Basic Equations - Heat Diff-2

Embed Size (px)

Citation preview

  • 8/10/2019 Basic Equations - Heat Diff-2

    1/21

    Introduction A. Oztekin 2005 1

    INTEGRAL FORMS OF BASIC CONSERVATION LAWS

    WHEN CONTROL VOLUME IS AT REST RELATIVE TO INERTIAL AXES

    VB

    n

    n

    n

    Typical Control Volume

    n = unit outward normal to the surface

    Conservation Laws

  • 8/10/2019 Basic Equations - Heat Diff-2

    2/21

    Introduction A. Oztekin 2005 2

    The density of the material is defined bythe condition that mass of material in V + B

    dV mV

    The mater ial, or bulk, veloci ty v is defined bythe condition thatLinear Momentum of material in V + B

    dV V

    vp

    Mass and linear momentum

  • 8/10/2019 Basic Equations - Heat Diff-2

    3/21

    Introduction A. Oztekin 2005 3

    Conservation of Mass

    .acrossleavingismasswhichatrate

    inmassof changeof rate inmassof changeof rate

    B

    V B V

    dAdV t dt

    dm BV

    )( nv

  • 8/10/2019 Basic Equations - Heat Diff-2

    4/21

    Introduction A. Oztekin 2005 4

    Newton's Second Law

    .outsidefrominmaterialonexertedforcetotal

    inmaterialof momentumlinearof changeof rate

    BV

    BV

    .)(

    )(

    dAdV dAvdV t dt

    d

    BV

    BV

    f gnv

    vp

    )or viscous(elasticareaunit perforcesurface

    gravity)(massunit perforce body

    f

    g

  • 8/10/2019 Basic Equations - Heat Diff-2

    5/21

    Introduction A. Oztekin 2005 5

    First Law of Thermodynamics (Energy Equation)

    Usually,

    V V

    dV iedV E vv21

    where

    massunitpersystemtheof energye

    systemtheof energytotalE

    materialtheof massunitperenergyinternali

    vv21

    ie

  • 8/10/2019 Basic Equations - Heat Diff-2

    6/21

    Introduction A. Oztekin 2005 6

    Conservation of Energy - Continued

    .boundarytheacrossconductedisheatwhichatrate

    ingeneratedisenergywhichatrateatwork doforcessurfacewhichatrate

    inwork doforcesbodywhichatrate

    changesinmaterialof ,energy,whichatrate

    B

    V

    B

    V

    B V E

  • 8/10/2019 Basic Equations - Heat Diff-2

    7/21

    Introduction A. Oztekin 2005 7

    Conservation of Energy - Continued

    dAdV q

    dAdV

    dAedV t e

    dt dE

    BV

    BV

    BV

    )(

    )()(

    )(

    nq

    f vgv

    nv

    massunitpergeneratedisenergywhichatrate

    areaunitperfluxheatq

    q

  • 8/10/2019 Basic Equations - Heat Diff-2

    8/21

    Introduction A. Oztekin 2005 8

    HEAT CONDUCTION IN A RIGID MATERIAL

    constant.p ,npf ,0g,0v,constant

    Energy Equation Becomes

    .0)( dV qdAdV t i V BV nq

    Assumptions:

  • 8/10/2019 Basic Equations - Heat Diff-2

    9/21

    Introduction A. Oztekin 2005 9

    HEAT CONDUCTION IN A RIGID MATERIAL -Continued

    If zyx q,q,qq

    DIVERGENCE THEOREM implies that

    dV z q

    yq

    xqdA z y x

    V B)()( nq

    so that

    0)( dV q z

    q

    y

    q

    x

    q

    t

    i z y x V

  • 8/10/2019 Basic Equations - Heat Diff-2

    10/21

    Introduction A. Oztekin 2005 10

    Consequently, at all points of the region

    .q z

    q

    y

    q

    x

    q

    t

    i z y x

    Assumptions:Internal energy is a function only of temperature and

    Fourier's law holds so

    .)(,)(,)(or

    )(q),(

    z

    T T k q

    y

    T T k q

    x

    T T k q

    T T k T i i

    z y x

  • 8/10/2019 Basic Equations - Heat Diff-2

    11/21

    Introduction A. Oztekin 2005 11

    Equation for :)t,z,y,x(T

    .

    cheat,specifictheof Definition

    ))(())(())((

    )(

    p

    dT di c

    q z

    T T k

    z y

    T T k

    y x

    T T k

    x

    t

    T T c

    p

    p

  • 8/10/2019 Basic Equations - Heat Diff-2

    12/21

    Introduction A. Oztekin 2005 12

    q z x

    T k k

    z y

    T k k

    y x

    T k k

    z T k

    yT k

    xT k

    t T T c

    zx xz zy yz yx xy

    zz yy xx p

    222

    2

    2

    2

    2

    2

    2

    )(

    Non-isotropic Material

    When k is constant and second order tensor

    k will be different in different directions

  • 8/10/2019 Basic Equations - Heat Diff-2

    13/21

    Introduction A. Oztekin 2005 13

    Isotropic Material

    y diffusivit thermal c

    k

    q c

    T t

    T

    q c z

    T

    y

    T

    x

    T

    c

    k

    t

    T

    p

    p

    p p

    :

    1

    1

    2

    2

    2

    2

    2

    2

    2

    Coefficients are constant and isotropic material

  • 8/10/2019 Basic Equations - Heat Diff-2

    14/21

  • 8/10/2019 Basic Equations - Heat Diff-2

    15/21

    Introduction A. Oztekin 2005 15

    Suggestion:

    Use of Telegraph Equation Damped Wave EquationHyperbolic Equation the disturbances propagate with afinite velocity

    T t

    T c Usually

    t ime relaxation c where

    T

    t

    T

    t

    T

    c

    2102

    00

    2

    22

    2

    2

    110

    11

  • 8/10/2019 Basic Equations - Heat Diff-2

    16/21

    Introduction A. Oztekin 2005 16

    T z y x

    T

    2

    2

    2

    2

    2

    22Cartesian Coordinate System

    Cylindrical Coordinate System

    Spherical Coordinate System

    T

    z r r

    r

    r r

    T

    z z and rSin yr xwith

    2

    2

    2

    2

    22 11

    ,cos

    T r r

    r r r

    T

    r z and r yr xwith

    2

    2

    2222

    22

    sin1

    sinsin11

    cossinsin,cossin

  • 8/10/2019 Basic Equations - Heat Diff-2

    17/21

    Introduction A. Oztekin 2005 17

    Thermal Conductivity k (W/(m K) for heat diffusion

    Metallic Solid (W/mK)Silver 418Cu 387

    Stainless Steel 16

    Nonmetallic SolidsPericlas, MgO 42Quartz 19Quartz fused 2Pyrex 1

    Liquids W/(m K)Hg 8Water 5

    Freon 0.07

    Gases H 2 0.175He 0.141Air 0.0243

  • 8/10/2019 Basic Equations - Heat Diff-2

    18/21

    Introduction A. Oztekin 2005 18

    Thermal Conductivity k

    k is affected by

    (a) impurities (most values are given for pure substances)

    (b) radiation damage(c) alloying

    k metals > k nonmetals

    k solid > k liquid > k gas

    the effect of density solid > liquid > gas

  • 8/10/2019 Basic Equations - Heat Diff-2

    19/21

    Introduction A. Oztekin 2005 19

    Thermal Conductivity k

    For metals,Electrical conductivity and thermal conductivity are related byk = L 0 Twhere L 0 : Lorentz constant, : electrical conductivity

    For gases,

    k cv for monatomic gases (rigid sphere molecules) k = 5/2 c v

    In general,k depends on temperature Tk may also depend on pressure (p) and composition (c)

    k usually is decreasing function of T for solids and liquidsand is increasing function of T for gases

  • 8/10/2019 Basic Equations - Heat Diff-2

    20/21

    Introduction A. Oztekin 2005 20

    Boundary Conditions at a Surface

    1. Specify the temperature

    ).,,(),,,0( 0 t z yT t z yT

    2. Specify the heat flux

    ).,,(0 t z yq xT

    k

    Special case when the surface is insulated

    .0 xT

    :0x

    x = 0

    Solid

    T(x,y,z,t)

    T = T 0(x,y,z)

    Another Material

  • 8/10/2019 Basic Equations - Heat Diff-2

    21/21

    Introduction A. Oztekin 2005 21

    Boundary Conditions at a Surface - Continued 3. Surface convection

    ).),,((10

    T t z y T h x

    T k

    4. Surface radiation

    ).),,(()),,(( 414

    010 T t z y T T t z y T h x T

    k

    In general coefficients k, h, and vary from point to point on the surface

    :0x

    x = 0

    Solid

    T(x,y,z,t)

    T = T 0(x,y,z)

    Another Material

    T 1

    ).),,(( 414

    0 T t z y T x

    T k

    : Stefan - Boltzman constant: emissivity (0 1)

    5. Surface convection and radiation