π

ItkTq

1CD

1L2

IDIM

Page 23: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  For  smaller  GBW  values,  the  transistors  can  be  biased  in  weak  inversion  or  in  the  boundary.  

•  Rewri3ng  the  above  equa3ons  by  using  the  inversion  coefficient  technique,  

fTfTH

= i 1− e− i( ) ≈ i

fTH =2µkT q2πL2

for  small  i  

Page 24: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Let  us  now  do  a  design  for  GBW  =  1MHz  and  CL  =  5pF.  

•  The  transistors  are  probably  in  weak  inversion.  •  Thus,  it  may  be  a  good  idea  to  use  the  EKV  equa3ons.  

Page 25: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Two  Stage  Miller  OPAMP  

•  Choose  α,  β,  and  γ                2  3  2  •  Calculate  minimum  fT6              16  MHz  •  Choose  a  channel  length,  L6          0.5  µm  

–  Calculate  fTH6                  2  GHz  •  Calculate  inversion  coefficient          0.008  •  Calculate  W6  from  CL              417  µm  

–  Calculate  IDST6                  0.33  mA  –  Calculate  IDS6                  2.7  µA  –  Calculate  Cn1                  0.83  pF  

•  Calculate  CC                    2.5  pF  •  Calculate  gm1  and  IDS1              1.6  µA  

Page 26: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

OPAMP  Specifica3ons  

•  Introductory  analysis  – DC  currents  and  voltages  on  all  nodes  – Small  signal  parameters  of  all  transistors  

•  DC  Analysis  – CM  input  voltage  range  vs  supply  voltage  – Output  voltage  range  vs  supply  voltage  – Maximum  output  current  (sink  and  source)  

Page 27: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

OPAMP  Specifica3ons  

•  AC  and  transient  analysis  – AC  resistance  and  capacitance  on  all  nodes  – Gain  vs  frequency  – GBW  vs  biasing  current  – SR  vs  load  capacitance  – Output  voltage  range  vs  frequency  – SeJling  3me  –  Input  impedance  vs  frequency  – Output  impedance  vs  frequency  

Page 28: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

OPAMP  Specifica3ons  

•  Specifica3ons  related  to  offset  and  noise  – Offset  voltage  vs  CM  input  voltage  –  CMRR  vs  frequency  

–  Input  bias  current  and  offset  –  Equivalent  input  noise  voltage  vs  frequency  –  Equivalent  input  noise  current  vs  frequency  – Noise  op3miza3on  for  capaci3ve/induc3ve  sources  

–  PSRR  vs  frequency  – Distor3on  

Page 29: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

OPAMP  Specifica3ons  

•  Other  second  order  effects  – Stability  for  induc3ve  loads  – Switching  the  biasing  transistors  – Switching  or  ramping  the  supply  voltages  – Different  supply  voltages,  temperatures,  …  

Page 30: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Common  Mode  Input  Voltage  Range  

•  The  maximum  input  voltage  is  VDD  –  VGS1  –  VDS7  

•  The  minimum  input  voltage  is  VSS  +  VGS3  +  VDS1  –  VGS1  

•  We  can  go  closer  to  the  nega3ve  supply  voltage.  

•  The  opposite  is  true  for  an  NMOS  input  circuit.  

Page 31: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Output  Voltage  Range  

•  If  no  resis3ve  loads  are  present,  the  output  can  go  rail  to  rail.  

•  Otherwise,  there  is  a  resis3ve  divider  between  the  load  and  the  output  resistors.  

Page 32: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Slew  Rate  Revisited  

•  The  worst  slewing  condi3on  occurs  when  an  ideal  square  wave  is  applied  to  the  OPAMP.  

•  The  square  wave  is  converted  to  a  triangular  wave  with  VOUT,max  =  SR/4fmax.  

•  As  discussed  above  

SRGBW

=4πIDS1gm1

IDS1gm1

=VGS1 −VT

2IDS1gm1

=nkTq

ICE1gm1

=kTq

Strong  inversion  

Weak  inversion  

BJT  

Page 33: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Slew  Rate  

•  Actually,  there  are  two  types  of  slew  rate,  external  and  internal.  

•  SR  is  also  related  to  seJling  3me.  €

SRint =IBCC

SRext =IDS7CL

ttot = tslew + t0.1 =VOUTSR

+7

2πBWln(1000) ≈ 7

Page 34: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Output  Impedance  

•  In  the  open-­‐loop  configura3on,  the  output  impedance  is    

•  However,  this  impedance  starts  dropping  at  the  dominant  pole  and  drops  un3l  

•  At  fnd,  there  is  a  second  pole  with  CL.  •  Thus,  the  output  impedance  is  not  as  large  as  expected.  

•  Furthermore,  the  OPAMP  is  typically  used  with  feedback.  

Rout = r06 r07

Rout = 1gm6

Page 35: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Noise  Behavior  

•  The  first  stage  is  the  dominant  noise  source  all  the  way  to  GBW.  

•  It  is  enough  to  calculate  this  noise.  •  The  noise  density  is  given  by  

•  Using  the  concept  of  noise  bandwidth,  the  integrated  noise  is  given  by  

viN2 = 4kT 4 3

gmΔf

4kT3CC

Page 36: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

A  Few  Comments  on  the  Input  Stage  

•  Choose  p-­‐channel  over  n-­‐channel  for  input  differen3al  amplifier  due  to  – Lower  noise  – BeJer  slew  rate  – BeJer  GBW  

•  Noise  op3miza3on  can  be  performed  on  the  first  stage  by  changing  the  NMOS  mirror  dimensions  as  well.  

Page 37: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Telescopic  Cascode  Amplifier  VDD

VBIAS1

VIN+VIN-

VBIAS2

VBIAS3

Q1

Q4

Q5 Q6

Q7 Q8

Q9

Q3

Q2

Page 38: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Telescopic  Cascode  Amplifier  

•  Provides  more  gain  at  low  frequencies.  •  GBW  does  not  change.  

•  You  can  actually  use  gain  boos3ng  to  the  cascodes  to  increase  the  gain  further.  However,  the  GBW  will  not  change.  

GBW =gm12πCL

Page 39: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Telescopic  Cascode  Amplifier  

•  This  is  a  single  stage  amplifier.  No  major  issues  about  stability.  

•  The  output  and  input  swings  are  quite  small.  

•  This  circuit  is  more  an  OTA  than  an  OPAMP  due  to  its  high  output  resistance.  

•  High  output  resistance  is  not  a  big  problem  when  driving  capaci3ve  loads.  

Page 40: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Telescopic  Cascode  Amplifier  

•  The  maximum  output  swing  for  a  standard  configura3on  is  given  by  

•  For  our  case,  it  is  increased  slightly.  •  The  input  swing  is  also  limited.  €

Vswing = 2 VDD − 2Vov,n + 2Vov,p +Vcs( )[ ]

Page 41: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Telescopic  Cascode  Amplifier  

•  Another  very  important  limita3on  related  to  the  above  is  the  voltage  mismatch  between  input  and  outputs.  Imagine  unity  gain  F/B  between  gate  of  M2  and  drain  of  M6.  

•  For  the  new  circuit,  both  transistors  have  to  remain  in  ac3ve  region.  Thus,  VBIAS3  must  be  chosen  very  carefully.  Also,  the  swing  is  very  limited.  

Page 42: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Folded  Cascode  OTA  

VIN-

VIN+VBIAS1

VBIAS2

VBIAS3

VBIAS4

VOUT

VDD

Q1

Q4

Q6

Q8

Q9

Q10 Q11

Q2

Q5

Q7

Q3

Page 43: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Folded  Cascode  OTA  

•  This  circuit  is  symmetrical  since  M1  and  M2  see  the  same  impedance.  

•  The  output  is  the  only  high  resistance  point;  thus  no  compensa3on  is  necessary.  

•  The  input  is  again  high-­‐swing.  •  The  output  swing  is  slightly  higher  (by  one  current  source  voltage)  than  the  telescopic  cascode.  

Page 44: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Folded  Cascode  OTA  -­‐  DC  

•  Choose  bias  current  through  M9  as  100  µA  as  an  example.    

•  M1  and  M2  each  conduct  50  µA.  •  Choose  the  currents  through  M10  and  M11  as  100  µA.  Then,  the  rest  of  the  transistors  will  conduct  50  µA.    

•  It  is  not  a  necessity  to  equate  the  currents  through  M9  and  M10-­‐11.  However,  good  choice  for  symmetry.  

Page 45: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Folded  Cascode  OTA  

•  The  power  consump3on  is  thus  twice  the  telescopic  OTA.    

•  The  Gain  and  GBW  expressions  are  exactly  the  same.    

•  Why  bother  with  the  folded  cascode  rather  than  the  telescopic  cascode?  Same  performance  at  twice  the  power?  

Page 46: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Folded  Cascode  OTA  

•  The  first  non-­‐dominant  pole  comes  from  the  drains  of  M1  and  M2.  They  form  together  one  single  non-­‐dominant  pole  at  approximately  fT3/3.  

•  The  other  non-­‐dominant  poles  arising  from  M5-­‐M6-­‐M7-­‐M8  are  followed  immediately  by  zeros  and  are  not  discernible.  

•  Hence,  this  OTA  has  only  one  important  non-­‐dominant  pole  and  is  quite  easy  to  design.  

Page 47: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Folded  Cascode  OTA  

•  Choose  Vov1,2  as  0.2V  and  Vov10,11  as  0.5V.    •  Then,  inputs  can  go  all  the  way  down  to  VSS.  

•  Hence,  high  input  swing  can  be  achieved.  •  Input  and  output  voltage  levels  can  easily  be  matched.  

Page 48: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

A  Small  Comparison  

•  GBW  =  100MHz,  CL  =  2pF,  VGS  –  VT  =  0.2V.  

Type   ITOT   Swing  

2-­‐stage  Miller   1.1   large  

Telescopic   0.25   small  

Folded  Cascode   0.5   average  

Page 49: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Symmetrical  CMOS  OTA  

VDD

Vout

VBIAS

1 : BB : 1

Q1

Q3 Q6

Q8Q9

Q2

Q4Q5

Q7

Page 50: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Symmetrical  CMOS  OTA  

•  Although  this  has  3  current  mirrors  as  opposed  to  only  one  in  a  simple  single  stage  amplifier,  the  performance  is  in  essence  the  same.  

•  However,  this  amplifier  is  the  best  you  can  achieve  in  terms  of  symmetry.  

•  Furthermore,  B  can  be  used  to  obtain  more  gain.  

Page 51: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Symmetrical  CMOS  OTA  

•  The  gain  is  now  gm1RoutB.  •  The  BW  is  again  given  by  

•  Thus,  GBW  is  

•  How  large  can  we  make  B?  

BW =1

2πRoutCL

GBW = B gm12πCL

Page 52: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Symmetrical  CMOS  OTA  

•  The  two  nodes  drain  of  M1  and  drain  of  M2  cause  a  single  pole.  The  capacitance  at  this  node  is  given  by  

•  The  pole  at  the  drains  of  M5  and  M7  is  closely  followed  by  a  zero  and  can  be  ignored.  

•  Thus,  the  maximum  of  B  can  be  found  by  equa3ng  fnd  to  3GBW.  It  is  typically  3…5.  

C = 1+ B( )Cgs4 +Cdb4 +Cdb2 ≈ 3+ B( )Cgs4

fnd =gm42πC

≈fT 43+ B

Page 53: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Symmetrical  CMOS  OTA  

•  A  symmetrical  OTA  can  be  built  easily  with  cascodes  as  well.  

•  This  will  increase  gain  at  low  frequencies,  but  not  the  GBW.  

Page 54: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Fully  Differen3al  Amplifiers  VDD

VBIAS1

VBIAS2

VIN- VIN+

VOUT+ VOUT-

Q1

Q4

Q5

Q3

Q2

Page 55: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Fully  Differen3al  Amplifiers  

•  We  can  use  this  amplifier  for  differen3al  opera3on  which  is  desired  in  most  applica3ons.  

•  However,  very  good  control  of  biasing  voltages  is  necessary  which  is  typically  not  possible.    

•  Therefore  Common  Mode  Feedback  (CMFB)  should  be  used.  

Page 56: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Fully  Differen3al  Amplifiers  

•  A  CMFB  circuit  senses  the  common  mode  level  in  the  two  outputs.  Then,  it  feeds  back  a  signal  related  to  this  to  the  tail  current.  

•  A  typical  sensing  circuitry  can  be  two  resistors  taking  the  average  of  the  two  outputs.  

•  However,  the  resistors  will  load  the  circuit.  You  may  use  source  followers  to  isolate  the  CMFB  circuit.  

•  Then,  the  CMFB  signal  can  be  compared  against  a  reference  and  be  fed  back  to  the  tail.  

Page 57: Basic&CMOS&OPAMPs& - Technische Universität Mü · PDF fileTwo&Stage&CMOS&OPAMP& • Assigning f nd &as&3GBW&and&C n1 /C C ... Telescopic& CascodeAmplifier& • Another&very&importantlimita3on&related&to&

Fully  Differen3al  Amplifiers  

•  Fully  differen3al  amplifiers  are  almost  always  used  in  prac3ce.  CMFB  is  also  very  commonly  used.  

•  The  Miller  OPAMP  or  cascode  or  folded  cascode  amplifiers  can  all  be  made  differen3al.  

•  CMFB  will  be  discussed  later.